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ON DIRECTIONAL h - DENSITY POINTS 

Let ift*1 denote the k-dimensional Euclidean space (k — 1,2), M - the set 
of positive integers and - the set of positive real numbers. 

The ball centred at a point p and with radius r > 0 will be denoted by 
K{p,r). 

We introduce the following notations: 
Sk ~ the (7-field of subset of having the Baire property, 
Ik - the <7-ideal of subset of SR* of the first category. 

We shall say that a set A C 9?fc is Sk - measurable if and only if A £ Sk-
For A 6 «Si, we shall denote by <j>{A) the set of all Ij-density points of 

A [6]. It is known [6] that the mapping <j) : Si —• is a lower density 
operator. 

If a plane set A is contained in a line, then we use linear X\ - density 
points of the set A £ »Si. 

Let Lg(Le(x,y)) denote the line passing through the point (0,0) (re-
spectively, the point (x,y)) and forming an angle 9 with the ox - axis for 
e e [0,tt). 

We denote by AAB the symmetric difference of A and B; if A, B G Sk, 
then A ~ B means that AAB 6 Ik, k=l ,2 . 

Set 6 G [0,tt). For Jli C S 2 we put 

Se{M) = {{x,y)e 9?2 : 3 r 6 S R +M n Le(x, y) n K{(x, y), r) e 5i}. 

For each M C Ji2, we define: 

1. If 9 e [0,tt), t hen 

*„(M) = y) € Se(M) : (x, y) e <f>(M n Le(x,»))}. 

2. If € [0,tt), t hen 
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3. $ ( M ) = {(x,y) G ft2 : ( x , y ) € $g(.M) in - almost every direction 
9 € [0,7r)>. 
We shall say that a point (x, ?/) € ft2 is an Ii-density point of M in the 

direction 6 if and only if ( x , y ) € $$(M). 

D E F I N I T I O N 1. We shall say that 9 : S2 2** is a lower density 
operator if and only if 

I. 9(A) ~ A, 
II. A ~ B = ¥ ( 5 ) , 

III. $ (0 ) = 0, tf(ft2) = ft2, 
IV. f ( A n 5 ) = 

D E F I N I T I O N 2 . We shall say that a function / : ft2 —• 3? is continuous 
at (x ,y) € ft2 with respect to the operator $ 6 if and only 
if, for each open set G C ft, 

r\G) C *(f-l(G)). 

From the Kuratowski-Ulam theorem [5] we have the following 

P R O P O S I T I O N 3 . If E £ then 

{ i g S 1 : j e n 0 ) i i } e i i . 

T H E O R E M 4. For any 6 e [0,7r) and A, B e ¿>2 we have 
I. $e(A) ~ A, 

II. B =» ~ 
III. $,(0) = 0, $*(ft2) = ft2, 
IV. n 5 ) = $9(A) n 

P r o o f . Let 0 G [0,7r). First, we shall prove I. Let A C ft2 and A G 5 2 . 
Then, there exist sets P\,P2 € X2 and an open set G C ft2 such that 
A = (G \ Pi) U P2, Pi C G and P2 n G = 0. Let 

£ i = { a ; e f t 1 : Pi n Le(x, 0) £ l i } . 

By Proposition 3 we have Ei 6 1i • 
Denote by 

Wi(6)= ( J Le(x, 0). 

Thus Wi(6) £ I2, what easily follows from the fact that Ei x ft € 12- We 
shall prove that 

(1) G\Wi(d)cMA). 
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Let (x0,y0) G G \ W\{B). Then there exists r € such that the ball 
K = K((xq,do),t) C G and, by the definition of the set E\, 

Le(x,0)nP1 e l l 

where (x, 0) is the unique point for which (xo,Po) € Lg(x,0). 
Thus 

Le(x,0)r\K C Le(x,0)f\G 

and the set (Ls(x,0)fl/ir)\Pi is the residual set on the interval Lg(x,0)nK. 

