

Małgorzata Mikosz

ON CLASSIFICATION OF THE LINEAR
LAGRANGIAN AND ISOTROPIC SUBSPACES

0. Introduction

Let M be a manifold, and ω be a 2-form on M . The pair (M, ω) is called a *symplectic manifold* if ω is closed, i.e. $d\omega = 0$ and nondegenerate [9].

The simple and representative model of a symplectic manifold is the cotangent bundle $T^*\mathbb{R}^n$, endowed with the canonical 2-form $\omega = d\Theta$, where 1-form Θ is the Liouville form on $T^*\mathbb{R}^n$ defined by

$$\langle u, \Theta \rangle = \langle T\pi_{\mathbb{R}^n}(u), \tau_{T^*\mathbb{R}^n}(u) \rangle \quad \text{here } u \in T(T^*\mathbb{R}^n),$$

the mapping $T\pi_{\mathbb{R}^n}$ is the tangent mapping of $\pi_{\mathbb{R}^n} : T^*\mathbb{R}^n \rightarrow \mathbb{R}^n$ and $\tau_{T^*\mathbb{R}^n} : T(T^*\mathbb{R}^n) \rightarrow T^*\mathbb{R}^n$ is the tangent bundle projection [5].

If (p, q) are coordinates of the bundle $T^*\mathbb{R}^n$, i.e. q_1, \dots, q_n are coordinates of the base and p_1, \dots, p_n coordinates of the fibres, then Θ and ω have the local Darboux form [9]

$$\Theta = \sum_{i=1}^n p_i dq_i, \quad \omega = \sum_{i=1}^n dp_i \wedge dq_i.$$

Let M be a $2n$ -dimensional manifold. A submanifold of the symplectic space (M, ω) is called *isotropic* if the restriction of the symplectic form to its tangent space at each point is zero form. The dimension of an isotropic submanifold is less than or equals n . If the dimension equals n , then this submanifold is called *Lagrangian*. Every isotropic (and Lagrangian) submanifold can be locally represented by its *generating family* ([3], [5]). Isotropic submanifolds are often called *the null-submanifolds*. They play very important role in many branches in mathematics and physics e.g. in diffraction theory, in classical and quantum mechanics etc. ([3], [4], [5], [7]).

In §1 we give a description in an algebraic language of the Grassmannian consisting of k -dimensional linear isotropic subspaces of a $2n$ -dimensional

symplectic space. In the next sections we obtain a precise formula for generating function of linear isotropic and Lagrangian subspaces of the cotangent bundle of the n -dimensional real space. In §2 we find a matrix representation of an arbitrary linear Lagrangian subspace of the cotangent bundle $T^*\mathbb{R}^n$. In §3 we perform a similar construction for a general isotropic case. In §4 we apply our methods from §1 and §2 to calculate the generating families for isotropic and Lagrangian subspaces.

For example, we consider a 2-dimensional isotropic subspace in $T^*\mathbb{R}^3$

$$I = \{(p_1, p_2, p_3, q_1, q_2, q_3) :$$

$$p_1 = t, q_2 = s, p_2 = p_3 = 0, q_1 = q_3 = 0 \quad t, s \in \mathbb{R}\}.$$

We see, that the subspace I projected to the base of the bundle $T^*\mathbb{R}^3$ is the line $\{(q_1, q_2, q_3) : q_1 = 0, q_2 = s, q_3 = 0, s \in \mathbb{R}\} \subset \mathbb{R}^3$, its generating function $S : \mathbb{R}^3 \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has the form

$$S(q_1, q_2, q_3, \lambda, \beta)$$

$$= \frac{1}{2}(q_1, q_2, q_3, \lambda, \beta) \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ \lambda \\ \beta \end{pmatrix} = \lambda q_1 + \beta q_3.$$

1. Isotropic Grassmannian

Let M^n be a smooth manifold. The cotangent bundle T^*M^n is endowed with the canonical symplectic structure (see Introduction). The first step to classify isotropic submanifolds of the cotangent bundle T^*M^n is to describe linear isotropic subspaces of $T^*\mathbb{R}^n$. We identify $T^*\mathbb{R}^n$ with \mathbb{C}^n , then the symplectic structure ω coincide with the imaginary part of the standard Hermitian scalar product H (see [1]). This identification is the following

$$(q_1, \dots, q_n, p_1, \dots, p_n) \mapsto (q_1 + ip_1, \dots, q_n + ip_n),$$

where q_i are coordinates of the base of the bundle, and p_i coordinates of the fibres.

Let $U(n)$ be the unitary group and let $O(n)$ be the orthogonal group considered as a subgroup of $U(n)$. We denote by Λ_n the set of all Lagrangian subspaces in $T^*\mathbb{R}^n$. This set is called the Lagrange Grassmannian and it is smooth manifold. Λ_n is homeomorphic to the quotient space $U(n)/O(n)$. The dimension of the Lagrange Grassmannian equals $\frac{1}{2}n(n+1)$ (see [2], [8]).

Analogously we can define the set of all k -dimensional isotropic subspaces in $2n$ -dimensional symplectic vector spaces $T^*\mathbb{R}^n$. We denote it by \mathcal{I}_k^{2n} .

PROPOSITION 1.1. *The isotropic Grassmannian \mathcal{I}_k^{2n} is homeomorphic to the quotient space*

$$U(n)/(O(k) \oplus U(n-k))$$

and $\dim \mathcal{I}_k^{2n} = 2nk - \frac{1}{2}k(3k-1)$.

