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ON CLASSIFICATION OF THE LINEAR
LAGRANGIAN AND ISOTROPIC SUBSPACES

0. Introduction

Let M be a manifold, and w be a 2-form on M. The pair (M,w) is called
a. symplectic manifold if w is closed, i.e. dw = 0 and nondegenerate [9].

The simple and representative model of a symplectic manifold is the
cotangent bundle T*R", endowed with the canonical 2-form w = d@, where
1-form @ is the Liouville form on T*R" defined by

(u,0) = (Trpa(u), 77-pn(u)) here u € T(T*R"),

the mapping Tr g is the tangent mapping of 7gn : T*R™ — R™ and 77-g= :
T(T*R™) — T*R" is the tangent bundle projection [5].

If (p, q) are coordinates of the bundle T*R", i.e. qq,. .., g, are coordinates
of the base and p,,...,p, coordinates of the fibres, then ® and w have the
local Darboux form [9]

O =X} pidg;, w=X_,dp;Adg.

Let M be a 2n-dimensional manifold. A submanifold of the symplectic
space (M,w) is called isotropic if the restriction of the symplectic form to
its tangent space at each point is zero form. The dimension of an isotropic
submanifold is less then or equals n. If the dimension equals n, then this
submanifold is called Lagrangian. Every isotropic (and Lagrangian) subman-
ifold can be locally represented by its generating family ({3], [5]). Isotropic
submanifolds are often called the null-submanifolds. They play very impor-
tant role in many branches in mathematics and physics e.g. in diffraction
theory, in classical and quantum mechanics etc. ([3], (4], [5], [7])-

In §1 we give a description in an algebraic language of the Grassmannian
consisting of k-dimensional linear isotropic subspaces of a 2n-dimensional
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symplectic space. In the next sections we obtain a precise formula for gener-
ating function of linear isotropic and Lagrangian subspaces of the cotangent
bundle of the n-dimensional real space. In §2 we find a matrix representation
of an arbitrary linear Lagrangian subspace of the cotangent bundle T*R™.
In §3 we perform a similar construction for a general isotropic case. In §4
we apply our methods from §1 and §2 to calculate the generating families
for isotropic and Lagrangian subspaces.
For example, we consider a 2-dimensional isotropic subspace in T*R3

I= {(PI’P2,P3,411,(12,‘13)1
=t qg=sp=p3=0,q =¢g=0¢s€R}

We see, that the subspace I projected to the base of the bundle T*R3 is
the line {(QIaﬂh, ‘IS) ‘4= 07 Q2 =S8 3= Oa s € R} - R3’ its generating
function S : R3 x R x R — R has the form

S(qlvq%qih’\aﬂ)

0001 0\ /qu

. 0000 0)[q
= 5(‘11&2#1&%@ 00001 B | = Aq1 + Bgs.

10 0 00 A

0 01 0O J¢)

1. Isotropic Grassmannian

Let M™ be a smooth manifold. The cotangent bundle T*M™ is endowed
with the canonical symplectic structure (see Introduction). The first step to
classify isotropic submanifolds of the cotangent bundle T*M™ is to describe
linear isotropic subspaces of T*R". We identify T*R"™ with C", then the
symplectic structure w coincide with the imaginary part of the standard
Hermitian scalar product H (see [1}). This identification is the following

(qla"w‘In,plv"'vpn) = (‘h + ipl,---,Qn + ipﬂ),

where ¢; are coordinates of the base of the bundle, and p; coordinates of the
fibres.

Let U(n) be the unitary group and let O(n) be the orthogonal group
considered as a subgroup of U(n). We denote by A, the set of all Lagrangian
subspaces in T*R™. This set is called the Lagrange Grassmannian and it is
smooth manifold. A, is homeomorphic to the quotient space U(n)/O(n).
The dimension of the Lagrange Grassmannian equals in(n + 1) (see [2],

(8]).
Analogously we can define the set of all k-dimensional isotropic subspaces
in 2n-dimensional symplectic vector spaces T*R™. We denote it by Z2".
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PRroOPOSITION 1.1. The isotropic Grassmannian I" is homeomorphic to
the quotient space
U(n)/(O(k)® U(n - k))
and dim I2" = 2nk — 1k(3k - 1).
Proof. We should show, that: 1) the unitary group U(n) acts on C*
by symplectic homomorphism, 2) this action is transitive on Z2" , i.e. we

can obtain an arbitrary subspace I € 73" from the fixed subspace I € Z?",
3) the stabilizer of a certain element Iy € I2" is equal to O(k)® U(n — k) .

