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1. Introduction 
The authors of the paper [6] have classified all the connected, complete 

and simply connected Riemannian manifolds ( M , g ) for dim M = 3,4, which 
admit a non-trivial homogeneous structure T of class To. 

I shall generalize the results of the paper [6] to the five-dimensional 
case, i.e., for dim M = 5. Because the solution to this problem is very large 
I present here separately the essential and independent part (F) of this 
solution, see the last formula (xvi). 

I have come to the conclusion that it is necessary to summarize here 
the basic facts about the Riemannian manifolds (M,g) admitting a homo-
geneous structure T of class Ti in the sense of F. Tricerri and L. Vanhecke 
and the classification method presented in the paper [6]. 

Ambrose and Singer [1] have proved a theorem that a connected, com-
plete and simply connected Riemannian manifold (M,g) is homogeneous 
(i.e. it admits a transitive group G of isometries) if and only if there exists 
a tensor field T of type (1,2) such that 

' (i) g(TxY,Z) + g(Y,TxZ) = 0, 
( A S ) (ii) (VXR)YZ = [Tx,RYZ)-RTXYZ-RYTXZ, 

. ( i n ) ( V X T ) Y = [ T X , T y ] - T T x Y , f o r all X , 7 , Z € X(M). 

Here V and R denote the Levi-Civita connection and the Riemannian tensor 
field, respectively. A tensor field T satisfying the conditions (AS) on M is 
called a homogeneous structure on ( M , g ) . 

In [10] F. Tricerri and L. Vanhecke studied the decomposition of the 
space of all the (algebraic) tensors T satisfying the condition (AS) (i) in 
the irreducible components under the action of orthogonal group. In this 
way they found three irreducible classes of possible homogeneous structure 
denoted by TUT2,T3. 
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In ([10], ppl7, 49, 56) the following theorems were proved: 
Each connected, complete, simply connected Riemannian manifold 

(M,g) satisfying the conditions (AS) is reductive homogeneous Rieman-
nian manifold of the form (M,g) = G/H with respect to the decomposition 
g = m ® I) of the Lie algebra p of G, where G is a group of isometries of 
( M , g ) , and A d c ( # ) m C m. If the connected Riemannian manifold ( M , g ) 
admits a non-trivial homogeneous structure T of class 7\, then ( M , g ) is a 
space of constant curvature. 

A connected, complete, simply connected Riemannian manifold ( M , g ) 
admits a homogeneous structure of class T3 if and only if it is naturally 
reductive homogeneous Riemannian manifold. 

The following definition is equivalent to that following ([10], p. 38): 

D E F I N I T I O N . A homogeneous structure D on a Riemannian manifold 
( M , g ) is said to be of class Ti if the following two identities hold: 

(iv) © g(DxY, Z) = 0, ( 6 is a cyclic sum), 

n 
(V) Y , S ( X > D < > e ^ = °> 

1 = 1 

for any tangent vectors X,Y,Z and any orthonormal basis { e j , . . . e n } be-
longing to TPM, p € M. 

In what follows, we shall describe our classification method ([10], pp. 
4 - 6 ) . 

Let V be the canonical connection of a reductive homogeneous Rieman-
nian manifold ( M , g ) , M = G/H and g = m ® f ) . Then the torsion tensor 
field T and the curvature tensor field R of V are parallel, and so is g, i.e., 
there are satisfied the relations: 

(vi) V T = v £ = Vff = 0. 

We identify the subspace m O f l with the tangent space ToM at the 
origin o E M via the projection TT : G —• G/H. 

From thej)arallelism of T,R,g and from the supposition that the curva-
ture tensor RXY Z —• RXYZ acts as a derivation on the tensor algebra 
T ( m ) of m = TQM we have the following algebraic conditions: 

(vii) RXY-R = RXY-T = RXY-9 = 0, 

(viii) RXY = -RYX, TxY = - f Y X , 

(ix) x & z ( T ~ x Y Z - R X Y Z ) = 0, 

(x) 6 R~ Y 7 = 0, for all X, Y, Z <E m. 
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Now let D = V — V be the difference tensor field (we know already 
that D is a homogeneous structure on ( M , g ) ) . Between D,g and T there is 
satisfied the relation ([6], p. 4) 

(x i ) 2 g ( D x Y , Z) = g(TyX, Z) + g{TxZ, Y) + g(TYZ,X), X,Y,Ze X(M). 