Proof. We should show, that: 1) the unitary group $U(n)$ acts on \mathbb{C}^n by symplectic homomorphism, 2) this action is transitive on \mathcal{I}_k^{2n} , i.e. we can obtain an arbitrary subspace $I \in \mathcal{I}_k^{2n}$ from the fixed subspace $I_0 \in \mathcal{I}_k^{2n}$, 3) the stabilizer of a certain element $I_0 \in \mathcal{I}_k^{2n}$ is equal to $O(k) \oplus U(n-k)$.

Ad. 1. By definition the group $U(n)$ consists of all transformations of \mathbb{C}^n which preserve the Hermitian scalar product H . The symplectic form ω equals the imaginary part of H , thus the form ω is preserved by action of $U(n)$.

Ad. 2. We fix the isotropic subspace $I_0 = \text{span}_R\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_k}\}$.

Let I be an arbitrary subspace from \mathcal{I}_k^{2n} , we construct a symplectomorphism $\varphi : (\mathbb{R}^{2n}, \omega) \rightarrow (\mathbb{R}^{2n}, \omega)$ such, that $\varphi(I_0) = I$. We want to find matrix $A \in U(n)$ which represents this mapping.

The Hermitian scalar product H restricted to the isotropic subspace I is the real-valued function, because $\omega|_I = 0$ and $\omega = imH$. The form H restricted to I is the symmetric positive bilinear form therefore, there exists an orthonormal basis of I , $\{\alpha_1, \dots, \alpha_k\}$ such, that $I = \text{span}_R\{\alpha_1, \dots, \alpha_k\}$.

A natural way to construct the mapping φ is to define it on the basis

$$\varphi\left(\frac{\partial}{\partial q_i}\right) := \alpha_i, \quad i = 1 \dots k.$$

Then the desired matrix A has the following form

$$A = [\alpha_1, \dots, \alpha_k, \beta_{k+1}, \dots, \beta_n]$$

where $\beta_{k+1}, \dots, \beta_n$ are such elements, that $\alpha_1, \dots, \alpha_k, \beta_{k+1}, \dots, \beta_n$ form an orthonormal basis of \mathbb{C}^n .

Ad.3. Let $I_0 = \text{span}_R\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_k}\}$. We want to find all matrices $A \in U(n)$ which represent the mapping φ preserving the isotropic subspace I_0 . Let $\varphi\left(\frac{\partial}{\partial q_i}\right) = \sum_{j=1}^k a_{ij} \frac{\partial}{\partial q_j} \in I_0$, where $a_{ij} \in \mathbb{R}$ and $1 < i < k$. The matrix A must consist of the block belonging to $O(k)$ which represents the transformation I_0 into I and the complementary block from $U(n-k)$ and two zero blocks, i.e.

$$A \in \begin{pmatrix} O(k) & 0 \\ 0 & U(n-k) \end{pmatrix}. \blacksquare$$

We may calculate the dimension of the isotropic Grassmannian from the following two facts:

1) the group $U(n)$ is fibred over the real sphere S^{2n-1} with the fibre $U(n-1)$,

2) the group $O(n)$ is fibred over the real sphere S^{n-1} with the fibre $O(n-1)$.

Then $\dim U(n) = n^2$, $\dim O(n) = \frac{(n-1)n}{2}$.

Remark 1.2 We can't define in the isotropic Grassmannian the analog of the Maslov form as in [8], because $H^1(\Lambda_n, \mathbf{Z}) = \mathbf{Z}$, but $H^1(\mathcal{I}_k^{2n}, \mathbf{Z}) = 0$. Instead we have $H^1(\mathcal{I}_k^{2n}, \mathbf{Z}_2) = \mathbf{Z}_2$.

2. Generating families for Lagrangian subspaces in \mathbb{R}^{2n}

Every Lagrangian submanifold L can be locally generated by some generating family F (so-called Morse family [9]), i.e.

$$L = \left\{ (p, q) \in T^* \mathbb{R}^n : \exists \lambda \in \mathbb{R}^k \frac{\partial F}{\partial \lambda}(q, \lambda) = 0, \quad \frac{\partial F}{\partial q}(q, \lambda) = p \right\},$$

where

$$F : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}, \quad F : (q, \lambda) \mapsto F(q, \lambda), \quad \text{rank} \left(\frac{\partial^2 F}{\partial \lambda^2}, \frac{\partial^2 F}{\partial \lambda \partial q} \right) = k;$$

(see [6]). We will find a global generating family for a linear Lagrangian subspace.

2.1. Transversal case

If L is transversal to the fibres of the cotangent bundle $T^* \mathbb{R}^n$, then L is the graph of its generating function $F : \mathbb{R}^n \rightarrow \mathbb{R}$ (see [6]).

We fix a linear subspace $L \in \Lambda_n$. The subspace L can be obtained from $L_0 = \text{span}_{\mathbb{R}} \{ \frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_n} \}$ by the action of the group $U(n)$, i.e. there exists $C = B + iA \in U(n)$ such that

$$L = CL_0 = \{(p, q) : AX = p, BX = q, X \in L_0\},$$

where A, B are real matrices. In transversal case B is nonsingular. We can easily calculate, that $p = AB^{-1}q$.

