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THE KOLMOGOROV-SINAJ THEOREM 
ON GENERATORS FOR FUZZY DYNAMICAL SYSTEMS 

1. Introduction 
In this paper, we shall work with a fuzzy generalization of the notion 

of dynamical system (X,S, P,T) from the Kolmogorov classical model of 
probability theory, with so-called fuzzy dynamical systems. In the classical 
case, given a probability space ( X , S , P ) and a measure - preserving trans-
formation T : X —• X Kolmogorov and Sinaj constructed an invariant h(T) 
such tha t h coincides on isomorphic dynamical systems. The invariant h(T) 
is called (see [4, 15]) the entropy of the dynamical system (X,S, P,T). 

The notion of fuzzy dynamical system and its entropy have been intro-
duced by the second author in [5]. Fuzzy dynamical systems include the 
classical systems, on the other hand enable us to study more general situa-
tions, for example Markov's operators. The classification of fuzzy dynamical 
systems is given in [6]. In the paper [8], it is shown that two isomorphic 
fuzzy dynamical systems have the same entropy. 

Probably one of the most important results of the theory of invariant 
measures for practical purposes is the Kolmogorov-Sinaj theorem stating 
that h(T) = h(T,A), whenever A is a partition generating the given o-
algebra S. A fuzzy analogy of this theorem is proved in [7], see also [8]. 
The results of Piasecki (Theorem 9 in [11]), inspired us to prove the above 
theorem still in another simple way. 

We note tha t some other approaches to the problem of a fuzzy general-
ization of Kolmogorov-Sinaj's entropy can be found, for example, in [1, 3, 
12, 13, 14]. There, some other connectives have been used to define the set 
operations for fuzzy sets. 
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2. Basic def init ions and notat ions 
Let us recall some definitions and basic facts which will be used through-

out this note. 
By a fuzzy probability space [10] we mean a triplet ( X , M , m ) , where A' 

is a non-empty set, M is a fuzzy <r-algebra (i.e. M C (0,1)A such that: 

(i) 
(ii) if a 6 M , then a' := 1 - a G M; 

(iii) if an G M, n = 1 , 2 , . . . , 
oo 

then V an £ M) and the mapping m : M —* (0,oo) fulfils the following 
n=l 

conditions: 

(iv) m(a V a ' ) = 1 for every a £ M; 
(v) if {an}^°=1 C M such that a.{ ̂  1 - aj (pointwisely) whenever i / j, 

oo oo 
then m( V an) = £ m ( a n ) . 

n = l n = 1 

The symbols \J an := s u p a n and / \ an := inf an denote the fuzzy union 
n n n n 

and the fuzzy intersection of a sequence {a n } n C M , respectively, in the 
sense of Zadeh [16]. Each mapping m : M —* (0,oo) having the proper-
ties (iv) and (v) is called in the terminology of Piasecki a fuzzy P-measure; 
the system M is called a soft-fuzzy cr-algebra [10]. The presented fuzzy 
P-measure fulfils all properties analogous to the properties of classical prob-
ability in the crisp case [10]. 

A fuzzy partition (of the space (A' ,M, m)) is a finite collection A = 
n 

{ a i , . . , , a n } of members of M such that m( V a i ) = 1 a nd a, ^ 1 - aj 
«=i 

whenever i / j. K. Piasecki has formulated in [10] the Bayes formula for 
these partitions. The entropy of these partitions is defined and studied by 
the second author in [5, 7]. We define the entropy of any fuzzy partition 
A = { a i , . . . , a n } by Shannon's formula: 

n 

i=l 

where 

ir /n ^ d p m f x log x if x > 0 
F : (0, oo) -> R, F ( x ) = i 

I 0 if x = 0. 
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If A = { a i , . . . , a n } , B = { ¿ i , . . . ,6/t} are two fuzzy partitions, we define 
the conditional entropy as follows: 

n k 
Hm(B\A) = E E m(fl») ' 

i=1 j=i 

where 

t-t-t— it Tn(fi) > 0 

0 if m ( f i ) = 0. 

By a fuzzy dynamical system [5, 7] we mean a quadruple ( X , M,m,M), 
where ( X , M, m) is a fuzzy probability space and U : M —• M is an m-

00 00 
preserving cr-homomorphism (i.e. U(a') = 1 —U(a),H( V an) = V U{an) 

n = l n = l 
and m(U(a)) = m(a) for every a 6 M and any sequence { a n } ^ . ! C M). 