From (xi) and ( iv) - ( v ) it follows that the homogeneous structure D on 
( M,G) of class TI can be characterized by the conditions: 

(xii) S g(TxY,Z) = 0, 
XYZ 

(xiii) Y ^ 9 { T z e i , e i ) = 0, 
¿=1 

for all X,Y,Z £ m and any orthonormal basis { e i , . . . , e „ } C m. On the 
basis of the considerations represented by the formulas (vii ) - (xiii) we get 
the following 

PROPOSITION. Let (M,g) be a connected, complete and simply connected 

Riemannian manifold admitting a non-trivial homogeneous structure D of 

the class To. Then (M,g) and D uniquely define a quadruplet (V, g,T, R), 

where V is a vector space of dimension n, g is a positive inner product and 

T ^ 0,R are tensor fields of type (1,2), (1,3), respectively such that the 

conditions (vi i )- (xii i ) are satisfied. 

Conversely, let (V,g,T,R) be a quadruplet satisfying all the conditions 
mentioned in the thesis of the above Proposition. Then we use a construction 
of K. Nomizu ([10], p. 6) to attach to this quadruplet a Lie algebra 0 and a 
subalgebra f) of p. 

Firstly, let f) be the subalgebra of the Lie algebra End (F ) spanned by 

the "curvature operations" RXY, X,Y 6 V. 

Secondly, we define 9 as the direct sum of two vector spaces: 

(xiv) fl=V0f,. 

Finally, we endowe the vector space g with the following brackets: 

' [X,Y] = (-TXY1-RXY), x,Yev, 

(xv ) [A,x] = A(X), Aet),X€V, 

[A,B] = AoB-BoA, A, Bet). 

Using the formulas (vi i )- (xi i i ) one can easily check that the Jacobi identity 
holds. Thus, g is a Lie algebra. 

Now, let G be the simply connected Lie group whose Lie algebra is p, 
and let H be the connected Lie subgroup of G corresponding to [). If H C G 

is closed, then we can define the homogeneous space M = G/H. Then the 
vector space V can be identified with the tangent space TQM at the origin 
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o € M via the projection ir : G —• G/H. G/H is reductive with respect to 
the decomposition g = V ® f), because [f), V] C V and H is connected. 

From the conditions (vi) and (xv) it follows immediately that the canon-
ical connection V of G/H has the curvature tensor and the torsion tensor 
at the origin o € M = G/H equal to the prescribed R and T, respectively. 
The inner product g on V yields on G/H a G-invariant Riemannian metrics, 
and thus G/H is a homogeneous Riemannian manifold. 

The conditions (xii)-(xiii) mean that the homogeneous structure D = 
V — V is of class TV Thus, we have proved the inverse Proposition. 

Because we shall work in the sequel with the canonical connection V of 
a homogeneous space G/H and not with the Levi-Civita connection V, we 
shall always write simply T,R instead of T, R in the quadruplet ( V , g , T , R ) . 

Now, as in the paper ([6], Propositions 1.3, 3.1) we consider a quadruplet 
(V,g,T,R), dimV = 5. 

Let us denote by t = {A 6 End(V) : A • g = A • T = 0}. Here, all A 6 t 
acting as a derivation on the tensor algebra T(V) are skew-symmetric, and 
all the curvature transformations RXY, X,Y £V, must belong to t. 

We must consider the following possibilities: 

' (¿4) V is t-irreducible. 
( B ) There is a 4-dimensional t-irreducible subspace of V. 

(C ) There is a 3-dimensional t-irreducible subspace of V. 
(D) There are two 2-dimensional t-irreducible subspaces 

Span(ei ,e2), Span(e3,e.i) C V and t acts trivially on 
Span(e5) C V. 

(E ) There is one 2-dimensional t-irreducible subspace 
Span(ej ,e2) C V, and t acts trivially on 
Span(e 3 , e 4 , e 5 ) C V. 

(F) t = {0}, and hence R = 0. 

If the subspace W C V, dim W = 2 ,3 ,4 , is t-irreducible, then its orthogo-
nal complement WL with respect to the scalar product g is still t-invariant. 
In what follows we shall consider in this paper the cases (F) and (C). It 
is necessary to underline that to the case (F) there are also reduced some 
special subcases of (C) and (D) ( see the subcase (C2) in [6], pp. 14, 17). 