LEMMA 2.1.1. *The relation between the coordinates (p, q) on L is given by the symmetric matrix AB^{-1} .*

Proof. From $\bar{C}^T \cdot C = I_n$ we see, that $B^T A$ is symmetric, then

$$AB^{-1} = (B^{-1})^T (B^T A) B^{-1}$$

is a symmetric matrix too. ■

PROPOSITION 2.1.2. *The quadratic form*

$$S(q) = \frac{1}{2}q^T AB^{-1}q$$

is a generating function for L .

Proof. From the definition of generating families we see, that $\frac{\partial S}{\partial q}(q) := AB^{-1}q = p$. If $q^T H q$ is a quadratic form, then $\frac{\partial}{\partial q}(q^T H q) = (H + H^T)q = 2Hq$, because H is a symmetric matrix. Then we obtain the Lagrangian subspace

$$L = \{(p, q) : p = AB^{-1}q\}. \blacksquare$$

2.2. Nontransversal case

If L is not transversal to the fibres of $T^*\mathbb{R}^n$, then its generating family S must have additional argument $\lambda \in \mathbb{R}^k$. In fact the function $S(q, \lambda)$ describes the Lagrangian subspace \tilde{L} in $T^*\mathbb{R}^{n+k}$ such, that \tilde{L} is transversal to the fibres of the bundle $T^*\mathbb{R}^{n+k}$, and the symplectic reduction at \tilde{L} gives L , i.e.

$$\Pi : T^*\mathbb{R}^{n+k} \rightarrow T^*\mathbb{R}^n,$$

$$\Pi : ((p_1, \dots, p_n, p_{n+1}, \dots, p_{n+k}), (q_1, \dots, q_n, \lambda_1, \dots, \lambda_k)) \mapsto (p_1, \dots, p_n, q_1, \dots, q_n),$$

$$\Pi : \tilde{L} \cap \{p_{n+1} = \dots = p_{n+k} = 0\} \mapsto L.$$

As in the section 2.1. we fix $L \in \Lambda_n$, then there exists $C \in U(n)$ such, that $L = CL_0 = \{(p, q) : p = AX, q = BX, X \in L_0\}$, $C = B + iA$. In nontransversal case B is singular. We illustrate our construction on the diagram

$$\begin{array}{ccccccc} \mathbb{R}^n & \simeq & L_0 & \xrightarrow{B+Ai} & L & \subset & T^*\mathbb{R}^n & \xrightarrow{\pi_L} & \mathbb{R}^n \\ & & & & \star \uparrow \Pi & & \uparrow \Pi & & \\ \mathbb{R}^{n+k} & \simeq & \tilde{L}_0 & \xrightarrow{\tilde{B}+\tilde{A}i} & \tilde{L} & \subset & T^*\mathbb{R}^{n+k} & \xrightarrow{\pi_L} & \mathbb{R}^{n+k} \end{array}$$

where $\tilde{L}_0 = \text{span}_{\mathbb{R}}\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_{n+k}}\}$, and

$$\tilde{L} = \{(\tilde{p}, \tilde{q}) : \tilde{p} = \tilde{A}\tilde{X}, \tilde{q} = \tilde{B}\tilde{X}, \tilde{X} \in \tilde{L}_0\},$$

where $\tilde{L} = (\tilde{B} + \tilde{A}i)\tilde{L}_0$, and

$$(\tilde{p}, \tilde{q}) = ((p_1, \dots, p_n, p_{n+1}, \dots, p_{n+k}), (q_1, \dots, q_n, \lambda_1, \dots, \lambda_k)) \in T^*\mathbb{R}^{n+k},$$

and $\star \uparrow \Pi$ notes the symplectic reduction.

LEMMA 2.2.1. *Let $\text{rank}(B) = n - k$, then there exists a real matrix W of dimension $n \times k$ such, that its columns together with the columns of B span \mathbb{R}^n , the matrix*

$$\tilde{B} = \begin{pmatrix} B & W \\ W^T A & 0 \end{pmatrix}$$

is invertible, and $\tilde{B}^T \tilde{A}$ is symmetric, where

$$\tilde{A} = \begin{pmatrix} A & 0 \\ 0 & E_k \end{pmatrix},$$

and E_k is the identity matrix.

Proof. 1) We take any k vectors $w_1, \dots, w_k \in \mathbb{R}^n$ such, that

$$\text{span}_R\{b_1, \dots, b_n, w_1, \dots, w_k\} \simeq \mathbb{R}^n,$$

where b_i , $i = 1, \dots, n$ are columns of the matrix B .

We define

$$\tilde{B} = \begin{pmatrix} B & w_1, \dots, w_k \\ F & 0 \end{pmatrix}$$

and we look for a matrix F of dimension $k \times n$ such, that $\tilde{B}^T \tilde{A}$ is symmetric. From the symmetry we calculate $F = W^T A$.

2) We prove, that \tilde{B} is invertible.

a) For simplicity we assume, that $k = 1$, i.e. $\text{rank}(B) = n - 1$.

