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ON CLASSIFICATION OF THE LINEAR 
LAGRANGIAN A N D ISOTROPIC SUBSPACES 

0. Introduction 
Let M be a manifold, and u be a 2-form on M. The pair (M,u>) is called 

a symplectic manifold if u; is closed, i.e. du> = 0 and nondegenerate [9]. 
The simple and representative model of a symplectic manifold is the 

cotangent bundle T*Rn, endowed with the canonical 2-form u = dQ, where 
1-form 0 is the Liouville form on T*Rn defined by 

{u, 0) = {TwRn (u), tt'R* (u)) here u € T(T*Rn), 

the mapping Titr* is the tangent mapping of : T*Rn —• Rn and tt-r» : 
T(T*R") T*R" is the tangent bundle projection [5]. 

If (p, q) are coordinates of the bundle T*R", i.e. q\,..., qn are coordinates 
of the base and p \ , . . . ,pn coordinates of the fibres, then 0 and u have the 
local Darboux form [9] 

0 = Z?=ipidqi, u = Ei=1dpi A dq{. 
Let M be a 2n-dimensional manifold. A submanifold of the symplectic 

space (Af,w) is called isotropic if the restriction of the symplectic form to 
its tangent space at each point is zero form. The dimension of an isotropic 
submanifold is less then or equals n. If the dimension equals n, then this 
submanifold is called Lagrangian. Every isotropic (and Lagrangian) subman-
ifold can be locally represented by its generating family ([3], [5]). Isotropic 
submanifolds are often called the null-submanifolds. They play very impor-
tant role in many branches in mathematics and physics e.g. in diffraction 
theory, in classical and quantum mechanics etc. ([3], [4], [5], [7]). 

In §1 we give a description in an algebraic language of the Grassmannian 
consisting of ¿-dimensional linear isotropic subspaces of a 2n-dimensional 
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symplectic space. In the next sections we obtain a precise formula for gener-
ating function of linear isotropic and Lagrangian subspaces of the cotangent 
bundle of the n-dimensional real space. In §2 we find a matrix representation 
of an arbitrary linear Lagrangian subspace of the cotangent bundle T ' R " . 
In §3 we perform a similar construction for a general isotropic case. In §4 
we apply our methods from §1 and §2 to calculate the generating families 
for isotropic and Lagrangian subspaces. 

For example, we consider a 2-dimensional isotropic subspace in T*R 3 

I = {(Pi,P2,P3,9i,92,93) : 
Pi = t, 92 = s, P2 = P3 = o, 91 = 93 = 0 t, s £ R } . 

We see, that the subspace I projected to the base of the bundle T'R3 is 
the line {(91,92,93) : 9i = 0, 92 = s, q3 = 0, s € C R 3, its generating 
function 5 : R 3 x R x R -»• R has the form 

•S'(9i>92 , 93, A , / ? ) 

= 2(91'92,93, A,/?) 

/0 0 0 1 0\ 
0 0 0 0 0 
0 0 0 0 1 
1 0 0 0 0 

\o 0 1 0 0/ 

/ 9i \ 
92 
93 
A 

V/?/ 

= A91 + /3q3. 

1. Isotropic Grassmannian 
Let M n be a smooth manifold. The cotangent bundle T*M n is endowed 

with the canonical symplectic structure (see Introduction). The first step to 
classify isotropic submanifolds of the cotangent bundle T*M n is to describe 
linear isotropic subspaces of T*Rn . We identify T*Rn with C", then the 
symplectic structure u> coincide with the imaginary part of the standard 
Hermitian scalar product H (see [1]). This identification is the following 

(9l, • • - ,9n,Pl, • • -,Pn) >-- (9l + «>1,- • - ,9n + ¿Pn), 
where are coordinates of the base of the bundle, and pi coordinates of the 
fibres. 

Let U(n) be the unitary group and let 0(n) be the orthogonal group 
considered as a subgroup of U(n). We denote by A„ the set of all Lagrangian 
subspaces in T*R". This set is called the Lagrange Grassmannian and it is 
smooth manifold. An is homeomorphic to the quotient space U(n)/0(n). 
The dimension of the Lagrange Grassmannian equals \n{n + 1) (see [2], 
[8])-

Analogously we can define the set of all fc-dimensional isotropic subspaces 
in 2n-dimensional symplectic vector spaces T*Rn . We denote it by X\n. 
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PROPOSITION 1.1. The isotropic Grassmannian l\n is homeomorphic to 
the quotient space 

U{n)/(0(k)®U(n- k)) 

and dim l\n = 2nk - iJfc(3* - 1). 