In the set V of all fuzzy partitions of the space ( X , M, m) the operation 
V is defined via A V B := {a A 6; a G A, b € B}. We shall say that B is a 
refinement of A (and we write A ^ B) iff for every 6 G B there exists a £ A 
such that b ^ a. Since A^ A V B and B ^ A V B, the symbol .4 V B should 
be read as a common refinement of A and B. We define the entropy hm of 
fuzzy dynamical system ( X , M,m,M) as follows: hm(U) = sup{/im(ZV,.4); 

AeV},where hm(U,A)= lim i H m { \ l WA). 
¿=0 

Evidently, UA {£/(/); / € A) is also a fuzzy partition. In [7] it is 
proved that the above entropy has all properties analogous to the properties 
of entropy in the crisp case. 
(2.1) UA,BeV, A ^ B , then Hm{A) ^ Hm{B). 
(2 .2) Hm{B V C\A) = Hm(C\A V B) + Hm(B\A) for every A,B,C € V. 
(2.3) Let A,B eV,A ^ B. Then for each C 6 V Hm(A\C) ^ # m ( £ | i : ) 

and tfm(C|>i) ^ Hm{C\B). 
(2.4) # m ( £ VC|.4) ^ Hm{B\A) + Hm(C\A) for each A,B,C € P . 

k 
(2.5) "•m 

> V for every A ^ T * and for every natural 
1=0 

number (2.6) /im(ZV,S) ^ />m(W,^) + for every A,BeV. 

3. T h e Kolmogorov-S inaj t h e o r e m on generators 
In this section we shall present a new proof of Kolmogorov-Sinaj's theo-

rem on generators for fuzzy dynamical systems. The main tool is a represen-
tation of a fuzzy <r-algebra Ai by a Boolean cr-algebra. In [7], the theorem 
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on generators was proved by means of representation of M by a Boolean a-
algebra [M] := {[/]; / G M), where [/] = { S 6 M ; m{fAg') = m{f'Ag) = 0} 
for any / G M. Here, we shall use another type of representation. It is based 
on a Piasecki construction. 

Let a fuzzy probability space ( X , M , m ) be given. In accordance with 
Piasecki [11] (see also [2]), we denote by K(M) the system of subset A C X 
for which there exists a fuzzy subset a G M such that 

(3.1) { a > i } c 4 c { « S l } . 

Of course, here 

{a > = e X; a(x) > i j ; 

analogously 

{ a = { * € * ; 

From the next theorem it follows that any fuzzy probability space 
(X, M, m) determines a probability space in the classical sense. 

3 .1 . T H E O R E M ( [ 1 1 ] ) . Let a fuzzy probability space (X,M,m) be given. 
K(M) is a a-algebra of subsets of the set X. The mapping Pm : K(M) —> 
(0,1) defined by the equality Pm(A) = m(a) for all A G K(M), where A and 
a £ M fulfil ( 3 . 1 ) , is a probability measure on K(M) satisfying the condition 
Pm({a = i } ) = 0 for any a € M. 

3.2 . R e m a r k . Let ( X , S , P ) be a probability space in the sense of 
classical probability theory. Put M = {X/i! A G where \A is the charac-
teristic function of the set A G S. If we define the mapping m : M —• (0,1) 
via m(xa) = P{A), then the triplet ( X , M , m ) is a fuzzy probability space. 
We shall say that the system ( X , M , m ) is induced by the probability space 
(X , S, P). It is easy to see that in this case there holds K(M) = <S. Moreover, 
we have 

Pm(A) = m{X,0 = P(A) for every A G A'(M). 

3 .3 . Notat ion. If a G M, A G K(M) and {a > i } C A C {a ^ 
then we write a ~ A. 

3 .4 . P R O P O S I T I O N . TO every fuzzy partition A = { a i , . . . , a j t } C M 
there exists a set partition A = , . . . , Ak, L} C K{M) such that a, ~ A, 
(» = !,...,*) and Pm(L) = 0. 
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Proof . Choose € K(M) such that a, ~ B¿. Since â  + aj ^ 1 ( i ^ j) , 
we have a, A aj ^ hence Pm(Bi D Bj) = m(a, A a.j) = 0 (i ^ j). Put 
L = {J(Bi n Bj), A{ = i = 1 , . . . , * . Then a{ ~ A{, i = 1 , . . ,,k, 

Pm(L) = 0. 
Hence A = {j4i, . . . , Ak, L} satisfies all the conditions stated above. 

3.5. Notation. If A = {a i , . . . ,a j t } is a fuzzy partition and A a set 
partition such that A = {A\,..., Ak, ..., Lt}, where a; ~ Ai (i = 
1 , . . ., k) and Pm(Lj) = 0 (j = 1 , . . . , t), then we write A ~ A. 

3 . 6 . P R O P O S I T I O N . LetA,C be fuzzy partitions, A, C set partitions, A ~ 
A, C ~ C. Then Hm(A) = H (A), Hm{A\C) = tf(A|<C). 