Ad. 1. By definition the group U(n) consists of all transformations of
C" which preserve the Hermitian scalar product H. The symplectic form w
equals the imaginary part of H, thus the form w is preserved by action of
U(n).

Ad. 2. We fix the isotropic subspace Iy = spa.nn{a%l, ces % .

Let I be an arbitrary subspace from Z?", we construct a symplectomor-
phism ¢ : (R*",w) — (R?",w) such, that ¢(ly) = I. We want to find
matrix A € U(n) which represents this mapping.

The Hermitian scalar product H restricted to the isotropic subspace I
is the real-valued function, because w;; = 0 and w = imH. The form H
restricted to I is the symmetric positive bilinear form therefore, there exists
an orthonormal basis of I, {ay,...ax} such, that I = spang{ay,...ax} .

A natural way to construct the mapping ¢ is to define it on the basis

0 .
go(-gq—') =a; t=1...k

Then the desired matrix A has the following form

A=[ay,...ak Brs1,---Bn)

where [i+1,...0, are such elements, that ay,...a,Bk4+1,-..0, form an
orthonormal basis of C*.

Ad.3. Let Iy = spann{a%,...%}. We want to find all matrices A €
U(n) which represent the mapping ¢ preserving the isotropic subspace Iy.
Let gp(aiqi) = E;?:la,-jaiq’_ € Ip,, where a;; € Rand 1 < i < k. The matrix A
must consist of the block belonging to O(k) which represents the transfor-
mation Jp into I and the complementary block from U(n — k) and two zero

blocks, i.e.
O(k) 0
Ae( 0 U(n—k))"

We may calculate the dimension of the isotropic Grassmannian from the
following two facts:
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1) the group U(n) is fibred over the real sphere $"~! with the fibre
U(n - 1),

2) the group O(n) is fibred over the real sphere S™~! with the fibre
O(n-1).

Then dim U(n) = n?, dim O(n) = 2512,

Remark 1.2 We can’t define in the isotropic Grassmannian the analog
of the Maslov form as in [8], because H'(A,,Z) = Z, but H'(Z?",Z) = 0.
Instead we have H(I2",Z,) = Z,.

2. Generating families for Lagrangian subspaces in R2"

Every Lagrangian submanifold L can be locally generated by some gen-
erating family F (so-called Morse family [9]), i.e.

oF oF
- “pn , k _ -
1= {mae TR MeR L@ =0, Foan=r},

where

&*F &°F

.R" k . — k-
F:R"xR* >R, F:(q,A)~ F(q,A), ra.nk(ap,a,\aq) ;
(see [6]). We will find a global generating family for a linear Lagrangian

subspace.

2.1. Transversal case

If L is transversal to the fibres of the cotangent bundle T*R", then L is
the graph of its generating function F : R™ — R (see [6]).

We fix a linear subspace L € A,. The subspace L can be obtained from
Ly = spanﬁ{%, ceey %}by the action of the group U(n), i.e. there exists
C = B+ tA € U(n) such, that

L=CLy={(p,q): AX =p, BX =q, X € Ly},

where A, B are real matrices. In transversal case B is nonsingular. We can
easily calculate, that p = AB~!q.

LEMMA 2.1.1. The relation between the coordinates (p,q) on L is given
by the symmetric matriz AB~!.

Proof. From CT - C = I, we see, that BT A is symmetric, then
AB™! = (B H)T(BTA)B™!

is a symmetric matrix too. m
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ProPOSITION 2.1.2. The quadratic form
1
S(q) = 54" AB™'q
is a generating function for L .