We can find an orthogonal matrix $Y \in O(n)$ which transforms the matrix B to the form $BY = (B_0 \ 0) = \hat{B}$, where $\text{rank}(B_0) = n - 1$. We define $\hat{C} = CY = (B + iA)Y = \hat{B} + i\hat{A} \in U(n)$, where

$$\hat{C} = \{\hat{b}_1 + i\hat{a}_1, \dots, \hat{b}_{n-1} + i\hat{a}_{n-1}, i\hat{a}_n\}.$$

We must also change the matrix $\tilde{B} = \begin{pmatrix} B & w \\ w^T A & 0 \end{pmatrix}$; the vector w is linearly independent with the columns of the matrix B if and only if, it is independent with the columns of \hat{B}

$$\tilde{B} = \tilde{B} \begin{pmatrix} Y & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \hat{B} & w \\ w^T \hat{A} & 0 \end{pmatrix}.$$

The vector $w^T \hat{A}$ consists of the scalar products of the vector w and the columns of the matrix \hat{A} . We easily calculate, that

$$\det \tilde{B} = \det \begin{pmatrix} B_0 & 0 & w \\ \dots & \langle w, \hat{a}_n \rangle & 0 \end{pmatrix} = \pm \langle w, \hat{a}_n \rangle \det(B_0, w) = 0 \equiv w \perp \hat{a}_n,$$

where the symbol $\langle \cdot, \cdot \rangle$ notes the scalar product. We suppose, that $w \in \hat{a}_n^\perp$. From the form of \hat{C} we know, that $\hat{a}_n^\perp = \text{span}_R\{\hat{b}_1, \dots, \hat{b}_{n-1}\}$. Thus $w \in \text{span}_R\{\hat{b}_1, \dots, \hat{b}_{n-1}\}$, and we obtain the contradiction.

b) We assume, that $\text{rank}(B) = n - k$, $1 < k < n$. There exists an orthogonal matrix $X \in O(n)$ which transforms the matrix C into $\hat{C} =$

$CX \in U(n)$ in such a way, that $\hat{B} = BX = (B_0 \ 0 \ \dots \ 0)$, where $\text{rank}(B_0) = n - k$ and the last k columns of \hat{B} are null

$$\hat{C} = \{\hat{b}_1 + i\hat{a}_1, \dots, \hat{b}_{n-k} + i\hat{a}_{n-k}, i\hat{a}_{n-k+1}, \dots, i\hat{a}_n\} \in U(n).$$

The matrix $\tilde{B} = \begin{pmatrix} B & w \\ w^T A & 0 \end{pmatrix}$ is transformed into $\tilde{\tilde{B}}$

$$\tilde{\tilde{B}} = \tilde{B} \begin{pmatrix} X & 0 \\ 0 & E_k \end{pmatrix} = \begin{pmatrix} \hat{B} & W \\ W^T \hat{A} & 0 \end{pmatrix},$$

where E_k is the identity matrix, and the matrix W is not changed. From the form of $\tilde{\tilde{B}}$ we calculate, that $\det(\tilde{\tilde{B}}) = \pm \det P \cdot \det(B_0, W) = 0 \equiv \det P = 0$, where the matrix P consists of the last k columns of the matrix $W^T \hat{A}$, its dimension is $k \times k$, and its terms are $\langle w_i, \hat{a}_j \rangle$ $i = 1, \dots, k, j = n - k + 1, \dots, n$. From the form of \hat{C} we deduce, that $\hat{a}_j \perp \hat{b}_i$ $i = 1, \dots, n - k, j = n - k + 1, \dots, n$, i.e. $\text{span}_R\{\hat{b}_1, \dots, \hat{b}_{n-k}\}^\perp = \text{span}_R\{\hat{a}_{n-k+1}, \dots, \hat{a}_n\}$.

We must transform the matrix W . Let χ be the projection to $\text{span}_R\{\hat{b}_1, \dots, \hat{b}_{n-k}\}^\perp$, we define $v_i = \chi(w_i)$ $i = n - k + 1, \dots, n$, then $\langle v_i, \hat{a}_j \rangle = \langle v_i, \hat{a}_j \rangle$ $i = 1, \dots, k, j = n - k + 1, \dots, n$. The vectors v_i $i = 1, \dots, k$ form a basis of $\{\hat{b}_1, \dots, \hat{b}_{n-k}\}^\perp$. We can represent vectors \hat{a}_j in the basis $\{v_1, \dots, v_k\}$, then $P = V^T \cdot \hat{A}_k$, where $V = (v_1 \dots v_k)$, $\hat{A}_k = (\hat{a}_{n-k+1} \dots \hat{a}_n)$. We see, that $\det P = \det V \cdot \det \hat{A}_k \neq 0$. ■

The subspace $\tilde{L} = (\tilde{B} + \tilde{A}i)\tilde{L}_0 \subset T^*\mathbb{R}^{n+k}$ is Lagrangian because the matrix $\tilde{B}^T \tilde{A}$ is symmetric. It is transversal to the fibres of the bundle, then from 2.1.2. we have the form of the generating function for \tilde{L} .

