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ALGEBRAIC PROPERTIES
OF GENERALIZED RIGHT INVERTIBLE OPERATORS

0. Introduction

The theory of right invertible operators was started with works of D.
Przeworska-Rolewicz [8]-[12] and then has been developed by M. Tasche
[13)-[14], H. von Trotha [15], Z. Binderman (3] and many others (see [12]).
The algebraic theory of generalized invertible operators was studied by P.
M. Anselone and M. Z. Nashed [1], A. Ben-Israel and T. N. E. Greville [2],
S. G. Caradus [4], M. Z. Nashed [5] and others (see [2]). However, the set
of all generalized invertible operators is so large that, if we admit the axiom
of choice, then every linear operator is generalized invertible [5]. Whereas,
the generalized invertible operators do not satisfy desirable algebraic prop-
erties which the right invertible operators do (see [12]). For example, if a
linear operator V' € L(X) is generalized invertible and W is a general-
ized inverse of V, then there is not any general algorithm for constructing
generalized inverses neither of V™, n € N, nor of algebraic polynomials
induced by V. Hence, there is the lack of effective methods to solve equa-
tions induced by algebraic polynomials with a generalized invertible opera-
tor.

In this paper, we introduce a so-called class of right invertible oper-
ators of degree r € N, and we denote its by R.(X). According to Defi-
nition 2, the set of all linear operators have been classified by means of
the same invertible degree of operators (inclusion (2)). From classification
(2) we can see that the set of all differential operators is exactly the first
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class. Then the paper mainly involves in studying second class Ry(X) re-
ally containing not only all right invertible operators and some well-known
operators in Analysis as Projections, Integral-Differential Operators (see
Example 2 and Remark 4) but also a class of algebraic operators (see Ex-
amples 2-3 and Theorem 5). We obtain many important algebraic char-
acterizations of operators in R;(X) like fundamental characterizations of
operators in R(X) (see Section 1). Especially, if V € Ry(X) and W is a
generalized right inverse of V (such written W € RY), then V" € R;(X)
and W™ € R}.. Theorem 5 gives a sufficient and necessary criterion for
an algebraic operator to be generalized right invertible and Theorem 6
indicates that the generalized right invertibility and the almost right in-
vertibility are identical in the class of algebraic operators. Theorems 8, 9
generalize the Rolewicz and von Trotha theorems from class R(X) to class
R1(X). Lastly, we apply these results to solve corresponding equations in-
duced by algebraic polynomials with a generalized right invertible operator
(Section 4).

1. Generalized right invertible operators
Let X be a linear space over a field of scalars . Denote by L(X) the
set of all linear operators with domains and ranges in X and write

Lo(X)={A€ L(X):domA = X}.

The set of all right invertible operators in L(X) will be denoted by R(X).
For a D € R(X) we denote by Rp the set of all right inverses of D,
ie.

RD={R€L0(X):DR=I}.

The theory of right invertible operators and its applications are presented
in [12].

DEFINITION 1, [7]. An operator V € L(X) is said to be generalized
invertible (GI-operator), if there is a W € L(X) such that ImV C dom W,
ImW CdomV and VWV =V ondomV.

The set of all GI-operators in L(X) will be denoted by W(X). For a
V € W(X) we denote by Wy the set of all generalized inverses in L(X)
of V.

DEFINITION 2. An operator V € W(X) is said to be right invertible of
degree r € N, if there is a W € Wy such that

(1) Im(VW —I) C ker V7,

where we admit V° = I for the case r = 0.
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The set of all right invertible operators (in L(X)) of degree r will be
denoted by R,(X).

Remark 1. (i) By Definitions 1 and 2, we have
(2) R(X)=Ro(X) C Ri(X) C Ro(X) C -+ C Ru(X) CW(X),
n=20,1,2,...;
(ii) R(X) is the set of generalized right invertible operators of degree 0.
In this paper, we mainly deal with the set R;(X).

DEFINITION 3. Every V € Ry(X) is called a generalized right invertible
operator (shortly: G R-invertible operator).

Fora V € Ri(X)we denote by R} the set of all generalized right inverses
(shortly: G R-inverses) of V.