Proof. From the definition of generating families we see, that %%(q) =
AB~1q = p. If ¢T Hq is a quadratic form, then g—l—(qTHq) =(H+HT)q =
2Hq, because H is a symmetric matrix. Then we obtain the Lagrangian
subspace

L={(p,q):p=AB7'q}.

2.2. Nontransversal case

If L is not transversal to the fibres of T*R", then its generating family S
must have additional argument A € R*. In fact the function (g, A) describes

the Lagrangian subspace L in T*R™** such, that L is transversal to the fibres
of the bundle T*R"** and the symplectic reduction at L gives L, i.e.

Io:T°R" - T"R",
:((P1y---PrsPrt1s- - -Prtk)y (Q15 -+ @ny Aty - Ak)) = (P1o- - Pos @y - - - n),
H:Lﬂ{pn“ :---:pn-}—k:O}HL-

As in the section 2.1. we fix L € A, then there exists C € U(n) such,
that L = CLo = {(p,q) : p = AX, ¢ = BX, X € Ly}, C = B + iA.
In nontransversal case B is singular. We illustrate our construction on the
diagram

R" Lo 24 I ¢ TR* 5 R"

R

~ C T-Rn+k ”_g Rn+k

RME ~ ZO B+ A

where Lo = spanR{aiql, ceny 3qf“ }, and
L={4q):5=A4X, j=BX, X € Lo},

where I, = (B + Ai)Lg, and
(ij’ (D = ((Pl, c ey PnyPntl, - - ',pn-}-k), (qu' . '7q'n7’\17 sevy ’\k)) € T‘R’H—ky
and x Ty notes the symplectic reduction.

LEMMA 2.2.1. Let rank(B) = n — k, then there ezists a real matriz W of
dimension n X k such, that its columns together with the columns of B span

R", the matriz
~ B |14
B = (WTA 0 )
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is invertible, and BT A is symmetric, where

= A 0
i-(5 5)
and E; is the identity matriz.
Proof. 1) We take any k vectors wy,...w, € R"™ such, that

spang{by,...,bn, wy,..., wx} ~ R",

where b; : = 1,...,n are columns of the matrix B.
We define
= (B wy,...,wi
B= (3 ™)

and we look for a matrix F of dimension k x n such, that BT A is symmetric.
From the symmetry we calculate FF = WT A.

2) We prove, that B is invertible.

a) For simplicity we assume, that k = 1, i.e. rank(B) =n — 1.

We can find an orthogonal matrix Y € O(n) which transforms the

matrix B to the form BY = (Bo 0) = B, where rank(Bp) = n - 1. We
define C = CY = (B +1A)Y = B+iA4 € U(n), where

C = {by +1ay,...,bp_1 + tdn_1,idn}.

We must also change the matrix B = ; the vector w is lin-

B w
wTA 0
early independent with the columns of the matrix B if and only if, it is

independent with the columns of B

z (Y 0 B w

B“B(o 1)‘(wTA 0)'
The vector wT A consists of the scalar products of the vector w and the
columns of the matrix A. We easily calculate, that

By 0 w

detB:det(_” (0,8,) 0

) = t(w,a,) det(Bp,w)=0=w L ay,,
where the symbol (, ) notes the scalar product. We suppose, that w € a}.
From the form of C' we know, that &t = spang{by,...bn_1}. Thus w €
spanR{I}l, .. .l;n_l}, and we obtain the contradiction.

b) We assume, that rank(B) = n — k, 1 < k < n. There exists an
orthogonal matrix X € O(n) which transforms the matrix C into C =
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CX € U(n) in such a way, that B = BX = (By 0 ... 0), where
rank(By) = n — k and the last k columns of B are null

C = {by +ib1,...,bn_k + tdn_k, i8n_ks1,. .-idn} € U(n).

ng 16)) is transformed into B

s (X 0 B w
B“B(o Ek)_(WTA 0)’

where Ey is the identity matrix, and the matrix W is not changed. From the

form of B we calculate, that det(B) +det P-det(By,W)=0=det P =0,
where the matrix P consists of the last k columns of the matrix WTA its
dimension is k x k, and its terms are (w,,a,) i=1,...k,j=n—-k+1,.

