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ON DIRECTIONAL Z;- DENSITY POINTS

Let ®* denote the k-dimensional Euclidean space (k = 1,2), V' — the set
of positive integers and ®; — the set of positive real numbers.

The ball centred at a point p and with radius » > 0 will be denoted by
K(p,r).

We introduce the following notations:

Sy — the o-field of subset of ®* having the Baire property,

Z; - the o-ideal of subset of R* of the first category.

We shall say that a set A C R* is S; — measurable if and only if A € Si.

For A € &y, we shall denote by ¢(A4) the set of all 7;-density points of
A [6]. It is known [6] that the mapping ¢ : S&; — 2% is a lower density
operator.

If a plane set A is contained in a line, then we use linear Z; - density
points of the set A € ;.

Let Lg(Lg(z,y)) denote the line passing through the point (0,0) (re-
spectively, the point (z,y)) and forming an angle @ with the ox — axis for
6 €(0,m).

We denote by AAB the symmetric difference of A and B; if A, B € Sy,
then A ~ B means that AAB € Ty, k=1,2.

Set 6 € [0,7). For M C R? we put

Se(M) = {(z,y) € R*: Frex, M 0 Lo(z,y)N K((z,y),7) € S1}.

For each M C R?, we define:
1. If € [0,7), then

Q0(1‘4) = {(x7y) (S SB(M) : (:l?,y) € ¢(M n L9(x7y))}
2. If 61,0, € [0, ), then
thgz(M) = le (M) n ¢92(M)
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3. (M) = {(=,y) € R? : (z,y) € ®4(M) in I; - almost every direction
6 efo,m)}.
We shall say that a point (z,y) € R? is an Z;-density point of M in the
direction @ if and only if (z,y) € ®¢(M).

DEFINITION 1. We shall say that ¥ : S — 2% is a lower density
operator if and only if
L U(A)~ A,
II. A~ B = ¥(A) = ¥(B),
I ¥(9) = 9, ¥(R?) = 12,
IV. (AN B) = ¥(A) N ¥(B).
DEFINITION 2. We shall say that a function f : ®2 — R is continuous

at (z,y) € R? with respect to the operator ¥ € {®,, ®y, 4,, P} if and only
if, for each open set G C R,

FHG) CU(F7HG)).
From the Kuratowski-Ulam theorem [5] we have the following

ProrosiTION 3. If E € I, then
{:I) eR!: EﬂLo(.’D,O) ¢Il } € 1.

THEOREM 4. For any 6 € [0,7) and A, B € S; we have
I. ®4(A) ~ A,
II. A~ B = q)g(A) ~ Qg(B),
1. ®4(0) = 0, ®o(R?) = R?,
IV. ®4(AN B) = &4(A) N $4(B).
Proof. Let 8 € [0, ). First, we shall prove I. Let A C ®% and A € S,.

Then, there exist sets Py, P, € I, and an open set G C R? such that
AZ(G\PI)U.Pz,PI CGand ,NG =0. Let

Ey={ze®R': P nLyz,0) ¢TI}

By Proposition 3 we have E; € ;.
Denote by
wi(8) = |J Le(z,0).
z€E;
Thus Wy(0) € I,, what easily follows from the fact that £y x R € Z,. We
shall prove that

(1) G\ Wi(8) C 24(A).
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Let (zo,¥) € G\ W1(8). Then there exists r € R, such that the ball
K = K((zo,%0),7) C G and, by the definition of the set F;,
Ly(z,0)n P €T,

where (Z,0) is the unique point for which (zo, %) € Ls(Z,0).

Thus

Le(Z,0)N K C Le(Z,0)n G
and the set (Lg(Z,0)NK)\ P; is the residual set on the interval Ly(Z,0)N K.
Therefore
(Le(Z,0)NK)\ P1 C (Le(Z,0)NG)\ P = Ly(Z,0)N (G \ P1).
But
(Le(Z,0)n K)\ P C Lg(Z,0)Nn (G\ P)N K

and the set Lg(Z,0)N(G\ P1)NK is the residual set on the interval Ly(Z,0)N
K. Thus Lg(Z,0)N AN K is also a residual set on the interval Ly(Z,0)N K.
Consequently, (zo,y0) € Po(A). Hence we have (1).

Now, we denote by

Ey={ze®R': P,nLyz,0)¢ 11}
From Proposition 3 it follows that F; € Z;. Similary as above, we put
Wy(8) = | Le(z,0).
z€E,

Thus W3(8) € I, since E; X R € 7.

We shall prove that
(2) ®4(A) C GUW,y(6).
Let (z9,%) ¢ G U W5(8). Hence there exists a ball K((zo,%0),7) such that
KnG = and (:L'o,yo) g W2(0)

Let Lo(Z,0) be the unique line for which (zo, %) € Lg(?l,':, 0). Therefore,
by the definitions of K and E,, we have that

Le(Z,00n KN (G\P) =0
and
L¢(2,0))N P, € I;.
Thus the set Lg(::v:, 0))N A is of the first category on the interval Lo(%, 0)NK.
Hence (z0,%0) ¢ ®s(A). Consequently, the condition (2) holds.
By virtue of inclusions (1) and (2), we have that ®4(A) ~ G ~ A and,
therefore, the proof of I is completed.