Proof. Let A = { a i , . . .,ajt}, A = { A i , . . . , Ak, L}, ai ~ Ai (i = 
P m ( I ) = 0. Then 

* fc 
H (A) = £ F(Pm(Ai)) + F(P(L)) = £ F(m(0i)) = Hm(A). 

The second assertion can be proved similarly. 

3 . 7 . P R O P O S I T I O N . If A,B are fuzzy partitions and A, B set partitions 
such that A ~ A, B ~ B, then AV B ~ A V B. Moreover, if C is such a fuzzy 
partition that A ^ C, then there exists a set partition C such that C ~ C 
and A ^ C. 

Proof. Let A = {au...,ak}, B = {bi,...,bn}, A = {Ai,..., Ak, Li}, 
B = . ..,Bn,L2}, where a, ~ A{ (i = 1 ,...,k), bj ~ Bj ( j = l,...,n), 
PmiLr) = Pm(L2) = 0. Then 

A y B = {a, A bj; i = 1 , . . . , k, j = 1 , . . . , n), 
AVB = {AiflBj, i = l , . . . , k , j = l , . . . , n j 

k n 
u ( ( U ^ ) n l 2 ) u ( I i n ( U ^ ) ) -

:=1 j=1 

k n 
If we put L = (( (J .A,-) n L2) U (£I n ( U Bj)), then Pm(L) = 0. Moreover, 

.=i j=i 
a, Abj ~ AiC\Bj for all i,j. Therefore AvB ~ AVB. Choose now D arbitrary 
such that C ~ D, D = {£>1,.. .,Dn, K}, C = { c i , . . . , c n } . For every Cj there 
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exists a, such that Cj ^ a,. Therefore 

D} c [ C j Z C { a , £ = { a , > ] } U { a , = 1 } C * U tfy, 

where Pm(7V tJ) = 0. Put Cj = Dj D A, { j = 1 , . . . , n) and 

C = {D1,...,Dn} U i N i j h j U { K } . 

Then A ^ C. Since { c j > C Dj fl Ai C {cj ^ j } , hence Cj ~ Cj and 
therefore A ~ C. 

3 . 8 . P ROPOSIT ION . Z e i ( { J , , ) ^ be a sequence of fuzzy partitions such 
oo 

that ff( (J C n ) = M . Then for every fuzzy partition A 
n= 1 

l im Hm(A\Cn) = 0. 
n—<-oo 

oo 

P r o o f . Put Cn = {A;3a e Cn : a ~ A}, S = (J Cn)- Of course, 

S C K { M ) . 

Let us denote N = {a;3A € $ : a ~ A}. Since a 6 Cn implies that 
there exists A € Cn such that a ~ A, we have Cn C N. Moreover, TV is a 

oo 
fuzzy <7-algebra, so that <r( |J Cn) C N, i.e. M C N. Therefore N = M. Let 

n=l 
A = { a j , . . .,ak) be any fuzzy partition. Since A C N, there exist 5, € S, 
a, ~ Bi, i = 1 Put Ax = Bu A2 = B2IBu A3 = fl3|(£i U B2) etc. 
Then ai ~ Ai, Ai 6 S , i = 1 . , k and 

k k k 

Pm ( ( J A,) = £ Pm(Ai) = £ m(ai) = 1. 1=1 i—i ¿=i 
oo 

Hence A ~ A = { y l i , . . . , Ak} C S = <r( (J C i ) - Take into account 
n=l 

the quadruple (X,S,Pm,T), where T is the identity mapping on X. Ap-
plying Lemma 16.46 of [9] for the dynamical system ( X , S , P m , T ) , we have 
lim tf(A|C„) = 0. n—»oo 

Since Hm(A\C„) = # ( A | C „ ) , we obtain lim Hm(A\Cn) = 0. 
n—»oo 

3 . 9 . T H E O R E M . Let C be a generator of fuzzy dynamical system 
oo 

( X , M,m,U), i.e. C be such a fuzzy partition that a( (J Cn) = M , where 

n=l 

Cn = V n = 1 , 2 , . . . . Then hm{U) = hm(U,C)-
1=0 
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P r o o f . Since hm{U) is the supremum, we have to prove that hm(U,A) ^ 
hm(U,C) f ° r every fuzzy partition A. By the preceding Proposition 
lim /7m(.4|Cn) = 0. From (2.6) it follows the inequality 

n—• oo 

hm(U,A) Ï hm(H,Cn) + nm(A\cn). 

Now, by (2.5) we obtain 

hm{U,Cn) = hm(U,C), for n = 1 , 2 , . . . , 

so that hm(Li,A) ^ hm(lf,C) + Hm(A\Cn) for n = 1 , 2 , — This implies the 
inequality 

hm(lt,A)ihm(U,C)+ l im Hm(A\Cn) = hm(U,C), n—»oo 

which ends the proof. 
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