Remark 2. V € Ry(X) if and only if there exists a W € L(X) such
that
(3) VWV =V, VW=V.

DEFINITION 4. If there is W € R}, such that InW C ker(VW - I),
then V is said to be almost right invertible and W is called an almost right
inverse of V.

Denote by R(1)(X) the set of all almost right invertible operators and

by 72(‘,1) the set of all almost right inverses of V € R(1)(X).

Remark 3. V € R;)(X) if and only if there exists a W € L(X) such
that
(4) VWV =V, VW=V, VW!=w.

In the sequel, the identities (3) and (4) will be used to check if the V € L(X)
is generalized right invertible (or almost right invertible).

ProrosITION 1. Let D € R(X), R € Rp and let V = R™D™, where
n>m and n,m € N. Then V € R1(X). Moreover, if n > 2m, then there is
an almost right inverse of V.

Proof. Write Wy = R" ™, where we admit R® = I for the case
n = m. Since R € Lo(X), we conclude that Wy € Lo(X). Using equali-
ties D*R* = I, we find

(5) V:W,=R™D"R™D"R™ ™ = R™"D""™D™ =R"D"=V
and

(6) VW,V = R"D"R*"™R™D" = R™D" = V.
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The identities (5), (6) together imply that V' € R;(X). On the other hand,
for the case n > 2m we have

VWO2 = RM"DMRMMRNT™ — RMDTMRRT™ = RmDmRmRn—2m — WO-
Hence V € R(;)(X) and W € R(‘}). The proof is complete.

EXAMPLE 1. Let

d
X =C([0,1],F), D= L

(Rz)(t) = | 2(s)ds, (Fz)(t) = z(to), to €[0,1].

to

Put V = FD. Then V # 0 and V2 = 0. It is easy to see that V €
W(X) by R € Wy. However, V ¢ R.(X) for r € {0,1}. Indeed, it is
clear that V ¢ R(X),ie. V € Ro(X). H V € Ry(X) and W € Ry,
then from V?W = V it follows V = 0, which contradicts the condition
V#£O0. '

EXAMPLE 2. Consider a projection P € Lo(X), P # I, ie. P = P.
Evidently, P ¢ R(X). However, it is easy to see that P € R(;(X), by
PeRY.

Remark 4. If m # 0, then the operators V in Proposition 1 are not
right invertible, since V € Ry(X)\ R(X). Moreover, there is a infinite set of
integral-differential operators of the form V' = R™D" (m,n € Nyn > m >

0), which belongs to R;(X) (when this set does not belong to R(X)). Thus,
we have the following inclusions

™) R(X) € Ba(X) € W(X).
PROPOSITION 2. Let V € Ri(X) and W € RY,. Then for every m,n € N
we have
yn-m ifn>m2>1,
vewm = vw ifn=m>2,
VWm—ntl ifm>n > 1.

Proof. If n = m > 2, we find
VW™ = Vn—Z(VZW)Wn—l - Vn——lwn—l
= VW = (VW)W = VW.
If n > m > 1, we have

VW™ = Vn—m(vme) — Vn—m(VW) — Vn-—m-—l(VZW) — Vn—m.
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Finally, for m > n > 1, we get
VW™ = (VPWHW™ " = (VW)™ ™" = ywm-ntl
The proof is complete.

PRrOPOSITION 3. Let V € Ry(X) and W € RY,. Then V™ € Ry(X) for
alln € N and W™ € RY,., where we admit V° = I.

P roof. The assumptions and Proposition 2 together imply the following
equalities

Ve = (VWV)V™ ! = (VW)V" = (V*WHV" = V"WV,
i.e., V* € W(X). On the other hand, also by Proposition 2, we have
yr = VW = VNV W) = VH(V'W™) = (V)P W™,
Hence V™ € R1(X) and W™ € R}..

THEOREM 1. Let V € Ry(X) and let Wy € RY,. Then W € L(X) is a
GR-inverse of V if and only if there isan A € L(X) such that Im A C ker V2
and

(8) W =Wy + A-WeVAVW,.

Proof. Let W be of the form (8), where Im A C ker V? and Wy € R},.
We have
(9) VWV =V + VAV —VWoVAVW,V =V 4+ VAV - VAV =V,
(10) VW =V W, + VZA- VW VAVW, =V - VIAVAW, = V.
Equalities (9) and (10) together imply W € R},.