P r o o f . We should show, that: 1) the unitary group U(n) acts on Cn 

by symplectic homomorphism, 2) this action is transitive on X\n , i.e. we 
can obtain an arbitrary subspace I € J\N from the fixed subspace IQ € 
3) the stabilizer of a certain element IQ G ll" is equal to O(k) ®U{n - k) . 

Ad. 1. By definition the group U(n) consists of all transformations of 
Cn which preserve the Hermitian scalar product H. The symplectic form u 
equals the imaginary part of H, thus the form u> is preserved by action of 
U(n). 

Ad. 2. We fix the isotropic subspace IQ = span/j{ . . . g^} -
Let I be an arbitrary subspace from Z\n, we construct a symplectomor-

phism ip : (R2n,u>) —• (R2n,u>) such, that <p(Io) = I. We want to find 
matrix A G U{n) which represents this mapping. 

The Hermitian scalar product H restricted to the isotropic subspace I 
is the real-valued function, because W|/ = 0 and u> — imH. The form H 
restricted to I is the symmetric positive bilinear form therefore, there exists 
an orthonormal basis of /, { « i , . . .a^} such, that I = span f l {a i , . . . a * } . 

A natural way to construct the mapping <p is to define it on the basis 

"'(I;)"0" i = 1 - k -
Then the desired matrix A has the following form 

A = [ai,...a*,/?fc+i,.../?„] 

where /?jt+i,.. ./?n a r e s u c h elements, that a i , ./?„ form an 
orthonormal basis of C n . 

Ad.3. Let IQ = s p a n f i { . . . We want to find all matrices A € 
U(n) which represent the mapping <p preserving the isotropic subspace IQ-
Let = ^i=i aO ^ hi» where G R and 1 < i < k. The matrix A 
must consist of the block belonging to 0(k) which represents the transfor-
mation IQ into I and the complementary block from U(n- k) and two zero 
blocks, i.e. 

A e ( 0 { k ) 0 ^ -
0 U(n — k) J ' 

We may calculate the dimension of the isotropic Grassmannian from the 
following two facts: 
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1) the group U(n) is fibred over the real sphere S2n 1 with the fibre 
U(n- 1), 

2) the group O(n) is fibred over the real sphere 5 n _ 1 with the fibre 
0(n — 1). 

Then dim U(n) = n2, dimO(n) = 

R e m a r k 1.2 We can't define in the isotropic Grassmannian the analog 
of the Maslov form as in [8], because H\A„,Z) = Z, but Hl(J2

k
n, Z) = 0. 

Instead we have H\l2
k
n, Z2) = Z2 . 

2. Generating families for Lagrangian subspaces in R 2 n 

Every Lagrangian submanifold L can be locally generated by some gen-
erating family F (so-called Morse family [9]), i.e. 

where 
(d2F d2F \ 

F : R n x Rfc —• R, F : (q,\) ~ F(q,rankí — J = k-

(see [6]). We will find a global generating family for a linear Lagrangian 
subspace. 

2.1. Transversal case 
If L is transversal to the fibres of the cotangent bundle T*Rn, then L is 

the graph of its generating function F : R n —> R (see [6]). 
We fix a linear subspace Í 6 An. The subspace L can be obtained from 

LQ = s p a n f l { ^ , . . . , gf-}by the action of the group U(n), i.e. there exists 
C = B + iA e U(n) such, that 

L = CL0 = {(p,q): AX = p, BX = q, X € ¿o}, 

where A, B are real matrices. In transversal case B is nonsingular. We can 
easily calculate, that p = AB~1q. 

L E M M A 2 .1 .1 . The relation between the coordinates (p,q) on L is given 
by the symmetric matrix AB'1. 

P r o o f . From CT • C = In we see, that BTA is symmetric, then 

AB~X = (B~l)T(BTA)B-1 

is a symmetric matrix too. • 
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P R O P O S I T I O N 2 . 1 . 2 . The quadratic form 

S(q)=\qTAB-1q 

is a generating function for L . 

