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THE KOLMOGOROV-SINAJ THEOREM
ON GENERATORS FOR FUZZY DYNAMICAL SYSTEMS

1. Introduction

In this paper, we shall work with a fuzzy generalization of the notion
of dynamical system (X,S, P,T) from the Kolmogorov classical model of
probability theory, with so-called fuzzy dynamical systems. In the classical
case, given a probability space (X, S, P) and a measure - preserving trans-
formation T : X — X Kolmogorov and Sinaj constructed an invariant h(7T)
such that h coincides on isomorphic dynamical systems. The invariant h(T)
is called (see (4, 15]) the entropy of the dynamical system (X,S,P,T).

The notion of fuzzy dynamical system and its entropy have been intro-
duced by the second author in [5]. Fuzzy dynamical systems include the
classical systems, on the other hand enable us to study more general situa-
tions, for example Markov’s operators. The classification of fuzzy dynamical
systems is given in [6]). In the paper [8], it is shown that two isomorphic
fuzzy dynamical systems have the same entropy.

Probably one of the most important results of the theory of invariant
measures for practical purposes is the Kolmogorov-Sinaj theorem stating
that h(T) = h(T,.A), whenever A is a partition generating the given o-
algebra S. A fuzzy analogy of this theorem is proved in [7], see also [8].
The results of Piasecki (Theorem 9 in [11]), inspired us to prove the above
theorem still in another simple way.

We note that some other approaches to the problem of a fuzzy general-
ization of Kolmogorov-Sinaj’s entropy can be found, for example, in [1, 3,
12, 13, 14]. There, some other connectives have been used to define the set
operations for fuzzy sets.
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2. Basic definitions and notations

Let us recall some definitions and basic facts which will be used through-
out this note.

By a fuzzy probability space [10] we mean a triplet (X, M, m), where X
is a non-empty set, M is a fuzzy o-algebra (i.e. M C (0,1)* such that:

(i)le M, §¢M;
(ii) ifa € M, thena' :=1—-a € M;
(iii) if e, e M, n =1,2,...,

then v a, € M) and the mapping m : M — (0,00) fulfils the following
condigif);ls:

(iv) m(a Vv a’) = 1 for every a € M;

(v)if {an}52, C M such that a; £ 1 — a; (pointwisely) whenever i # j,
then m( v an) = § m(ay).

n=1 n=1
The symbols V an = sup a, and /\an : mf a,, denote the fuzzy union

and the fuzzy mtersectlon of a sequence {an}n C M, respectively, in the
sense of Zadeh [16]. Each mapping m : M — (0,00) having the proper-
ties (iv) and (v) is called in the terminology of Piasecki a fuzzy P-measure;
the system M is called a soft-fuzzy o-algebra [10]. The presented fuzzy
P-measure fulfils all properties analogous to the properties of classical prob-
ability in the crisp case [10].

A fuzzy partition (of the space (X, M,m)) is a finite collection A =
{ay,...,a,} of members of M such that m({ a;) = 1 and a; £ 1 — q;

1=1
whenever ¢ # j. K. Piasecki has formulated in [10] the Bayes formula for
these partitions. The entropy of these partitions is defined and studied by
the second author in [5, 7). We define the entropy of any fuzzy partition

A = {ay,...,a,} by Shannon’s formula:
=) F(m(a)),
i=1
where

ifz>0

—zlogz
F:{0,00)— R, F(z :{
( ) (=) 0 ifz =0.
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If A={ay,...,an}, B={b1,...,bx} are two fuzzy partitions, we define
the conditional entropy as follows:

Ho(B|A) = ZZm m(bsa;)),

i=1 j=1
where

m(g; A fi) . ‘
m(g;lfi) = { “m(fy I m(fi) >0
0 if m(f;) =0.

By a fuzzy dynamical system [5, 7] we mean a quadruple (X, M, m,U),
where (X, M, m) is a fuzzy probability space and U : M - M is an m-
preserving o-homomorphism (i.e. U(a') = 1 — U(a), U( V a,) = V U(ay)

=1

n=1

and m(U(a)) = m(a) for every a € M and any sequence {an}g2, C M).