In the second section the author will carry out a classification of five-
dimensional Lie algebras p = (F, T) of class T2, finding five classes of the Lie 
algebras (V, T) containing the real parameters. This is a generalization of 

(xvi) < 
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Proposition 3.6, [6] for five-dimensional case. In the third section the author 
shall determine the Lie algebras of derivations of the five-dimensional Lie 
algebras (V, T) found above. This is a generalization of the algebraic"part" 
of Proposition 3.7, [6] on the five-dimensional Lie algebras (V,T). In the 
fourth section we shall present an application of the results obtained in the 
previous section. 

2. Classification of five-dimensional Lie-algebras of class Ti 
We consider a triplet ( V , T , g ) satisfying the following five conditions: 

(1) (V,T) is a five-dimensional Lie algebra with the Lie multiplication 
defined by the structure tensor T(x, y) fulfilling the Jacobi identity, 

(2) [x,y] = T(x,y),ioTX,yeV, 
(3) g is an inner positive defined product on V, 
(4) & sr([ar, j/], z) = 0, for x, y, z € V, (& is a cyclic sum), 

for any orthonormal basis {«1,62,63,64,65} of V. 
In the sequel we shall denote the Lie algebra (V,T) shortly by g. 
The conditions (4) and (5) have exactly the same meaning as the con-

ditions (6) and (7), respectively, in the paper [6], hence the Lie algebra 0 is 
unimodular ([8], p. 318). 

The considerations from ([6], p.18) can be generalized and thus we have 
the following 

L E M M A 1 . If a finite dimensional Lie algebra G has provided with a posi-
tive defined inner product g, and if there are satisfied the conditions (1 )-(5), 
then the following relations are true: 

' (a) for any ideal t) of g the orthogonal complement f)1 is 
a subalgebra of g; 

(6) if z € f)x, then adz is symmetric on I); 
(c) for the ideal fj C g the conditions (4)-(5) are satisfied, where 

the condition (4) is satisfied for every subalgebra f) C 
0 = f ) © f ) \ {a direct sum of vector subspaces). 

Basing on the formulas (l)-(5) and using the notations: 

XYZ 
5 

(5) e¿) = 0, for z G V, 
i=i 

5 
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(8) 

after detailed calculations we obtain the following forms of the Lie brackets 
of sought Lie algebra g which are characteristic for every orthonormal basis 
{ e i , . . . , e 5 } on p: 

' [ e i , e 2 ] = t\2e i + t2
ne2 + t\2ez + t\2e4 -M? 2 e 5 , 

[ei,e3] = ii3Cl + <13̂ 2 + t\3e3 + «1364 + *13e5, 

[ei,e4] = t\4e\ + t\4e2 + i?4e3 + t\4e4 + <f4e5 , 

[ei ,e5] = t\5ex + t\se2 + t? se3 + <ise4 + ( - i ? 2 - ¿13 ~ *U)es, 

[e2 ,e3] = («13 - i?2) e i + <23e2 + <23e3 -M 2 3 e 4 + ts
23es, 

[e2 ,e4] = (t2
u - t\2)ex + t\4e2 + t\4ez + t\4e4 + t\4es, 

[e2 ,e5] = (t2
5 - <J2)ei + t2

2Se2 + ^ 5 e 3 + t\be4 + (t\2 - t3
23 - t\A)eh, 

[e3 ,e4] = (t3
u - «i3)ci + ( i f4 - i 2 3 )e 2 + ^ 4 e 3 + 44e4 + 

[e3 ,e5] = (t?5 - i f 3 ) e j + (t3
25 - t\3)e2 + t3

35e3 + t4
3Se4 + 

(<}3 + <23 - <34)e5> 

h,e5] = (<i5 - t\4 ) e l + (<25 - <24^2 + (<35 " <34^3 + 

(-tl-t2
25 -tl5)e4 + (t\4+tl4 + tl4)e5. 

In the formulas (8) there are 35 essential parameters t w h i c h must sat-
isfy the 10 Jacobi identities. Hence, a further investigation of the Lie algebra 
g immediately by the aid of the structure constants t i s very complicated. 
Also, we shall determine the corresponding Lie group G. 

From (8) it follows immediately that t r ( a d e J = 0, i = 1 , . . . , 5 , hence 
the Lie algebra p is unimodular, as expected. 

If all i f j = 0, then g — R5. Thus in the sequel we shall suppose that not 
all < a r e equal to zero. 

In order to simplify the further detailed calculations we shall describe 
some facts of the algebraic nature, [7]. 