From the form ofC we deduce, thata; L bii= 1,...n—k,7= n—k+1, ...n,
ie. spanR{bl,... n_k} = spa.nR{an_kH,...an}.

We must transform the matrix W. Let x be the projection to
spanR{i)l, .. .I;n_k}l, we define v; = x(w;) i = n—k+1,...n, then (w;, a;) =
(vi,a;) 1=1,...k,j=n—-k+1,...n. The vectors v; i = 1,...k form a
basis of {51, .. .Bn_k}L. We can represent vectors @; in the basis {vy,... v},
then P = VT . A, where V = (v1...v%), Ay = (Gn-kt1-.-8r). We see,
that det P = detV -det Ay #0. ®

The subspace L = (B + Ai)Lo C T*R™* is Lagrangian because the
matrix BT A is symmetric. It is transversal to the fibres of the bundle, then
from 2.1.2. we have the form of the generating function for L.

The matrix B = (

PROPOSITION 2.2.2. The generating function § for the Lagrangian sub-
space L is given by the symmetrzc matriz AB~! and has the following form

o letinn, 1= (1) ewoe

Proof. We have
L={(p,g):p=AX, §=BX, X € Lo}.

We calculate, that
I I
. Al ...
A 0 ) Ty Tn

[P1s-- Py Prt1s- - -Pn+k]T = ( 0 E

zn+l (l:n+1

Tntk Tntk
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I K

B w z
oGy ALy ey A T:( ) n = x ;
lq1,---qn, M1 ] wTA 0 Tnt1 WTA(..I.)

ITn
Z Tntl
where A =B| ... | + W A I
In Tntk

We obtain the subspace L from L in the following way

H'z’n{pn+l=~--=pn+k=0}’_’lf’
I ((p1s- - -Pns0y--.0),(q1y - - -Gy ALy - - Ak)) = (P1s -+ Prs @1y -« - Q)

Tntk

We see, that in our case [pnt1,---Pntk) = [Tnt1s-- - Tntk)-
From 2.1.2. we know, that the function § generates the Lagrangian sub-
space L C T*R™t% ie.

ds  _ - .
E(q) =P, P=(P1s--PrrPrtls-- -Prtk) s

i=1q1,--@n, A1y Angi] T
We write this formula in the following form

as ) a5 .
b?(q”\)—l’i t=1,...m, E(q,)\)—pnﬂ‘ j=1,...k.

We obtain L from L by the symplectic reduction, i.e.
H:iﬂ{an = ---=pn+k:0}HL1

thus g—/\sj(q,/\) =0,7 =1,...k. We see, that the function S generates the
following subspace

0S a5
— N, k _ =
= {(p,q) € T*R™:3X € R¥, 3/\( q,A) = —aq(q,A) p}. =

Remark 2.2.3. The generating function for the Lagrangian subspace
has the following form S(g,A) = f(q) + X, - gi(g), where f(q) is the
quadratic function and g;(q) are linear functions (see. {2]).

From the form of matrices A and B, we see that the symmetric matrix
AB~! has the block form, and the block corresponding to the products
Aidj, 1,7 = 1,...k equals 0, therefore the generating function S(gq, ) =

l(g,\)AB™! (K) is the linear function of A.
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3. Generating families for isotropic subspaces in R?"

In analogous way as for the Lagrangian submanifolds, to each germ of
an immersed isotropic submanifold (7,0) C T*R" there exists a germ of
I-Morse family

S:(R"xR'xR*0)—-R
such, that (1,0) may be written in the form

I= {(p,q) € T*R":

as S
k — .
nert, Zon=p Taon=Taon=of

" dq
(see [5]).

3.1. Generic case

Let I be an isotropic subspace of T*R™ such, that dim7 = n — [, and
the projection of I to the base of the bundle has the maximal dimension,
i.e. I is in the generic position.

Any isotropic subspace can be included into a Lagrangian one (see [5],
(10]).