We observe that condition II easily follows from I and the proof of III is
obvious.
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Clearly, condition IV follows from the analogous condition IV for 7; -
density points on the line ®!, [6]. The proof of the theorem is completed.

Let W ¢ S;. We put, for each (z,y) € R?, f(z,y) = xw(z) (the charac-
teristic function of W). It is easy to see that the function has not the Baire
property and f is continuous function with respect to the operator ®z. We
observe that the family {4 € S; : A C ®z(A)} is not a topology in R,

From Theorem 4 we derive

THEOREM 5. For any 6,0, € [0,7) and A, B € S; we have
I ®4,0,(A) ~ A,
II. A~ B = &g, g,(A) ~ @9, 4,(B),
1. @4, 5,(0) = 0, Bp, 4,(R?) = N2,
1V. leygz(A N B) = @91192(/—1) n @91 ’gg(B).
In a similar way as in [1, Th 2.1, p.134] we can prove the following

COROLLARY 6. Let 01,6, € [0,7). Then the family
To, 0, = {A €81 AC By, 5,(A)}
is a toplogy in R2.
THEOREM 7. Let 61,6, € [0,7) and 6, # 6. If a function f : R2 — R

is continuous with respect to the operator ®g, 4., at each point (z,y) € R2,
then f is of the second class of Baire.

Proof. We may assume that §; = 0 and 6, # 0. We define a transfor-
mation G : 82 — R? as follows: '

if (z,y) € R? and (2',¢') = G(z,y) then 2’ = z + ysin 6, and y' =
ycos 5.

By the continuity of G' we see that the function f(G(z,y)) is continuous
with respect to the operator ®¢ z. By the theorem from [3], we know that
f o G is of the second class of Baire in 2. Since G~! exists and it is a
continuous function, we have that f = f o G o G~} is of the second class of
Baire, too.

By [1, Th. 3.2, p. 146] we see that the above result is the best possible.

COROLLARY 8. Let 61,0; € [0,7) be such that 6; # 05. A function f :
R? — R is continuous with respect to the operator ®g, o, if and only if it is
continuous with respect to the topology T4, o,.

We shall now give the generalization of the Kuratowski-Ulam theorem
for the polar-coordinates. We shall also give the proof, because we cannot
identify its source.

THEOREM 9. For any P € I, and (z,y) € R? there exists © C [0,7)
such that [0,7)\ © € I; and, for each § € ©, PN Le(z,y) € 1;.
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Proof. Let P € Z; and (z,y) € R2.
First we assume that P is a closed, nowhere dense set. For each 8 € [0, 7),

we denote by
Pop={reR: (z+rcosb,y+rsinb) € P}.
Suppose that A = {(r,0) : r € Py} is not a nowhere dense subset of

R x [0, 7). Since A is a closed set in ® x [0, 7) we have that there exists an
open rectangle (r1,72) X (61,02) C A. Then

U Lele,9)n (E((2,9),m2) \ K((z,9),71)) C P,
6€(81,62)

a contradiction. Therefore A is nowhere dense set and by the classical
Kuratowski-Ulam theorem there exists @ C [0, ) such that [0,7)\ © € Z4
and, for each 8 € ©, P; € 7. Hence P N Ly(z,y) € I;, for each 6§ € O.

Now we assume that P € 7. Then there exists a sequence of closed
nowhere dense sets {Pp}nen such that P C J,cp Pn- By the first part of
the proof we have that, for each n € A, there exists @, C [0,7) such that
[0,7)\©®, € I; and, for each 8 € O, P,NLg(z,y) € I;. Put @ = [, s On.
Then [0,7)\ © € Z; and, for each § € ©, PN Ly C U, cpr PN Lg € Ty

ProrosiTION 10. If A,B € §; and A ~ B then ®(A) = ®(B).

Proof. Assume that A,B € &; and A ~ B. Let (z,y) € ®(A). Then
there exists ©; C [0,7) such that [0,7)\ ©; € Z; and, for each 8 € Oy,
(z,y) € ®4(A). By Theorem 9, we can pick ©2 C [0, 7) such that [0,7)\0; €
7, and, for each § € O3, Lg(z,y) N (R \ (4 \ B)) is a residual subset of
Ly(z,y). Put © = ©; N O2. Then, for each # € O, (z,y) € (AN B). Thus
®(A) = (AN B).

In a similar way we show that ®(B) = ®(ANB). Therefore (4) = &(B).

PrOPOSITION 11. Let M € Sy. Then ®(M) ~ M.

Proof. Let M € S;. Then M = (F\ P;)U P,, where P, P, € I,
PiCF,P,NF =0, and F is a closed set. By Proposition 10, we see that
®(M) = ®(F). Thus, by the fact that int(F) C ®(F) C F, we have the
following relations

M\®(F)C RLU(F\®(F))eI,
and
S(FI\MCOF)\F=0€1I.
Therefore (M) ~ M. :
By Propositions 10 and 11 we have the following

THEOREM 12. A mapping ® : S — 2% is a lower density.



484 I. Libicka, B. Szkopiiiska

Observe that a similar theorem for measure has been proved by
A. M. Briickner and M. Rosenfeld in the paper [2].

COROLLARY 13. A familyr = {A € S2: A C ®(A)} is a topology in R?.

The above topology was considered by E. Wagner-Bojakowska and
W. Wilczysiski in [7].

It is interesting to ask the question to which Baire class belong functions
continuous in this topology.
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