Conversely, let Wo,W € R}. Put: A = W — Wy. We find V24 =
VIW —V2Wy =V —V =0, i.e. Im A C ker V2. The equalities VIWV = V
and VW,V =V together imply V(W — W)V = 0. Hence, we have

W =Wy + (W - Wo) - WOV(W — Wo)VWo =W+ A-WoVAVW,,
which gives the representation (8). Theorem is proved.

THEOREM 2. Let be given A,B € L(X) such that InA C dom B,
ImB C domA. Then I + AB € Ry(X) if and only if I + BA € Ry(X).
Moreover, if Wap € R}, 4p, then

Proof. Let I+ AB € Ry(X) and Wyp € R}, 45. Then (I + AB)’Wp
= (I + AB) and W, defined by (11), is well-defined on X. From Theorem
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10.3 in [7] it follows I+ BA € W(X) and W € Wy, g4. On the other hand,
we have the equalities

(I + BAY’W = (I+ BA)*(I - BW,pA) = (I+ BA)’ — (I+ BA)’BW,pA
=(I+ BA)> = B(I+ AB)*W,pA =1+ BA)?® - B(I+ AB)A=1+ BA

which imply that W € R}, p, and I + BA € Ry(X). The proof is com-
plete.

PROPOSITION 4. Let V € Ry(X) and Wy € RY,. Write W, = WoVWW,.
Then W] € R%, and W1VW1 = W].
Proof. The assumptions V2Wy = V and VW,V = V together imply
following equalities
VEIW, = VEW VW, = VIVIWR VW, = VEW, =V,
WiVWy = WoVIWo VW VW, = Wo(VIWo VW VW,

= WoVWoVWy = WoVWy =V

which give W1 € R%/ and W1 VW1 = W].
In the sequel we write R(‘}'O) ={WeRLWVW =W}

2. The generalized right invertibility of algebraic operators

Let F = C. We say that A € Lo(X)is algebraic if there exists a non-zero
normed polynomial P(t) = t" +p1t" 1 +---+pp_1t+ p, with coeflicients in
F such that P(4) = 0 on X. An algebraic operator A is called of order =,
if there does not exist a normed polynomial Q(¢) of degree m < n such that
@(A) = 0 on X. Such a minimal polynomial P(t) is called characteristic
polynomial of A and denoted by P4(t). The set of all algebraic operators in
Lo(X) will be denoted by A°(X).

Let S be an algebraic operator in Lo(X ) with the characteristic polyno-
mial of the form

(12) Ps(t) =tV + pt" 1 + -+ pn_at 4 p.

THEOREM 5. Let S be an algebraic operator of order N in Lo(X) with
the characteristic polynomial Py(t) of the form (12). Then S € Ry(X) if
and only if [pn-1] + |pn| # 0.

Proof Necessity.Let § € Ri(X)and W € RY. Suppose that [py_1]+
|pn| = 0. It means that py_y = py = 0. From Ps(S) =0 and S’W = S we
have the following equalities

0=Ps(S)W = (SN2 4+ ;SN 3 4. 4 pno)S*W
=SV P4 p SNt pna)S = SV 4 SV TP 4 4 NS,
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which contradict the assumption that S is of order N.

Sufficiency. If py # 0, then S is invertible and it is right invertible and
G R-invertible, simultaneously. So it is enough to deal with the case when
pn = 0 and py—1 # 0, simultaneously.

(i) The case N = 2. Let Ps(t) = t* — p1t, py # 0. It is clear that the
operator § = —pj'S satisfies (3). Hence § € Ry(X) and W = —p['S§ €
RL,

(ii) The case N > 3. We set

N-2 N-3
(13)  W:=pyl, (E pn-2pESN TR =D pN-lkaN"‘“2> ,
k=0 k=0

where py = 1.
We shall prove that W € RY. Indeed, we have

N-2 N-3
SWS =prty | Y pnoapeSNTFH - > PN—lkaN_k)
k=0 k=0

N=2 N-3
= vaz_l pPN—2S5 Z oSN —py_y E kaN_k)

k=0 k=0

N-3
= pl_\-fz—l pN-25(Ps(S) — pn-15) — pn-1 Z PkSN—k)
k=0

N-3
= Pﬁz_l (—PN—IPN—252 — PN-1 Z kaN"k>
k=0

= —pyty (Ps(S) — pn-15) = S.