PROPOSITION 2.2.2. *The generating function S for the Lagrangian subspace L is given by the symmetric matrix $\tilde{A}\tilde{B}^{-1}$ and has the following form*

$$S = \frac{1}{2}\tilde{q}^T \tilde{A}\tilde{B}^{-1}\tilde{q}, \quad \tilde{q} = \begin{pmatrix} q \\ \lambda \end{pmatrix} \in \mathbb{R}^{n+k}.$$

Proof. We have

$$\tilde{L} = \{(\tilde{p}, \tilde{q}) : \tilde{p} = \tilde{A}\tilde{X}, \tilde{q} = \tilde{B}\tilde{X}, \tilde{X} \in \tilde{L}_0\}.$$

We calculate, that

$$[p_1, \dots, p_n, p_{n+1}, \dots, p_{n+k}]^T = \begin{pmatrix} A & 0 \\ 0 & E_k \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_n \\ x_{n+1} \\ \dots \\ x_{n+k} \end{pmatrix} = \begin{pmatrix} A \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \\ x_{n+1} \\ \dots \\ x_{n+k} \end{pmatrix},$$

$$[q_1, \dots, q_n, \lambda_1, \dots, \lambda_k]^T = \begin{pmatrix} B & W \\ W^T A & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_n \\ x_{n+1} \\ \dots \\ x_{n+k} \end{pmatrix} = \begin{pmatrix} K \\ W^T A \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \end{pmatrix},$$

$$\text{where } K = B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} + W \begin{pmatrix} x_{n+1} \\ \dots \\ x_{n+k} \end{pmatrix}.$$

We obtain the subspace L from \tilde{L} in the following way

$$\Pi : \tilde{L} \cap \{p_{n+1} = \dots = p_{n+k} = 0\} \mapsto L,$$

$$\Pi : ((p_1, \dots, p_n, 0, \dots, 0), (q_1, \dots, q_n, \lambda_1, \dots, \lambda_k)) \mapsto (p_1, \dots, p_n, q_1, \dots, q_n).$$

We see, that in our case $[p_{n+1}, \dots, p_{n+k}] = [x_{n+1}, \dots, x_{n+k}]$.

From 2.1.2. we know, that the function S generates the Lagrangian subspace $\tilde{L} \subset T^* \mathbb{R}^{n+k}$, i.e.

$$\begin{aligned} \frac{dS}{d\tilde{q}}(\tilde{q}) &= \tilde{p}, \quad \tilde{p} = [p_1, \dots, p_n, p_{n+1}, \dots, p_{n+k}]^T, \\ \tilde{q} &= [q_1, \dots, q_n, \lambda_1, \dots, \lambda_{n+k}]^T. \end{aligned}$$

We write this formula in the following form

$$\frac{\partial S}{\partial q_i}(q, \lambda) = p_i \quad i = 1, \dots, n, \quad \frac{\partial S}{\partial \lambda_j}(q, \lambda) = p_{n+j} \quad j = 1, \dots, k.$$

We obtain L from \tilde{L} by the symplectic reduction, i.e.

$$\Pi : \tilde{L} \cap \{p_{n+1} = \dots = p_{n+k} = 0\} \mapsto L,$$

thus $\frac{\partial S}{\partial \lambda_j}(q, \lambda) = 0$, $j = 1, \dots, k$. We see, that the function S generates the following subspace

$$L = \left\{ (p, q) \in T^* \mathbb{R}^n : \exists \lambda \in \mathbb{R}^k, \quad \frac{\partial S}{\partial \lambda}(q, \lambda) = 0, \quad \frac{\partial S}{\partial q}(q, \lambda) = p \right\}. \blacksquare$$

Remark 2.2.3. The generating function for the Lagrangian subspace has the following form $S(q, \lambda) = f(q) + \sum_{i=1}^k \lambda_i \cdot g_i(q)$, where $f(q)$ is the quadratic function and $g_i(q)$ are linear functions (see. [2]).

From the form of matrices \tilde{A} and \tilde{B} , we see that the symmetric matrix $\tilde{A}\tilde{B}^{-1}$ has the block form, and the block corresponding to the products $\lambda_i \lambda_j$, $i, j = 1, \dots, k$ equals 0, therefore the generating function $S(q, \lambda) = \frac{1}{2}(q, \lambda)\tilde{A}\tilde{B}^{-1} \begin{pmatrix} q \\ \lambda \end{pmatrix}$ is the linear function of λ .

3. Generating families for isotropic subspaces in \mathbb{R}^{2n}

In analogous way as for the Lagrangian submanifolds, to each germ of an immersed isotropic submanifold $(I, 0) \subset T^*\mathbb{R}^n$ there exists a germ of I -Morse family

$$S : (\mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}^k, 0) \rightarrow \mathbb{R}$$

such, that $(I, 0)$ may be written in the form

$$I = \left\{ (p, q) \in T^*\mathbb{R}^n : \begin{array}{l} \exists \lambda \in \mathbb{R}^k, \frac{\partial S}{\partial q}(q, 0, \lambda) = p, \quad \frac{\partial S}{\partial \lambda}(q, 0, \lambda) = \frac{\partial S}{\partial \beta}(q, 0, \lambda) = 0 \end{array} \right\}$$

(see [5]).

3.1. Generic case

Let I be an isotropic subspace of $T^*\mathbb{R}^n$ such, that $\dim I = n - l$, and the projection of I to the base of the bundle has the maximal dimension, i.e. I is in the generic position.

Any isotropic subspace can be included into a Lagrangian one (see [5], [10]).

If the subspace I is in generic position, then we can find the Lagrangian subspace L such, that I is included into L , and L is transversal to the fibres of $T^*\mathbb{R}^n$. We may use results from 2.1 and add the conditions which allow us to obtain I from L , i.e. $\frac{\partial S}{\partial \beta}(q, 0, \lambda) = 0$.

We can obtain I from $I_0 = \text{span}_{\mathbb{R}}\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_{n-l}}\}$ in a way $I = DI_0$, where $D \in U(n)$, $D = B + iA$ and B is nonsingular. The subspace I_0 is included into $L_0 = \text{span}_{\mathbb{R}}\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_n}\}$ which is transversal to the fibres. The Lagrangian subspace L obtained from L_0 by action of the matrix D , i.e. $L = DL_0$ is transversal to the fibres too.