In the set P of all fuzzy partitions of the space (X, M, m) the operation
V is defined via AV B := {a Ab; a € A, b € B}. We shall say that Bis a
refinement of A (and we write A < B) iff for every b € B there exists a € A
such that b £ a. Since A £ AV B and B £ AV B, the symbol A V B should
be read as a common refinement of A and B. We define the entropy h,, of
fuzzy dynamical system (X, M,m,U) as follows hm(U) = sup{hn(U, A);

A € P}, where h,, (U, A) = llm 1 Hm( V U'A).

Evidently, 4 A : {U(f) f € A} is a.lso a fuzzy partition. In [7] it is
proved that the above entropy has all properties analogous to the properties
of entropy in the crisp case.

(2.1) If A,BeP, AL B, then Hpy(A) £ Hnu(B).

(22) Hn(BVvC|A)= Hy(C|AV B)+ Hp,(B|A) for every A,B,C € P.

(2.3) Let A,B€ P, A< B. Then for each C € P H,,(A|C) £ Hp(BIC)
and H,(C|A) 2 Hn,(C|B).

(24) Hn(BVC|A) £ Hn(B|A)+ Hn(C|A) for each A,B,C € P.

ko
(2.5)  hn(U,A) = hp(U, V U'A) for every A € P and for every natural
1=0
number k.

(2.6) hp(U,B) £ hp(U,A)+ Hp(B|A) for every A,B € P.

3. The Kolmogorov-Sinaj theorem on generators

In this section we shall present a new proof of Kolmogorov-Sinaj’s theo-
rem on generators for fuzzy dynamical systems. The main tool is a represen-
tation of a fuzzy o-algebra M by a Boolean ¢-algebra. In [7], the theorem
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on generators was proved by means of representation of M by a Boolean o-
algebra [M] := {[f]; f € M}, where[f] = {g € M;m(fAg') = m(f'Ag) = 0}
for any f € M. Here, we shall use another type of representation. It is based
on a Piasecki construction.

Let a fuzzy probability space (X, M, m) be given. In accordance with
Piasecki [11] (see also [2]), we denote by K (M) the system of subset A C X
for which there exists a fuzzy subset a € M such that

(3.1) {a>%}CAC{a§%}.

Of course, here
{a> %}: {:ceX; a(z)>%};

{ag %} - {xeX; o(z) > %}

From the next theorem it follows that any fuzzy probability space
(X, M, m) determines a probability space in the classical sense.

analogously

3.1. THEOREM ([11]). Let a fuzzy probability space (X, M, m) be given.
K(M) is a o-algebra of subsets of the set X. The mapping P, : K(M) —
(0, 1) defined by the equality P,,(A) = m(a) for all A € K(M), where A and
a € M fulfil (3.1), is a probability measure on K (M) satisfying the condition
Pn({a=13})=0foranyae M.

3.2. Remark. Let (X,S,P) be a probability space in the sense of
classical probability theory. Put M = {x4; A € S}, where x4 is the charac-
teristic function of the set A € S. If we define the mapping m : M — (0, 1)
via m(x,) = P(A), then the triplet (X, M, m) is a fuzzy probability space.
We shall say that the system (X, M, m) is induced by the probability space
(X, S, P).It is easy to see that in this case there holds K'(M) = S. Moreover,
we have

P,(A)=m(xa) = P(A) forevery A€ K(M).

3.3. Notation. f a € M, A€ K(M)and {a >3} C AC {a 21},
then we write a ~ A.

3.4. ProposiTION. To every fuzzy partition A = {ay,...,ax} C M
there ezists a set partition A = {A,,..., A, L} C K(M) such that a; ~ A,
(i=1,...,k) and P,(L)=0.
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Proof. Choose B; € K (M) such that a; ~ B;. Since a; +a; £ 1 (i # j),
we have a;Aa; < %, hence P, (B; N Bj) = m(a; Aa;) =0 (i # 7). Put
= U(B, nBj), A,’ = B,’\L, t = 1,...,k. Then a; ~ A,‘, t = 1,...,k,
i#j
Pn(L) = 0.
Hence A = {A,..., Ak, L} satisfies all the conditions stated above.

3.5. Notation. If A = {a;,...,ax} is a fuzzy partition and A a set
partition such that A = {Ay,..., Ak, L1,..., L}, where a; ~ A; (i =
1,...,k)and Pp(Lj)=0(j=1,...,t), then we write A ~ A.