It is well known that changing the basis of the Lie algebra g in the 
following way (we adopt the Einstein's summation convention): 

(9) et, = 4 e i t A=[A\,}, det(A) / 0, i = 1 , . . . , n, i' = l ' , . . . , n \ 

then the structure constants defined by the change of the basis are trans-
formed according to the formula 

(10) t$j, = A\.Ai,A$'ttj, i,j,k= 1 , . . ., n, i', j\k' = l ' , . . . , n' , 

where At = A-

The structure constants are skew-symmetric: t = —t1-¿, and must satisfy 
the conditions (4)-(5), see for n = 5 the right hand side of the formula (8). 
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By the aid of the formula (7) an endomorphism p —• g' is defined (also 
for an arbitrary n), where p' = [0,5] is a derived Lie algebra. 

From (9) we receive easily an endomorphism p —• g' of the form 

(11) [ei.,ejl] = 2A\! AjJ [e.-.e,], 

where i < j, i' < j', i,j = l , . . . , n , i',j' = l ' , . . . , n ' , and P = (i,j), P' = 
( i j ' ) are ordered in the lexicographic order of the magnitude of pairs 
(*i j ) , (* '> / ) . respectively. 

The sets {[e,-, e^J, i < j}, and {[e^, e^»], i' < j'} of the fundamental Lie 
brackets of the Lie algebra p constitute separately the sets of generators of 
the derived Lie algebra p'. 

Thus is true the following lemma 

L E M M A 2. From (7)—(11), and ([7], pp. 7, 11) we have the following 
relations 

(a) forD=[D£,(A)] = [2A$A$], P = 1,.. .,{*), 

det(D) = [det(A)]'1-1 # 0 , P' = 1 ' , . . . , (»)'; 
(12) {b) dim p' is invariant under the change of the basis on p; 

(c) dim p' = rank(C), where C is in general a matrix of the 
coefficients of the decomposition of the [c,, ej] for an 
arbitrary n, analogously as for n = 5 m (8). 

In the sequel we shall apply Lemma 2 for n = 5 to the considerations 
and calculations. 

Because dim p = 5, then it follows from ([2], §§ 4, 5) that the sought Lie 
algebra p is not simple.. Thus, we must consider the following cases: 

(I) There is a 4-dimensional ideal f) C p; 
(II) There is a 3-dimensional ideal f) C p; 
(III) There is a 2-dimensional ideal f) C p; 
(IV) There is a 1-dimensional ideal f) C p. 

(13) 

In what follows we shall consider the above cases (i)-(iv) step by step. 
We shall consider only the orthonormal basis {ei,e2,e3,e4,es} C p. 

We shall prove the following 

T H E O R E M 1. If g is a five-dimensional non-abelian Lie algebra provided 
with an inner scalar product such that there are fulfilled the conditions (1)-
5), then the Lie algebra p, and its corresponding Lie group G have one of 
he following forms: 

a) g = sl(2,R)($R2, G = SL(2, R)x R2; 
b) p = e ( l , l ) ® r t 2 , G = E(l,l)xR2; 
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c) g = R3QR2 with the multiplication table: 

[ei,e4] = a ie i , i = 1,2,3, a , # 0, a x + a 2 + a 3 = 0, 
[eiiek] = 0 otherwise, 
G = Go x R, where 

(14) 
G = 

•eait 0 0 x' 
0 eQ2f 0 y 
0 0 ea3t z 

. 0 0 0 1. 

, (x,yyz,t) £ R4{x,y,z,t) 

see ([5], p. 10); 

d) g = R3($)R2 with the multiplication table: 

[ei,c4] = a e i , [e2,e4] = /?e2, [e3, e4] = - ( a +/3) e3 , 
[C2,C5] = 7«2, [«3,«5] = -7^3 , 7 / 0> jd-arbitrary, 
[ei,ej] = 0 otherwise; 

G = 
ePu+-yv q y 

0 e-(a+P)u--yv z 

0 0 1J 

(x,y,z,u,v) 6 
Rs(x,y,z,u, v) 

0 
0 

L 0 
see ([5], p. 10, type 9)); 

e) g = R4Q)R with the multiplication table: 
[ei,es] = aid, i = 1 , 2 , 3 , 4 a , / 0, a a + a 2 + a 3 + a 4 = 0, 
[ej,efc] = 0 otherwise, 

~eait 0 0 0 X ' 
0 eor2t 0 0 y 
0 0 ea3t 0 z 
0 0 0 eOT4t u 

. 0 0 0 0 1. 

G = 

see ([5], p. 6, type 2)). 