Hence S € W(X) and W € Ws. On the other hand, we also have SW =
WS, which gives S?W = §. The proof is complete.

THEOREM 6. Let S € AYX)N Ry(X). Then S € R1)(X) and there
ezxists a unique almost right inverse of S.

Proof. Let Ps(t) be of the form (12). It follows from Theorem 5 that
lpnl+ [PN-1] # 0.

1. The case py # 0. It is clear that § is invertible. Hence § € R(;)(X)
and §7! € R(Sl). Let W € ’R,(Sl) be arbitrary. Since S2W = §, we find
W=822W=825=8"1.S W =251 ie §7!is the unique almost
right inverse of S.

2. The case py = 0 and pn—1 # 0, simultaneously.
(i) If N =1, then it is trivial.
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(ii) If N = 2, then it means that $? = —p;S. Evidently, the operator
W = pf25' satisfies the identities SWS§ = S, S?°W = 5, SW? = W, so
SeR(X)and W = S € Rg). Suppose that W' € Rg) is arbitrary.
Then we find

WI — SW,2 - (_p1—152)W12 - (__pl—l)(s2W12)
= (-p; )SW' = (—pi)(—p' SHW = p %S = W.
(iii) Now let N > 3.
The existence. By the proof of Theorem 5, it is enough to check that

the operator W defined by (13) satisfies the following identity SW? = W.
Indeed, putting

N-2 N-3
W, = pi’, (Z pN-apk SV TR - E PN—lkaN—k_3> ;
k=0 k=0

we obtain SW? = SWW = SW(SW.) = (SWS)W. = SW, = W. Thus,
S € Rayy(X) and W € RY).

The uniqueness. Suppose that W' ¢ Rg) is arbitrary. Prove that W' =
W, where W is the operator defined by (13). Indeed, putting

P(S)= SN2+ piSVP + 4 pN-3S + N2,
we have § = —py', P.(5)52. Then, using Proposition 2, we find
W' = SW"? = —pyt Pu(85)S* W™ = —p3L  Pu(S)SW'
= —pn1 Pa(8) (—PRL, P(5)S) W
= P21 PoS)P(S)SW' = pi2 P(S)P(S)S
=iy (SV 2 piSV T 4 4 pvoaS + pv—a]) Pu(S)S
=i (872 + plsN—“ + ...+ pn-al) P(5)8* + pn-2 Pu(S)S]
=g (V3 + oSVt 4+ + pvoa]) (=pN-15) + PN—2 Pu(S)S]
=Pt [Pv-2Pu(S)S — pn-1(SV 24 ;SN 4+ pn-39)] =
Thus W' = W. The proof is complete.

Remark5. (i) It is well-known that the algebraic operator S is one-side
invertible if and only if it is invertible (two-side). Theorem 6 indicates that
the algebraic operator S is generalized right invertible (of degree 1) if and
only if it is almost right invertible.

(if) Suppose that S is the algebraic operator with Pg(t) of the form
(12). In particular, if § € Ry1(X) but it is not invertible (corresponding
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to the case py = 0 and py—1 # 0), then at least there are two gener-
alized right inverses of §. Indeed, besides W, defined by (13), the opera-
tor

(14) T=-p SV 249 SN2 4+ pN_sS +pN=a])

is also generalized right inverse of S. In general, T is not almost right in-
verse of S. For example, consider the projection P € Lo(X) (P # I). Then
Pp(t) = t* — t. Operators W and T constructed by (13) and (14), respec-
tively are both generalized right inverses of P, but [ is not almost right
inverse of P, since PI? # I.

COROLLARY 2. Let § € Ry)(X) and W € RS Then § € A%(X) if and
only if W € A%(X).