3.6. PROPOSITION. Let A,C be fuzzy partitions, A, C set partitions, A ~
A C~C. Then H,,(A) = H(A), H,(A|C) = H(A|C).

Proof. Let A = {al,...,ak}, A= {Al,...,Ak,L}, a; ~ A; (1 =
. k)y Pn(L)=0. Then

k k
H(A) =) F(Pn(A))+ F(P(L)) = Y F(m(a;)) = Hn(A).
=1 i=1

The second assertion can be proved similarly.

3.7. ProposiTiON. If A, B are fuzzy partitions and A,B set partitions
such that A~ A, B~ B, then AVB ~ AV B. Moreover, if C is such a fuzzy
partition that A < C, then there ezists a set partition C such that C ~ C
and A L C.

Proof. Let A = {ay,...,ax}, B = {b1,...,b:}, A = {4,,..., Ak, L1},
B= {Bl,...,Bn,Lg}, where a; ~ A,‘ (l = 1,...,k),bj ~ Bj (] = 1,...,n),
P (L1) = Pn(L2) = 0. Then

.AVB:{a,'/\bj; t=1,...,k, j= 1,,“’71},
AVB:{A;QBJ', t=1,...,k, j:l,,_.,n}

s((Ja)nm)u(mn(()5).
i=1 j=1
If we put L = (( U AN L) U(Lin( U B;)), then P, (L) = 0. Moreover,

a;Ab; ~ A;NB; for all 1, 5. Therefore .AVB AVB. Choose now D arbitrary
such that C~ D D= {Di,...,Ds,K},C ={c1,...,cn}. For every c; there
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exists a; such that ¢; < a;. Therefore

1 1 1] 1
D;C {Cj; 5} C {a,= 2}2{0.,' >_§}U{a.~=§}CA,~UN,~j,

where P,,(N;;)=0.PutC;=D;NA;(j=1,...,n) and
C= {Dl, ceey Dn} U {N,'j},"j U {I(}

Then A < C. Since {c; > 1} C Dj N A; C {¢; 2 3}, hence ¢; ~ C; and
therefore A ~ C.

3.8. PROPOSIT]ON. Let (Cn)32, be a sequence of fuzzy partitions such
that of U C.n) = M. Then for every fuzzy partition A

lim Hm(A|Cs) = 0.

Proof. Put C, = {4;3a € C,, : a ~ A}, S = o( Y C,.). Of course,
n=1

SC K(M).
Let us denote N = {a;34 € § : a ~ A}. Since a € C, implies that
there exists A € C,, such tha.t a ~ A, we have C, C N. Moreover, N is a

fuzzy o-algebra, so that o( U Cn) C N,i.e. M C N. Therefore N = M. Let
= {ajy,...,ax} be any fuzzy partition. Since A C N, there exist B; € S,

a;~B;,i=1,...,k. Put Ay = B, A; = leBl, Az = B3|(B1 U Bz) etc.
Thena,-rvA,-,A-GS t=1,...,k and

(U ) sz(A Zm(ai)=l.

i=1 =1

Hence A ~ A = {Ay,...,Ax} C S = of U C,). Take into account
=1

the quadruple (X,S, Py, T), where T is the 1dent1ty mapping on X. Ap-
plying Lemma 16.46 of [9] for the dynamical system (X, S, P, T), we have
nlin;(> H(AIC,)=0.

Since H.,,(A|C,) = H(A|C, ), we obtain ﬂ1im H,.(A|IC,)=0

3.9. THEOREM. Let C be a generator of fuzzy dynamical system
o0

(X, M, m,U), i.e. C be such a fuzzy partition that o( |J Cp.) = M, where
n=1

Co= \/ UC;n=1,2,.... Then hm(U) = hm(U,C).

1=0
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Proof. Since h,, (i) is the supremum, we have to prove that b, (U, A) <
hm(U,C) for every fuzzy partition A. By the preceding Proposition
lim H,,(A|C,) = 0. From (2.6) it follows the inequality
n—0o0

hm(U, A) £ hm(U,Cr) + Hm(A|Cr).
Now, by (2.5) we obtain
hm(U,Cp) = b (U,C), forn=1,2,...,

so that h, (U, A) £ hpn(U,C)+ H,.(A|C,) for n = 1,2,. ... This implies the
inequality

hm(Us A) & he(U,€) + lim Hp(AlCa) = hm(U,C),

which ends the proof.
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