(x,y,z,u,t) € 
R5(x,y,z,u,t) 

In the subcases a), b) we have to deal with the orthogonal direct sum of 
two ideals, and in the subcase c), d), e) — with the orthogonal semidirect 
sum of two abelian ideals of the Lie algebra. 

The Lie groups Go, and G are isomorphic to the Lie groups of inner 
automotorphisms corresponding to the suitable Lie algebras whose adjoint 
representations are faithful. 

P r o o f in the case (I). We shall receive all the results (14)a - (14)e. Let 
{e i , e 2 , e 3 , e 4 , e5} be an orthonormal basis of p = b®! ) 1 » ( a direct sum of 
two vector subspaces) such that f) = Span(ei, e2 , e3 , e4), and f)-1- = Span(es). 
Because the ideal f) fulfills the condition (6)c, hence from ([6], Proposition 
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(15) 

3.6), and (I) in (13) we get the following four subcases for f): 

la) t) = sl(2, R) 0 i 2 , (an orthogonal direct sum of two ideals), 
where for s l (2 ,R) : [ei,e2] = A3e3, [e2,e3] = Axei, 

[e3,ei] = A2e2, Al5A2 > 0, 
A3 = - A i — A2; 

76) f) = e ( l , 1) 0 i 2 , (an orthogonal direct sum of two ideals), 
where for e ( l , 1): [ci,c2] = 0, [e2,e3] = Aei, 

[e3 ,ei] = -Ae 2 , A ^ 0; 
7c) f) = R3Q)R, (an orhogonal semidirect sum of two 

abelian ideals); 
I d ) f j = R4. 

In the subcase Ic) one can choose an orthonormal basis {ej,62,^3,64} 
of {) such that R3 = Span(ei ,e 2 ,e 3 ) , R = Span(e4), and [ e , ^ ] = «¿e,-, 
i = 1,2,3, c*i + a 2 + a 3 = 0, where not all a , are equal to zero. If one of 
the coefficients a* is equal to zero, then the subcase Ic) is reduced to the 
subcase lb). Hence, we suppose for the future in the subcase Ic) that all 
a i / 0, i = 1,2,3. 

In the first subcase (15)/a we receive the result (14)a. 
From (8) it follows that the sought Lie algebra g has the following Lie 

brackets: 

[ei,e2] = A3e3, [e2,e3] = Aiei,[e3 ,ei] = A2e2, 

[ei,e4] = [c2,c4] = [e3,e4] = 0, 

[eue5] = i}5ex + tjse2 + t3
ise3 + *}5e4, 

[e2,e5] = t\he 1 + t]5e2 + + t\5e 4 , 

[e3,e5] = t3
sei + *25e2 + ^ s e 3 + ^ s e 4 , 

[e4,e5] = t\be 1 + t\he2 + t$5e3 + t\5e4 + { - t \ s - - t ^ ) e 4 . 

Now, substituting the Lie brackets (16) into the Jacobi identity we get 
that all t^j = 0, hence we have received the result (14)a. 

In the second subcase (15)76 we shall obtain the results (14)6,(14)d. 
In the subcase 76 we receive the Lie brackets of the form (16) with 

A3 = 0,A2 = - A j = —A / 0. Using first the Jacobi identity and next 
introducing a new orthonormal basis of the form: 

(16) 

(17) 
ei = \{ei + e2), e'2 = i (ex - e2) , e\ = e4 , 
e 3 = + t*es), e's = ¿ ( - / x e 3 + Ae s) , 

where a = y/\2 + /i2 ¿ 0, /i = <ls+*i5, 
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then the brackets (16) transform into the following ones (we omit the 
prime /) 

[ei,e3] = a e i , [e2, e3] = (3e2, [e4, e3] = - ( a + 0)e4, 

(18) ; [e2,e5] = Ae2, [e4,e5] = - A e 4 , [ei5e_,] = 0 otherwise, 

where 0 = + " " , 7 = A ( / i + . 
q a 

The sought Lie algebra 0 has the form p = Span(ei, e2, e4)0Span(e3, es) = 
R3Q>R2. 

From Lemma 2 and (18) we get the inequality 

(19) 2 < d i m p ' < 3 . 

If d imp' = 2, then 7 = 0, and /? = - a . Hence, the Lie algebra p repre-
sented by the Lie brackets (18) is of type (14)b. 

If dim p' = 3, then 7 ^ 0 . Using the matrix representation of ade_, 
i = 1 ,2 ,3 ,4 ,5 , and calculating them on the basis of (18), we see that the 
adjoint representation ad: p —• adp is faithful. 