We illustrate our construction on the diagram

$$\begin{array}{ccccccc} \mathbb{R}^{n-l} & \simeq & I_0 & \xrightarrow{B+Ai} & I & \subset & T^*\mathbb{R}^n \xrightarrow{\pi_I} \mathbb{R}^n \\ & & \cap & & \cap & & \\ \mathbb{R}^n & \simeq & L_0 & \xrightarrow{B+Ai} & L & \subset & T^*\mathbb{R}^n \xrightarrow{\pi_L} \mathbb{R}^n \end{array}$$

From 2.1. we know, that the generating function for L has the form $F(q) = \frac{1}{2}q^T A B^{-1} q$ where $D = B + iA$. The generating function for I must be represented by a matrix of dimension $(n+l) \times (n+l)$. We must formulate the condition which allow us to obtain I from L .

$$\begin{aligned} L &= \{(p, q) : [p_1, \dots, p_n]^T = A[x_1, \dots, x_n]^T, [q_1, \dots, q_n]^T = B[x_1, \dots, x_n]^T\}, \\ I &= \{(p, q) : [p_1, \dots, p_n]^T = A[x_1, \dots, x_{n-l}, 0, \dots, 0]^T, \\ &\quad [q_1, \dots, q_n]^T = B[x_1, \dots, x_{n-l}, 0, \dots, 0]^T\}, \end{aligned}$$

where $x_i, i = 1, \dots, n$, are coordinates of I_0 or L_0 . The matrix B is nonsingular, thus $B^{-1}[q_1, \dots, q_n]^T = [x_1, \dots, x_{n-l}, 0, \dots, 0]^T$. The matrix B^{-1} consists of two blocks $B^{-1} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$, where C_1 has the dimension $(n-l) \times n$ and C_2 dimension $l \times n$. The equation above decomposes:

$$C_1 \begin{pmatrix} q_1 \\ \dots \\ q_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ x_{n-l} \end{pmatrix}, \quad C_2 \begin{pmatrix} q_1 \\ \dots \\ q_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}.$$

The matrix C transforms I into I_0 . The condition $C_2 q = 0$ consists of l equations, and corresponds to the relations $\frac{\partial S}{\partial \beta}(q, 0, \lambda) = 0$ from the definition of generating families for an isotropic germ.

PROPOSITION 3.1.1. *The generating function for an isotropic subspace in $T^* \mathbb{R}^n$ in a generic position to the fibres of the bundle has the following form*

$$S(q, \beta) = \frac{1}{2}[q, \beta]M[q, \beta]^T \quad \text{where } S : \mathbb{R}^n \times \mathbb{R}^l \rightarrow \mathbb{R}$$

and

$$M = \begin{pmatrix} AB^{-1} & C_2^T \\ C_2 & 0 \end{pmatrix}.$$

Proof. We have

$$dS(q, 0) = M[q, 0]^T = \begin{pmatrix} AB^{-1} & C_2^T \\ C_2 & 0 \end{pmatrix} \begin{pmatrix} q \\ 0 \end{pmatrix} = \begin{pmatrix} AB^{-1}q \\ C_2q \end{pmatrix} = \begin{pmatrix} p \\ 0 \end{pmatrix}$$

$$\frac{\partial S}{\partial q}(q, 0) = AB^{-1}q = p, \quad \frac{\partial S}{\partial \beta}(q, 0) = C_2q = 0. \blacksquare$$

3.2. Nongeneric case

Let I be an isotropic subspace in $T^* \mathbb{R}^n$ of dimension $n-l$, and we assume, that $\dim \pi_I(I) = n-l-k$, where π_I is the projection to the base of the bundle.

We can obtain I from I_0 , i.e. $I = DI_0$, $D \in U(n)$, $D = B + iA$. B is singular. We can include I in a Lagrangian subspace L such, that $\dim \pi_L(L) = n-k$, i.e. $\text{rank}(B) = n-k$. Let $L = DL_0$ where $L_0 = \text{span}_{\mathbb{R}}\{\frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_n}\}$. Then we may use results from 2.2 and write the generating family $F : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}$ for L in the form $F(q, \lambda) = \frac{1}{2}[q, \lambda]\tilde{A}\tilde{B}^{-1}[q, \lambda]^T$, where \tilde{A} and \tilde{B} are matrices of dimension $(n+k) \times (n+k)$. We know, that the function F describes the Lagrangian subspace $\tilde{L} \in T^* \mathbb{R}^{n+k}$. The subspace L is obtained from \tilde{L} by the symplectic reduction Π (see 2.2.).