P r o o f . From the definition of generating families we see, that | j ( q ) := 
AB~lq = p. If qTHq is a quadratic form, then qTHq) = (H + HT)q = 
2Hq, because H is a symmetric matrix. Then we obtain the Lagrangian 
subspace 

L = {(p,q):p= AB-'q}. m 

2.2. Nontransversal case 
If L is not transversal to the fibres of T*Rn, then its generating family S 

must have additional argument A £ Rk. In fact the function S(q, A) describes 
the Lagrangian subspace L in T*Rn+k such, that L is transversal to the fibres 
of the bundle T*Rn+fc, and the symplectic reduction at L gives L, i.e. 

n : T"Rn+k
 — r * R n , 

n : ((pi,. . .Pn,Pn+1, • • -Pn+fc), (?1, . . . ?„ , Ai, . . . A*)) (pi, . . .p„,?l , • • -Qn), 
n : i n {pn+i = ... = pn+k = 0} L. 

As in the section 2.1. we fix L 6 An, then there exists C G U(n) such, 
that L = CLo = {(p,q) : p = AX, q = BX, X e L0}, C = B + iA. 
In nontransversal case B is singular. We illustrate our construction on the 
diagram 

B+Ai 
* L0 

ln 
R n+k „ lQ B+Ai -L c r,Rn+fc Rn+k 

where L0 = s p a n H { . . . , and 

L = {(p,q):p=AX, q = BX, X e L0), 

where L = (B + Ai)Lo, and 

(P. 9) = ((pi. • • • . Pn, Pn+l, • • ., Pn+ k), ( i l , • • •, ?„, Ai, . . ., A*)) € T*Rn +*, 
and * | n notes the symplectic reduction. 

L E M M A 2.2.1. Let rank(£?) = N - k, then there exists a real matrix W of 
dimension n x k such, that its columns together with the columns of B span 
Rn, the matrix 

_ ( B 
" 0 J 
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is invertible, and BT A is symmetric, where 

Mo I)' 
and Ek is the identity matrix. 

P r o o f . 1) We take any k vectors Wi , . . . Wk € R n such, that 

where 6, i = 1 , . . . , n are columns of the matrix B. 
We define 

- (B w l f . . . , t i ; f c \ 5=U 0 ) 
and we look for a matrix F of dimension kxn such, that BTA is symmetric. 
From the symmetry we calculate F = WTA. 

2) We prove, that B is invertible. 
a) For simplicity we assume, that k = 1, i.e. rank(5) = n — 1. 
We can find an orthogonal matrix Y € 0(n) which transforms the 
matrix B to the form BY = ( B 0 0) = B, where rank(5 0) = n - 1. We 

define C = CY = (B + iA)Y = B + iA <E U(n), where 

C = {¿i + tai,...,6n_i + ian_1,ian}. 

We must also change the matrix B = a o ^ ' vec^or w 's 

early independent with the columns of the matrix B if and only if, it is 
independent with the columns of B 

^ ( o ?)-(Ja ;)• 
The vector wTA consists of the scalar products of the vector w and the 
columns of the matrix A. We easily calculate, that 

det 5 = det f , . ™ ] = ±(w, an) det(B0, w) = 0 = w 1 a n , 
{w,an) 0 J 

where the symbol ( , ) notes the scalar product. We suppose, that w £ a^. 
From the form of C we know, that a„ = span H { t i , . . .6„_i } . Thus w 6 
span f i {6 i , . . . ¿ n _ i } , and we obtain the contradiction. 

b) We assume, that rank(2?) = n — k, I < k < n. There exists an 
orthogonal matrix X 6 0(n) which transforms the matrix C into C = 
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CX € U(n) in such a way, that B = BX = (B0 0 . . . 0 ) , where 
rank (5o ) = n — k and the last k columns of B are null 

C = { ¿ i + i a i , . . . , 6 n _ f c + i a n _ i t , i a n _ f c + i , . . . i a n } € U(n). 

The matrix B = ( ^ . ™ | is transformed into B 
\ w1 A 0 / 

B 

where Ek is the identity matrix, and the matrix W is not changed. From the 

form of B we calculate, that det ( i? ) = ± det P - d e t ( 5 0 , W) = 0 = det P = 0, 

where the matrix P consists of the last k columns of the matrix WTA, its 

dimension is k x k, and its terms are (« ; ,- ,aj) i = l,...k,j = n — k + l,...n. 

From the form of C we deduce, that aj _L b{ i = 1 , . . . n—k, j = n—k+l,...n, 

i.e. span H {& i , . ..bn-k}L = s p a n ^ a , ^ . , . ! , . . , a n } . 