If the subspace I is in generic position, then we can find the Lagrangian
subspace L such, that I is included into L, and L is transversal to the fibres
of T*R™. We may use results from 2.1 and add the conditions which allow
us to obtain I from L, i.e. %(q,o, A)=0

We can obtain I from Iy = spa.nR{aiql T '} in a way I = DI,
where D € U(n), D = B + zA a.nd B is nonsingular. The subspace I is
included into Ly = spang{z- 3 — which is transversal to the fibres.
The Lagrangian subspace L o%ta.megi from Ly by action of the matrix D,
i.e. L = DLy is transversal to the fibres too.

We illustrate our construction on the diagram

R L 2% 1 ¢ TR* I R®
N n
R* ~ Ly 24 [ ¢ TR* % R"

From 2.1. we know, that the generating function for L has the form
F(q) = %qTAB‘lq where D = B + tA. The generating function for I must
be represented by a matrix of dimension (n+1) X (n +!). We must formulate
the condition which allow us to obtain I from L.

L={pq:[m,-. .p,,]T = Alzy,.. .zn]T, (a1, -- q,,]T = B[zq,.. .:cn]T},
I= {(p’ q) : [pl" ")pﬂ]T = A[l‘], ~Tn-1,0 O]T
[th,---,Qn] —B[zl’ 1y Tn- 17 ). O]T}
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where z;,¢ = 1,...n, are coordinates of Iy or Lo. The matrix B is nonsingu-
lar, thus B~Yq,...qn]T = [21,...2n-1,0,...0)T. The matrix B~! consists

of two blocks B~! = (Cl
Cy

C, dimension ! x n. The equation above decomposes:

+(2)-(2) = ()-(0)

The matrix C transforms I into Ip. The condition C2q = 0 consists
of [ equations, and corresponds to the relations g—g-(q,o,/\) = 0 from the
definition of generating families for an isotropic germ.

, where C; has the dimension (n — ) x n and

ProrosiTION 3.1.1. The generating function for an isotropic subspace
in T*R"™ in a generic position to the fibres of the bundle has the following
form

5(q,8) = %[q,ﬂ]M[q,ﬂ]T where S:R*xR' - R

M- (AB‘1 C{)'

and

C, 0
Proof. We have

_ r_(AB™Y CTY(a\_(AB'¢\ _(p
45(2.0) = Mg, 0] _( C: 0 )(0)_( C2q )_<0)
g—i(q,O) =AB™'q=p, g—;(q,O) =Cy¢=0.wu
3.2. Nongeneric case
Let I be an isotropic subspace in T*R" of dimension n—1{, and we assume,
that dim7;(I) = n — I — k, where 7 is the projection to the base of the
bundle.
We can obtain I from Iy, i.e. I = DIy, D € U(n), D = B + iA.
B is singular. We can include I in a Lagrangian subspace L such, that
dimry (L) = n — k, i.e. rank(B) = n — k. Let L = DLy where Ly =
spanR{%, . %}. Then we may use results from 2.2 and write the gener-
ating family F : R*xR* — R for L in the form F(q, ) = 1{q, AAB~1{q, AT,
where A and B are matrices of dimension (n+4k)x (n+k). We know, that the
function F describes the Lagrangian subspace I € T*R™**. The subspace
L is obtained from L by the symplectic reduction II (see 2.2.).
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We illustrate our construction on the diagram

R~ I M I C T*R™ Ll § R"

N
B+ Ai

R* ~ [, =& c TR* XI5 Rn

In

C T-Rn+k I_L' Rn+k

bﬂ—*—)h:)

R™F ~ -Z/O B+ Ai

In fact I is obtained from I C L by the symplectic reduction, where
IT={j+pi=(B+A)X, X=[z1,--,Zn-1,0,...,0,Znt1,..-Tnss}-

The matrix representing the generating family for I must have the dimension
(n+k+1)x(n+k+1).

_ Using the description of the matrix B~! from 3.1, we write the matrix
B~! in the block form

where the matrices Cy, Cz, C3 have the following dimensions (n — ) x (n +
k), Il x(n+k), kx(n+k). Cy transforms I into Iy, C, gives conditions
corresponding to the equation

liM

i A) =

aﬂ(q,O, )=0

in the definition of the generating family of the isotropic germ

cz(j’\> =0.