Therefore 

( L e ( x , 0 ) n K ) \ P 1 c ( L e ( x , 0 ) n G ) \ P 1 =Le(x,0)n(G\P1). 

But 
( L e ( x , 0 ) f ] K ) \ P 1 C Le(x,0)n(G\P1)DK 

and the set Lg(x, 0)n(G\Pi)nIi is the residual set on the interval Lg(x, 0)Pi 
K. Thus L$(x, 0) fl A fl K is also a residual set on the interval L$(x, 0) fl K. 
Consequently, (xo,yo) G Hence we have (1). 

Now, we denote by 

E2 = { x 6 X 1 : P2nLg(x,0)gh}. 

From Proposition 3 it follows that E2 G 1\ • Similary as above, we put 

W2(9)= ( J L0(x, 0) . 
X£E2 

Thus W2{0) G 12 since E2 x U G I2. 
We shall prove that 

(2 ) $e(A)cGUW2(0). 

Let (a;o,2/o) £ G U W2{0). Hence there exists a ball K((xo,yo),r) such that 
K n G = 0 and (x0,!to) t W2{0). 

Let Le(x, 0) be the unique line for which (xo, 2/o) € Lg(x, 0). Therefore, 
by the definitions of K and E2, we have that 

i ( ( i , f l ) n i n ( G \ P i ) = 0 
and 

¿ s ( i , o ) ) n P 2 e i i . 
Thus the set Lg(x, 0))nA is of the first category on the interval Lg(x, 0))D/iT. 
Hence (xo> Vo) 0 Consequently, the condition (2) holds. 

By virtue of inclusions (1) and (2), we have that ~ G ~ A and, 
therefore, the proof of I is completed. 

We observe that condition II easily follows from I and the proof of III is 
obvious. 



482 I. Libicka, B. Szkopiriska 

Clearly, condition IV follows from the analogous condition IV for 1\ -
density points on the line Si1, [6]. The proof of the theorem is completed. 

Let W 0 <Si. We put, for each ( x , y ) G 5i2, f{x,y) = xw(%) (the charac-
teristic function of W). It is easy to see that the function has not the Baire 
property and f is continuous function with respect to the operator $ * . We 
observe that the family {^4 G ¿>2 : A C is not a topology in 5i2. 

From Theorem 4 we derive 

T H E O R E M 5. For any 61,62 € [0,7R) and A,B G ¿>2 we have 
I. $eue2(A) ~ A> 

II. A ~ B $ i l l f l a (A) ~ i9u$2(B), 
III. $ t f l l 9 a (0 ) = 0, $ S l l i a ( » 2 ) = » 2 , 
IV. $ 9 l , i 2 ( 4 n 5 ) = $ i l i i a ( A ) n $s I l f l a (B) . 

In a similar way as in [1, Th 2.1, p. 134] we can prove the following 

C O R O L L A R Y 6 . Let 61,62 G [0 , IR) . Then the family 

T0ue2 = {A € S 2 : A C $9, ,9,(A)} 

is a toplogy in 5R2. 
T H E O R E M 7. Let 61, &2 G [0,7r) and 61 ± 62. If a function f : 9?2 3? 

is continuous with respect to the operator $e1,82 j at eac/i point (x,y) € 3?2, 
then f is of the second class of Baire. 

P r o o f . We may assume that 61 = 0 and 62 ^ 0. We define a transfor-
mation G : —• 3£2 as follows: 

if (x,y) 6 9?2 and (x',y') = G(x,y) then x' = x + ysin 62 and y' = 
ycos 62. 

By the continuity of G we see that the function f(G(x,y)) is continuous 
with respect to the operator $o,§ • By the theorem from [3], we know that 
/ 0 G is of the second class of Baire in K2. Since exists and it is a 
continuous function, we have that / = / o G o G - 1 is of the second class of 
Baire, too. 

By [1, Th. 3.2, p. 146] we see that the above result is the best possible. 