We must transform the matrix W. Let \ be the projection to 

s p a n f l { 6 i , . . . 6 n _ f c } x , we define v, = x ( w > ) 1 = n—&+1, . • - n, then (Wi , aj) = 

(v,,a,j) i — 1 , . . .k, j = n - k + 1 , . . .n. The vectors Uj i = 1 , . . .k form a 

basis of { ¿ i , . . . 6 n _ f c } x . We can represent vectors a j in the basis { u i , . . .Vk}, 

then P = VT • Ak, where V = (ui . . .Vk), Ak = (an_fc+i . . . a n ) . We see, 

that det P = det V • det Ak # 0. • 

The subspace L = (B + Ai)Lq C T*JLn+k is Lagrangian because the 
matrix BT A is symmetric. It is transversal to the fibres of the bundle, then 
from 2.1.2. we have the form of the generating function for L. 

PROPOSITION 2.2.2. The generating function S for the Lagrangian sub-

space L is given by the symmetric matrix AB~l and has the following form 

1 
S = -q1 AB~lq, "(I) e Rn+k. 

P r o o f . We have 

L = {(p,q):p=ÀX, q = BX, X e L0). 

We calculate, that 

/ xi \ ( 

[Pi, • • • Pn ) Pn+1 , - - - P n + * ] T = ( o 
Zn+1 

\xn+kJ 

M \ 

Zfi+1 

Xn+k 
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[ g i , . . A x , . . . , Xk]T -
( B W 
\WTA 0 

( x\ \ 

Xn 

I< 

WTA 

\ / 

Xl \ I In+l 
where A' = B I ... + W \ ... 

Xnj \ X n+fc , 
We obtain the subspace L f rom L in the following way 

IT : L n { p n + 1 = . . . = pn+k = 0} L, 

n : ( (p i , • • . p „ , 0 , . . .0) , (qi,.. .qn, A l 5 . . .Xk)) ( P l , . . . p n , . . ,qn). 

We see, t ha t in our case [ p „ + i , . . .pn+k] = [ x n + 1 , . . .a:n + f c]. 
From 2.1.2. we know, tha t the function S generates the Lagrangian sub-

space L C T*Rn+k, i.e. 

dS 

q = [ g i , . . . 9 „ , A i , . . . , A n + f c ] T . 

We write this formula in the following form 

OS OS 
-Q^ (?,A) = P,- i = 1,.. .n, ^-(i,A) = pn+j j = l,...k. 

We obtain L f rom L by the symplectic reduction, i.e. 

II : L n { p n + i = . . . = pn+k = 0} L, 

thus A) = 0, j = l,...k. We see, t ha t the function S generates the 
following subspace 

= {(P,q)eT'Rn:3\eRk, ^(q, A) = 0, j -(9,A) = p | . 

R e m a r k 2.2.3. T h e generat ing function for the Lagrangian subspace 
has the following form S(q, A) = f(q) + E f = 1 A, • gi(q), where f(q) is the 
quadra t ic funct ion and gi{q) are linear functions (see. [2]). 

From the form of matrices A and B , we see tha t the symmetr ic ma t r ix 
AB~l has the block form, and the block corresponding to the p roduc t s 
A» Aj, i,j — 1 ,...k equals 0, therefore the generating funct ion S(q, A) = 

|(<7, X)AB~l ^ ^ is the linear function of A. 
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3. Generating families for isotropic subspaces in R2 n 

In analogous way as for the Lagrangian submanifolds, to each germ of 
an immersed isotropic submanifold ( / , 0) C T*Rn there exists a germ of 
/-Morse family 

S : (R n x R ' x R*,0) R 
such, that (1,0) may be written in the form 

3A e Rfc, ^ ( i , 0 , A ) = p, | | ( g , 0 , A ) = g ( g , 0 , A ) = 0} 

(see [5]). 

3.1. Generic case 
Let I be an isotropic subspace of T*Rn such, that dim I = n — I, and 

the projection of I to the base of the bundle has the maximal dimension, 
i.e. / is in the generic position. 

Any isotropic subspace can be included into a Lagrangian one (see [5], 
[10]). 

If the subspace I is in generic position, then we can find the Lagrangian 
subspace L such, that I is included into L, and L is transversal to the fibres 
of T"Rn. We may use results from 2.1 and add the conditions which allow 
us to obtain I from L, i.e. f^f(g,0, A) = 0. 