(5 is due to the nontransversality of L including /.

PRroPOSITION 3.2.1. The generating family for the isotropic subspace in
T*R™ in nongeneric position to the fibres of the bundle has the following
form

S(a,08) = 3la ), B1M[g, ), )7

where M is the symmetric matriz having the block form

_(AB f
M_(02 0).
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Proof. The subspace I is obtained from I by the symplectic reduction,
where

I={(p4q: ¢= BX, p=AX, X =[z1,...20_1,0,...0,Zny1,. .. Tnyx]}

={(p9): p=AB'§, 0= Cag}.
From the form of I, we have the description

I'={(p,q): 3X€R* (p,0)= AB7'[g,\]", 0 = C2[g, \]"}.
We calculate
R@0=AB70 T@0=Cati i= (M),

Thus

I'={(p,q) e T°R":

a5

e R"a—s(q,r\,O) =p, 77(g,2,0) = gg(q,/\,ﬂ) =0}. =
dq A ap

4. Examples

We calculate the generating family for the isotropic subspace I in T*R?
which is not in generic position to the fibres.

Let I be 1-dimensional subspace in T*R?, and I projected to the base
of the bundle is the point (0,0). We can fix a,b € R such, that a*> + 6> =1,
and

I'={(p1,P2:91,92) € T"R?:bpy —ap; = 0, 1 = ¢z = 0},
where ¢y, ¢> are the coordinates of the base, and py, p2 of the fibres.
The subspace I is spanned by one vector

e = [q1 + ip1, @2 + ipa) = [ia,1b] € C*.

We can include I in such Lagrangian subspace L, that its projection
to the base of the bundle is 1-dimensional. This Lagrangian subspace L is
generated by two vectors a; and a3, where a; = [~b,a] € R% We choose
az such, that a; 1 a3 and |az] = 1.

Then from Proposition 2.2.2 the matrices A, B have the following form

i a 0 O N 0 -b a
A=1b 0 0), B=}|0 a b
0 0 1 1 0 O

and the matrix

Q OO
OO
S o0
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represents the generating function F for L,
F:R*xR—-R
1 i B-
F(q1,92,A) = 5[‘11,42,/\] +AB7' - [q1,q2, \)T = Aaqy + Abga.

In fact the function F describes the Lagrangian subspace L ¢ T*R3
which is transversal to the fibres of the cotangent bundle T*R?,

L ={(p1,p2, 03, 41,92, A) : p1 = @A, p2 = bX, p3 = aq; + b2}

To obtain the Lagrangian subspace L C T*R?, we intersect the subspace L
with the set {p3 = 0} and we project it to T*R?,

L={(p1,p2,01,92) : 3IA € R py =@}, py = bA, aq + bgy = 0}.

From Proposition 3.2.1 we know, that the matrix representing the gen-
erating function S : R? x R x R — R for /, has the form

_(AB' T
=" 9)

where Cy = [—b,a,0] is the second row of B~1.
We calculate, that

0 0 a -b 0
1 0 0 b
S(q1, 92,7 8) = =(q1,92, A, B) o N
2 a b 0 O A
-b a 0 O Jé,

= Aagqy — fbq1 + Abg: + Bags.

From the definition of the generating function we know, that the subspace
I is generated in the following way I = {(p,q) € T*R™:3) € R¥ such that
%(q, A,0) = p, g%(q, A0)= %(q, A,0) = 0}. We calculate, that

as a8
a ) aAvO = Aa = py, r-ym ’ v’\aO =Ab= ’
30 (¢1,92 )=Ada=p 90 (¢1,92 ) 2

as as
@(ql,qz,/\,O) =aq; — bqy =0, 5;(‘11,‘]27/\a0) =aq +bg; = 0.

We obtain the following description of the isotropic subspace I
I= {(PI,P%‘]I,(IZ) :3AeR h = aAa p2 = b’\7 QL =q2 = 0,}
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