We illustrate our construction on the diagram

$$\begin{array}{ccccccc}
 \mathbf{R}^{n-l} & \simeq & I_0 & \xrightarrow{B+A^i} & I & \subset & T^*\mathbf{R}^n & \xrightarrow{\pi_I} & \mathbf{R}^n \\
 & & \cap & & \cap & & & & \\
 \mathbf{R}^n & \simeq & L_0 & \xrightarrow{B+A^i} & L & \subset & T^*\mathbf{R}^n & \xrightarrow{\pi_L} & \mathbf{R}^n \\
 & & & & \uparrow \star & & \uparrow \Pi & & \\
 \mathbf{R}^{n+k} & \simeq & \tilde{L}_0 & \xrightarrow{\tilde{B}+\tilde{A}^i} & \tilde{L} & \subset & T^*\mathbf{R}^{n+k} & \xrightarrow{\pi_L} & \mathbf{R}^{n+k}
 \end{array}$$

In fact I is obtained from $\tilde{I} \subset \tilde{L}$ by the symplectic reduction, where

$$\tilde{I} = \{\tilde{q} + \tilde{p}i = (\tilde{B} + \tilde{A}^i)X, \quad X = [x_1, \dots, x_{n-l}, 0, \dots, 0, x_{n+1}, \dots, x_{n+k}]\}.$$

The matrix representing the generating family for I must have the dimension $(n+k+l) \times (n+k+l)$.

Using the description of the matrix B^{-1} from 3.1, we write the matrix \tilde{B}^{-1} in the block form

$$\tilde{B}^{-1} = \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix},$$

where the matrices C_1, C_2, C_3 have the following dimensions $(n-l) \times (n+k)$, $l \times (n+k)$, $k \times (n+k)$. C_1 transforms I into I_0 , C_2 gives conditions corresponding to the equation

$$\frac{\partial S}{\partial \beta}(q, 0, \lambda) = 0$$

in the definition of the generating family of the isotropic germ

$$C_2 \begin{pmatrix} q \\ \lambda \end{pmatrix} = 0.$$

C_3 is due to the nontransversality of L including I .

PROPOSITION 3.2.1. *The generating family for the isotropic subspace in $T^*\mathbf{R}^n$ in nongeneric position to the fibres of the bundle has the following form*

$$S(q, \lambda, \beta) = \frac{1}{2}[q, \lambda, \beta]M[q, \lambda, \beta]^T$$

where M is the symmetric matrix having the block form

$$M = \begin{pmatrix} \tilde{A}\tilde{B}^{-1} & C_2^T \\ C_2 & 0 \end{pmatrix}.$$

Proof. The subspace I is obtained from \tilde{I} by the symplectic reduction, where

$$\begin{aligned}\tilde{I} &= \{(\tilde{p}, \tilde{q}) : \tilde{q} = \tilde{B}X, \tilde{p} = \tilde{A}X, X = [x_1, \dots, x_{n-l}, 0, \dots, 0, x_{n+1}, \dots, x_{n+k}]^T\} \\ &= \{(\tilde{p}, \tilde{q}) : \tilde{p} = \tilde{A}\tilde{B}^{-1}\tilde{q}, 0 = C_2\tilde{q}\}.\end{aligned}$$

From the form of \tilde{I} , we have the description

$$I = \{(p, q) : \exists \lambda \in \mathbb{R}^k \ (p, 0) = \tilde{A}\tilde{B}^{-1}[q, \lambda]^T, 0 = C_2[q, \lambda]^T\}.$$

We calculate

$$\frac{\partial S}{\partial \tilde{q}}(\tilde{q}, 0) = \tilde{A}\tilde{B}^{-1}\tilde{q}, \quad \frac{\partial S}{\partial \beta}(\tilde{q}, 0) = C_2\tilde{q}; \quad \tilde{q} = (q, \lambda).$$

Thus

$$\begin{aligned}I &= \{(p, q) \in T^*\mathbb{R}^n : \\ &\quad \exists \lambda \in \mathbb{R}^k \frac{\partial S}{\partial q}(q, \lambda, 0) = p, \frac{\partial S}{\partial \lambda}(q, \lambda, 0) = \frac{\partial S}{\partial \beta}(q, \lambda, 0) = 0\}. \blacksquare\end{aligned}$$

4. Examples

We calculate the generating family for the isotropic subspace I in $T^*\mathbb{R}^2$ which is not in generic position to the fibres.

Let I be 1-dimensional subspace in $T^*\mathbb{R}^2$, and I projected to the base of the bundle is the point $(0, 0)$. We can fix $a, b \in \mathbb{R}$ such, that $a^2 + b^2 = 1$, and

$$I = \{(p_1, p_2, q_1, q_2) \in T^*\mathbb{R}^2 : bp_1 - ap_2 = 0, q_1 = q_2 = 0\},$$

where q_1, q_2 are the coordinates of the base, and p_1, p_2 of the fibres.

The subspace I is spanned by one vector

$$\alpha_1 = [q_1 + ip_1, q_2 + ip_2] = [ia, ib] \in \mathbb{C}^2.$$

We can include I in such Lagrangian subspace L , that its projection to the base of the bundle is 1-dimensional. This Lagrangian subspace L is generated by two vectors α_1 and α_2 , where $\alpha_2 = [-b, a] \in \mathbb{R}^2$. We choose α_2 such, that $\alpha_1 \perp \alpha_2$ and $|\alpha_2| = 1$.