We can obtain / from Iq = s p a n f l { . . . d q
9_ l} in a way I = DIo, 

where D & U(n), D = B + iA and B is nonsingular. The subspace Io is 
included into Lq = span f l{ g^- , . . . which is transversal to the fibres. 
The Lagrangian subspace L obtained from Lq by action of the matrix D, 
i.e. L = DLq is transversal to the fibres too. 

We illustrate our construction on the diagram 

R " - ' ^ T J3+A« j 
~ IQ • I C T*Rn T/ 

n n 
R n j B+Ai j 

~ Lq — — > L c r * R n 

From 2.1. we know, that the generating function for L has the form 
F(q) — j q T A B ~ l q where D = B + iA. The generating function for I must 
be represented by a matrix of dimension (n + /) x (n + /). We must formulate 
the condition which allow us to obtain / from L. 

L = {(P,l)'- [Pi,---Pn]T = A[xi,...xn]T, [ ç i , . . . ? n ] T = 5 [ i i , . . . i n ] T } , 
I = {(P>9) : h>i,---,Pn]T = A[x i , . . . a ; n _/ ,0 . . . , 0 ] T , 

[9i,---,9n]T = B[x\,..., i „ _ / , 0 , . . . , 0]T}, 
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where Xi, i = 1 , . . .n, are coordinates of IQ or The matrix B is nonsingu-
lar, thus B ' ^ f a , . . .<7n]T = • • - x n - h 0,. • -0]T. The matrix B - 1 consists 

of two blocks B = ^ , where C\ has the dimension (n - /) x n and 

C2 dimension / x n. The equation above decomposes: 

The matrix C transforms I into IQ. The condition Ciq = 0 consists 
of I equations, and corresponds to the relations 0 ( 9 , 0 , A) = 0 from the 
definition of generating families for an isotropic germ. 

P R O P O S I T I O N 3.1.1. The generating function for an isotropic subspace 
in T"*Rn in a generic position to the fibres of the bundle has the following 
form 

S(q, 0) = ^[q, P]M[q, 0]T where S : Rn X R' — R 

and 

" ( r ? ) • 

P r o o f . We have 

« ( , 0 , = f ) ( j ) = ( * £ . ) = ( ; ) 

= AB~lq = p, ^(q,0) = C2q = 0.. 

3.2. Nongeneric case 
Let I be an isotropic subspace in T*R" of dimension n-l, and we assume, 

that dim7T/(/) — n - I - k, where 717 is the projection to the base of the 
bundle. 

We can obtain I from 7o, i.e. I = DIQ, D G U(n), D = B + iA. 
B is singular. We can include I in a Lagrangian subspace L such, that 
dim7T/,(X) = n — k, i.e. rank(J3) = n — k. Let L = DLQ where LQ ~ 
span f l{g^- , . . . Then we may use results from 2.2 and write the gener-
ating family F : R n x R * — R for L in the form F(q, X) = \}AB~1[q, A]T, 
where A and B are matrices of dimension (n+k)x(n+k). We know, that the 
function F describes the Lagrangian subspace L 6 T* Rn + f c . The subspace 
L is obtained from L by the symplectic reduction II (see 2.2.). 
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We illustrate our construction on the diagram 

R n — ' * Io 
B+Ai I c T* R n * / R n 

n n 
R " ^ L0 

B+Ai l c T*R n *L R " 
* I" 

Rn+k * Lo 
B+Ai J l c T'Rn+k Rn+k 

In fact I is obtained from I C L by the symplectic reduction, where 

I = {q + pi = (B + Ai)X, X = [ x 1 , . . . , x n _ / , 0 , . . . , 0 , i n + i , . . . ® „ + f c ] } . 

The matrix representing the generating family for I must have the dimension 
(n + k + l)x (n + k + l). 

Using the description of the matrix from 3.1, we write the matrix 
B~l in the block form 

= ( I 
where the matrices C\, C2, C3 have the following dimensions (n — /) x (n + 
k), I x (n + k), k x (n + k). C\ transforms / into Jo, C2 gives conditions 
corresponding to the equation 

d S jp(q,0,\)=0 

in the definition of the generating family of the isotropic germ 

c , ( « ) = . . 

C3 is due to the nontransversality of L including I. 