Proof. Let § € A°(X). Then, by Theorem 6, W is uniquely determined
by (13), since W € A°(X) (see [8]). Conversely, suppose that W € A%(X)
and Pw (1) = tM 4 gtM-1 4 ... 4 apr. Then we find SM+1PW(W) =0 and
S+a18%+ -+ ap§M*! = 0, which gives § € A%(X).

ExAMPLE 3. Let X = Ly(R™). Consider Fourier’s transform in X
(Fz)(t) = (7)™ | exp(~i(t,5))a(s)ds,
R®

where (1,8) = t181 + 1383 + ... + t,8,. We have F' € Lo(X) and F* = I.
Then F is invertible, since F' € R;(X). Furthermore, the following opera-
tors

(Tex)(t) = (27) ™72 | cos(t, s)z(s)ds,
Rn

(Tsz)(t) = (2r)~"/2 | sin(t, 5)z(s)ds
fn

are algebraic with the characteristic polynomial Pr,(t) = Pr,(t) = 3 — ¢
(see [10}, p. 287). Thus, by Theorem 5, T € Ry(X) and Ts € R1(X).

EXAMPLE 4. Let T be a closed Liapunov curve on the complex plane C.
Consider the integral operator of Cauchy’s type

(se)1) = = § X
r

If X is one of spaces L,(T), H*(T), then §% = I (see [16]). It is easy to
check that operators

P=3(I+5), Q=4I-9)
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are the projections in X, since P, ) are the algebraic operators with charac-
teristic polynomial Pp(t) = Pg(t) = t? —t. Thus, P,Q € Ry(X). Moreover,
consider operators

1 ¢ gn—k-17k n-1
(Snkp)(t) = —S ——e(r)dr, (Map)(t) = Y akSnp,
i
r k=0

where a; € F, k,n € N, 0 < k < n. We have (see [6], [7]) $3, =
Snky M2 = M,. Hence, Sy, x, M,, € A°(X) with characteristic polynomial
Ps, . (t) = Pp,(t) = t* —t. Thus, by Theorem 5, S, and M, are the
generalized right invertible operators in X.

3. Volterra characterizations of GR-inverses

Let A € Lo(X). If the operator I — AA is invertible for all A € F, then A
is said to be a Volterra operator. The set of all Volterra operators in Lo(X)
will be denoted by V(X). Let F = C. Write

(15) Qt,s) = qut" Nk = H(t—tms)’m

(16) Q(t) := Q(t,1), P(t):= tMQ(t),
where q0,q1,---,4qN-1 € f,QN = 1;¢; 7£ tj for 1 #j77'0+ et =N 2> 1,
M e N.

Recall the following result of D. Przeworska-Rolewicz and H. von Trotha.

THEOREM 7, (12]. Let D € R(X) and let R € RpNV(X). Then P(D) €
R(X) and Q(I, R) is invertible. Moreover, T := RN*M(Q(I,R))™! € Rp(p)
N V(X). Conversely, if T is Volterra operator, then R is Volterra opera-
tor.

In this Section, we generalize Theorem 7 for the case of GR-inverses.

THEOREM 8. Let V € Ri(X),W € R, NnV(X) and let Q(t,s),Q(t)
and P(t) be of the forms (15), (16). If goFS) = 0, then Q := Q(I, W) is
invertible and P(V') € R1(X). Moreover,

(17) T =WNtMQ=1 € Rp .y nV(X).

Proof. The assumption qué",.) = 0 means that ¢ = 0 or F‘(,‘l,) = 0.

(i) The case FI(,‘I,) = 0. It follows that V' € R(X). Thus, it is exactly the
case of Theorem 7.
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(i) The case go = 0. From W € V(X) it follows that the opera-
tor I — AW is invertible for all A € F, since @ is invertible. By Proposi-
tion 2, we have Q(V)WN = VWQ, ie., QIV)WNQ™! = VW. Hence, we
find

P(V)TP(V) = VMQVYWNWMQ-1p(V) = VMVYWwQWMQ-1P(V)
= VMAIWwMH p(y)y = VWP(V) = VWVMQ(V)
= VMQ(V) = P(V)v

which gives P(V) € W(X). On the other hand, we have

(P(V))’T = V*M(Q(V))’T = (Q(V)*V*MwM+N Q-1
= (Q)PVMWNQ™! = vMQ(V)Q(V)WN Q™!
=VMQV)VWQQ ™ = VMQ(V)VW = VMQ(V) = P(V).