C O R O L L A R Y 8. Let 61,62 € [0,7R) be such that 61 ^ 62. A function f : 
3?2 —• 3? is continuous with respect to the operator $e1,82 if and only if it is 
continuous with respect to the topology tqx tg2. 

We shall now give the generalization of the Kuratowski-Ulam theorem 
for the polar-coordinates. We shall also give the proof, because we cannot 
identify its source. 

T H E O R E M 9. For any P G I 2 and (x,y) G 9ft2 there exists 0 c [0, % ) 

such that [0,7r) \ 0 € l i and, for each 6 G 0 , P fl Lg(x,y) G li-
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P r o o f . Let P G I 2 and (x,y) G 3î2. 
First we assume that P is a closed, nowhere dense set. For each 9 G [0,7r), 

we denote by 

P0 = { r e U : (x + r cos 9,y + r sin 9) £ P}. 

Suppose that A = { ( r , 9) : r G P$} is not a nowhere dense subset of 
5Î X [0,7r). Since A is a closed set in S x [0,7r) we have that there exists an 
open rectangle ( r i , r 2 ) x (# i ,0 2 ) C A. Then 

( J L„(x, y) N ( K ( ( x , y% r 2 ) \ K((x, y), N ) ) C P , 

ee(9lte2) 

a contradiction. Therefore A is nowhere dense set and by the classical 
Kuratowski-Ulam theorem there exists 0 C [0,TT) such that [0,7r)\ 0 G T\ 
and, for each 9 G 0 , P$ G 1\. Hence P n Lg(x, y) G 2"i, for each 6 G 0 . 

Now we assume that P G 12. Then there exists a sequence of closed 
nowhere dense sets {P„}neA/" such that P C UneAT By the first part of 
the proof we have that, for each n G Ai, there exists 0 „ C [0,7r) such that 
[O,TT)\0b G I I and, for each 9 G On, Pnr)Le(x,y) G Xx. Put 0 = O n . 
Then [0, TT) \ 0 G 1\ and, for each 9 G 0 , P n Lg C |Jn e J^Pn D G 

P R O P O S I T I O N 10. I f A , B e S2 and A ~ B then = $(B). 

P r o o f . Assume that A , B G <S2 and A ~ B. Let (x,y) G Then 
there exists 0 i C [0,7r) such that [0,7r) \ 0 x G T\ and, for each 9 G 0 i , 
(x, y) G By Theorem 9, we can pick 0 2 C [0,7r) such that [0, 7T)\02 G 
X\ and, for each 6 G 0 2 , Lg(x,y) D \ ( A \ B)) is a residual subset of 
Le{x,y). Put 0 = 0 i n 0 2 . Then, for each 9 G 0 , (x,y) G $ « ( A f l B). Thus 
$ ( A ) = $ ( A N B ) . 

In a similar way we show that $ ( 5 ) = $ ( A f l 5 ) . Therefore $ ( A ) = $(B). 

P R O P O S I T I O N 11. Let M G <S2. Then $ ( M ) ~ M. 

P r o o f . Let M G <S2. Then M = ( F \ P i ) U P 2 , where PUP2 G î 2 , 
Pi C F, P2 fl F = 0, and P is a closed set. By Proposition 10, we see that 
$ ( M ) = $ ( P ) . Thus, by the fact that int(F) C C F, we have the 
following relations 

M \ $ ( P ) C P2 U ( P \ $ ( F ) ) G J 2 

and 

$ ( P ) \ M C $ ( P ) \ P = 0 G Î 2 -

Therefore $ ( M ) ~ M . 

By Propositions 10 and 11 we have the following 

T H E O R E M 12. A mapping $ : <S2 —* ¿s a lower density. 
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Observe that a similar theorem for measure has been proved by 
A. M. Brückner and M. Rosenfeld in the paper [2]. 

COROLLARY 13. A family t = {A £ S? : Ac $(-<4)} is a topology in 5?2. 
The above topology was considered by E. Wagner-Bojakowska and 

W. Wilczynski in [7]. 
It is interesting to ask the question to which Baire class belong functions 

continuous in this topology. 
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