PROPOSITION 3.2.1. The generating family for the isotropic subspace in 
T'Rn in nongeneric position to the fibres of the bundle has the following 
form 

where M is the symmetric matrix having the block form 

M ( A B - 1 C 2
T ) 

{ c 2 o J • 
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P r o o f . The subspace / is obtained from / by the symplectic reduction, 
where 

Ï - {(P>9) : 9 = BX, p = ÂX, X = [ i i , . . . z n _ ; , 0 , . . . 0 , z n + i , . . . z n + f c ]} 

= {(p,q): p=ÀB~1q, 0 = C2q}. 

From the form of / , we have the description 

/ = {(p,q) : 3A e Rfc (p,0) = ÂB~l[qt A]T, 0 = C2[q,X)T}. 

We calculate 

— (ç~,0) = AS"1«?, —(q,0) = C2q; ? = (ç,A). 

Thus 

I={(p,q)eT'Rn: 

3 A e R f c ^ ( 9 > A , 0 ) = p, | ^ ( 9 , A , 0 ) = | | ( 9 , A , 0 ) = 0}. . 

4. Examples 
We calculate the generating family for the isotropic subspace I in T*R2 

which is not in generic position to the fibres. 
Let I be 1-dimensional subspace in T"R2, and I projected to the base 

of the bundle is the point (0,0). We can fix a,b € R such, that a2 + b- = 1, 
and 

I = {(Pi,P2,9i,92) G T*R2 : bpx - ap2 = 0, qi = q2 = 0}, 
where q\,q2 are the coordinates of the base, and p\,p2 of the fibres. 

The subspace I is spanned by one vector 

«1 = [<7i + ip\, 92 + m] = [»a, ib] 6 C2 . 

We can include / in such Lagrangian subspace L, that its projection 
to the base of the bundle is 1-dimensional. This Lagrangian subspace L is 
generated by two vectors ax and «2, where a 2 = [ -6 , a ] € R2 . We choose 
a 2 such, that a i _L a 2 and |<ar21 = 1-

Then from Proposition 2.2.2 the matrices A, B have the following form 

f a 0 0 \ / 0 -b a 
i = 6 0 0 , 5 = 0 a b 

\ 0 0 1 / V l o 0 

and the matrix 
0 0 a 

AB~X = [ 0 0 b 
a b 0 
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represents the generating function F for L, 

F : R 2 x R — R 

F(quq2, A ) = ^[quq2,X]- ÂÉ~l - [ 9 I , 9 2 , A ] T = Aaçi + \bq2. 

In fact the function F describes the Lagrangian subspace L C T ' R 3 

which is transversal to the fibres of the cotangent bundle T*R 3 , 

L = { ( P I , P 2 , P 3 , 9 I , 9 2 , A) :px = aX, p2 = bX, p 3 - aqx + 692}-

To obtain the Lagrangian subspace L C T*R2, we intersect the subspace L 
with the set {^3 = 0} and we project it to T*R2, 

L = { ( P X , P 2 , 9 1 , 9 2 ) : 3A € R Pi = a\, p2 = bX, aqx + bq2 = 0 } . 

From Proposit ion 3.2.1 we know, tha t the matrix representing the gen-
erat ing function S : R 2 x R x R —> R for / , has the form 

M 
( Â É - 1 C f \ 

V C 2 0 J 

0 0 a - ¿ A / 9 i \ 
0 0 b a 92 
a b 0 0 A 

-b a 0 0 / 

where C2 = [—6, a , 0] is the second row of B 1 . 
We calculate, tha t 

S(qi,q2,X,P) = ^(qi,q2,X,(3) 

= Xaqi - fibqi + Xbq2 + 0aq2. 

From the definition of the generating function we know, tha t the subspace 
I is generated in the following way I = {(p,q) G T * R n : 3A e R* such tha t 
| f (q, A, 0) = p, | f ( 9 , A, 0) = | f ( 9 , A, 0) = 0}. We calculate, tha t 

OS dS 

^ - ( 9 1 , 9 2 , A , 0 ) = Aa = p i , — ( q u q 2 , X , 0 ) = Xb = p2, 

OS dS - Q P ( Q I , 9 2 , A , 0 ) = aq2 - bqi = 0 , 9 2 , A, 0 ) = aqt + bq2 = 0 . 

We obtain the following description of the isotropic subspace I 

I = { ( P I , P 2 , 9 I , 9 2 ) : 3 A € R P i = aX, p2 = bX, 9 1 = q2 = 0 , } . 
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