Hence P(V) € Ry(X). To finish the proof, we show that T € V(X). It is
easy to see that for all A € F the following factorization yields

q
QU W) = \WNM = TT(1 - ;W)
Jj=0

So that

q
I-)T=(Q - AWNtM)Q=1 = T](I - ;W) Q1.

J=0

From that all operators I — ;W are invertible, we conclude that I — AT is
invertible for all A € F. Theorem is proved.

THEOREM 9. Let Q(t, s) be of the form (15) and let Q := Q(I,W). If Q
is invertible, then T of the form (17) is a GR-inverse of P(V'). Moreover,
ifT e V(X), then W € V(X).

Proof. Let 0 # so € F, and A € F be fixed. Put p := Q(N)sg ™.
Then I — uT = (Q — pWMIN)Q-1 Hence H := Q — uWM+V s invert-
ible, provided that T € V(X). We set P,(t,s0) := Q(2,80) — us¥ V. It is
easy to check that P,(Asg,sp) = 0. It follows the factorization P,(t,s0) =
(t — As80)Q (2, 80), where Q,(2,50) is a certain polynomial. Since we have
H = (I — pW)Q.(I,W) invertible, we conclude that I — AW is invertible
for any A € F,i.e., W € V(X). Theorem is proved.
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4. Equations induced by polynomials with GR-invertible oper-
ators

Equations and initial problems induced by a generalized invertible op-
erator were studied in [7]. In this Section we consider equations induced by
polynomials with a G R-invertible operator.

THEOREM 10. Let Q(¢,s) and P(t) be of the form (15) and (16), re-
spectively, and qo = 0. Let V € Ry(X) and W € V(X)N R}. Then the

equation
(18) P(V)z =y

has solutions if and only if F‘(,:,) y = 0. If this condition is satisfied, then all
solutions of (18) are given by the formula

(19) x=WNTMQI,W))"Yy+ 2, where z € ker P(V).

Proof. By Theorem 8, P(V) € Ry(X) and T := WNtMQ-1 ¢ 'R,},(V) N
V(X) , where Q = @Q(I,W). By Theorem 11.1 in {7], the equation (18) has
solutions if and only if (I — P(V)T)y = 0, i.e.,

(20) (I - P(V)WN+MQ=1yy = 0.
On the other hand, we have
P(VYWNHM — y Moy ywN+M = vM(Q(vywNywM
= VMywQI,w)ywM = yMHiwM+ig - ywQ.

It follows I — P(VYWN+MQ-1 = I _ VW. Hence the identity (20) is of the

form (I — VW)y = 0, i.e, FI(,‘I,)y = 0. It follows from Theorem 11.1 in [7]
that, if this condition is satisfied, then all solutions of (18) are given by (19).
The proof is complete.

Now we deal with the case gy # 0. Consider the following equation

(21) QV)z =y,

where y € X is given, Q(t) is of the form (16). Write @*(t,s) = Q(t,s) —
qos™, Q*(t) = Q*(4,1).

THEOREM 11. Let V € R1(X),W € V(X)NR}, and y € Im Q(V). Then
all solutions of (21) are given by

(22) 2= Q U,W)Q WN(@Q(LW)  y+4],

where z € ker Q*(V').



Algebraic properties of operators 507

Proof. We have Q(V) = Q*(V) + qol. Hence, (21) may be written in
the form

(23) Q*(V)z =y - gz

It follows from Theorem 8 that Q*(V) € Ry(X) and WN[Q*(I,W)]™! €
Rb.(v). By Theorem 10, the equation (23) is equivalent to z =

WN[Q*(I,W)]™ [y — goz] + 2, and then
(24) [+ @WN@*(L, W) ]z = WN[Q (I, W)y + 2,
where z € ker @*(V'). Futhermore, we have
M = [1+ W™ (Q (LW 7] = [@(L,W) + W™ 1Q"(L, W)™
QUW)Q™I, W)

This implies that M is invertible. Thus, from (24) we get all solutions of
(21) in the form (22). The theorem is proved.
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