Then from Proposition 2.2.2 the matrices \tilde{A}, \tilde{B} have the following form

$$\tilde{A} = \begin{pmatrix} a & 0 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 0 & -b & a \\ 0 & a & b \\ 1 & 0 & 0 \end{pmatrix}$$

and the matrix

$$\tilde{A}\tilde{B}^{-1} = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ a & b & 0 \end{pmatrix}$$

represents the generating function F for L ,

$$F : \mathbb{R}^2 \times \mathbb{R} \rightarrow \mathbb{R}$$

$$F(q_1, q_2, \lambda) = \frac{1}{2}[q_1, q_2, \lambda] \cdot \tilde{A}\tilde{B}^{-1} \cdot [q_1, q_2, \lambda]^T = \lambda a q_1 + \lambda b q_2.$$

In fact the function F describes the Lagrangian subspace $\tilde{L} \subset T^*\mathbb{R}^3$ which is transversal to the fibres of the cotangent bundle $T^*\mathbb{R}^3$,

$$\tilde{L} = \{(p_1, p_2, p_3, q_1, q_2, \lambda) : p_1 = a\lambda, p_2 = b\lambda, p_3 = aq_1 + bq_2\}.$$

To obtain the Lagrangian subspace $L \subset T^*\mathbb{R}^2$, we intersect the subspace \tilde{L} with the set $\{p_3 = 0\}$ and we project it to $T^*\mathbb{R}^2$,

$$L = \{(p_1, p_2, q_1, q_2) : \exists \lambda \in \mathbb{R} \quad p_1 = a\lambda, p_2 = b\lambda, aq_1 + bq_2 = 0\}.$$

From Proposition 3.2.1 we know, that the matrix representing the generating function $S : \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ for I , has the form

$$M = \begin{pmatrix} \tilde{A}\tilde{B}^{-1} & C_2^T \\ C_2 & 0 \end{pmatrix}$$

where $C_2 = [-b, a, 0]$ is the second row of \tilde{B}^{-1} .

We calculate, that

$$\begin{aligned} S(q_1, q_2, \lambda, \beta) &= \frac{1}{2}(q_1, q_2, \lambda, \beta) \begin{pmatrix} 0 & 0 & a & -b \\ 0 & 0 & b & a \\ a & b & 0 & 0 \\ -b & a & 0 & 0 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ \lambda \\ \beta \end{pmatrix} \\ &= \lambda a q_1 - \beta b q_1 + \lambda b q_2 + \beta a q_2. \end{aligned}$$

From the definition of the generating function we know, that the subspace I is generated in the following way $I = \{(p, q) \in T^*\mathbb{R}^n : \exists \lambda \in \mathbb{R}^k \text{ such that } \frac{\partial S}{\partial q}(q, \lambda, 0) = p, \frac{\partial S}{\partial \lambda}(q, \lambda, 0) = \frac{\partial S}{\partial \beta}(q, \lambda, 0) = 0\}$. We calculate, that

$$\begin{aligned} \frac{\partial S}{\partial q_1}(q_1, q_2, \lambda, 0) &= \lambda a = p_1, & \frac{\partial S}{\partial q_2}(q_1, q_2, \lambda, 0) &= \lambda b = p_2, \\ \frac{\partial S}{\partial \beta}(q_1, q_2, \lambda, 0) &= aq_2 - bq_1 = 0, & \frac{\partial S}{\partial \lambda}(q_1, q_2, \lambda, 0) &= aq_1 + bq_2 = 0. \end{aligned}$$

We obtain the following description of the isotropic subspace I

$$I = \{(p_1, p_2, q_1, q_2) : \exists \lambda \in \mathbb{R} \quad p_1 = a\lambda, p_2 = b\lambda, q_1 = q_2 = 0\}.$$

Acknowledgement. I would like to thank Professor Stanisław Janeczko for introducing me to the subject and for helping me in the preparation of the paper. I would like to thank the referee for helpful remarks.

References

- [1] B. Aebisher, M. Borer, M. Kälin, Ch. Leuenberger, H. M. Reimann, *Symplectic Geometry. An introduction based on the Seminar in Bern*, 1992, Progress in Mathematics, Vol. 124, Birkhäuser Verlag (1994).
- [2] V. I. Arnold, A. B. Givental, *Symplectic Geometry*, Encyklopædia of Mathematical Sciences, Vol 4, Dynamical Systems IV, Springer, Berlin, Heidelberg, New York, 1990.
- [3] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, *Singularities of Differentiable Maps*, Vol. 1, Birkhäuser, Boston, 1985, (English ed.).
- [4] V. M. Guillemin, S. Sternberg, *Symplectic Techniques in Physics*, Cambridge University Press 1984.
- [5] S. Janeczko, *On isotropic submanifolds and evolution of quasicaustics*, Pacific J. Math. 158, No. 2, (1993), 317–334.
- [6] S. Janeczko, *On G-versal Lagrangian submanifolds*, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 31 (1983), 183–190.
- [7] S. Janeczko, *Coisotropic varieties and their generating families*, Ann. Inst. Henri Poincaré, Phys. Théorique, 56, No. 4, (1992), 429–441.
- [8] A. C. Mishchenko, W. E. Shatalov, B. J. Sternin, *Lagranzhevyy mnogoobraziya i metod kanonicheskogo operatora*, Moskva, Nauka, 1978.
- [9] A. Weinstein, *Lectures on symplectic manifolds*, C.B.M.S. Conf. Series, Amer. Math. Soc. 29 (1977).
- [10] V. M. Zakalyukin, *Singularities of isotropic submanifold projection*, Math. Anal., C. R. Acad. Sci. Paris, 320, (I), (1995), 1177–1182.

INSTITUTE OF MATHEMATICS
 WARSAW UNIVERSITY OF TECHNOLOGY
 Pl. Politechniki 1
 00-661 WARSAW, POLAND
 e-mail: emmikosz@mp.pw.edu.pl

Received May 9, 1996.