In connection with this we present here certain general information, see 
[4], Chap. II, §.5, p. 126, and next. 

The Lie group of inner automorphisms Int(p) is Lie group correspond-
ing to the Lie algebra 0, represented by formula (18). To every adek,k — 
1, 2, 3 ,4 ,5 presented in the matrix form there corresponds a vector field X^ 
as an infinitesimal linear transformation on R5(x1, x2, x3 , x4 , i 5 ) : 

s g 
(20) X * = Y , a ) x i f c 7 ' f°r [aj-] = - a d e t , * = 1 , . . . 5 . 

• .j=1 

Thus, for the Lie algebra p presented by (18) we receive the following vector 
fields respectively 

Xl = -au-jL, X2 = (-au-1v)± 

(21) 
9
 3 9 , .. d 

X * = a x t e + i 3 v T y - { a + ii)zd-z> 
d d d 

X , = [(a + 0)u + 7 „ ] _ , = 7 y g - - 7 z T z . 

The vector fields (21) are dependent, but linearly independent. 
In this paper we shall use several times the method of finding the integral 

curve or orbit of a differentiable vector field X on the space Rn(x1,.. ,,xn). 
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Let be given a differentiable curve 

(<p:I—*R»(x\...,xn), I = (a , /? ) , 

I <p(t) = (x^t),. . . , x n ( t ) ) , v>(0) = i 0 = • t 6 / , 

and a differentiable vector field X on ^ " ( x 1 , . . . , xn) defined on a neigh-
bourhood U 3 xq such that 

(22) 

(23) 
d 

1=1 

The differentiable curve (22) is called an integral curve (or an orbit) of 
X if it is a solution of the following system of differential equations: 

' dx\t) 
(24) dt 

y(0) = x 0 

= X * ( x \ t ) , . . . , x n { t ) ) , i = 1 , . . . , n, 

Therefore if XXQ ^ 0, there exists an integral curve of X through xo, 
([4],p.41). 

Calculating the one-parametr groups of the inner automorphisms of the 
Lie algebra p by the method of orbits (24) successively for the vector fields 
(21), and presenting them in the matrix form as elements of the affine group 
of transformations, we shall receive by the multiplication the following form 
of the sought Lie group of the automorphisms of p: 

' eau 0 0 ax 0 " 

0 e0u+^v 0 (3y 73, 
(25) Gi = { 0 0 e - ( a W » u - 1 v ( a + /3)z 7 : 

0 0 0 1 0 
0 0 0 0 1 . 

(x,y,z,u,v) 6 

Rb(x,y,z,u,v) 

We omit here the detailed calculations. 
Thus, changing in the Lie algebra p = Span(ei,e2,e4)Q)Span(e3, = 

R3Q)R2 with the Lie brackets of the form (18) only the numeration of two 
vectors: —> e4, and e\ —• e3, we see that we have received for 0 the 
result (14)d. In what follows it suffice to prove that the Lie group G\ of 
the form (25) is isomorphic to the Lie group G of the form (14)d. For this 
purpose we introduce the following group mapping : G —* G\: 
( 2 6 ) 

eau 0 O x 
0 0 y 
0 0 e-(«+0)»-vi» z 

0 0 0 1J 

eQU 0 0 ax 0 
0 eßu+iv 0 ßy 73/ 

0 0 e - ( a + ß ) u - i v ( a + ß ) z i z 
0 0 0 1 0 
0 0 0 0 1 J 
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We shall prove the following 

LEMMA 3. The mapping ip : G —• G\ defined by the formula (26) is a 
Lie group isomorphism, i.e., there are satisfied the following two conditions 

a) if : G —• G\ is an abstract group isomorphism, 
b) ip : G —• G\ is a diffeomorphism of two differentiate manifolds. 

P r o o f . The verity of the condition a) follows immediately from the 
elementary group calculations. To prove the condition b) we shall use the 
Proposition 5.4.4 from ([2]. p.77). In order to obtain this we introduce two 
auxiliary group mappings of the additive group R5(x,y, z,u,v) into G, Gj, 
respectively: 

f ^ i :R5(x,y,z,u,v)^G, GeGL(4,R), 
( ) \<p2:R5(x,y,z,u,v)-+Gi, Gi 6 GL(5, R), 
where the submanifolds (and subgroups) G,G\ are determined by the for-
mulas (14)d, and (25). 

Analysing exactly the above mentioned Proposition 5.4.4 we see that 
there are satisfied all its assumptios by yi,v>2. Thus, our mappings <fi,<p2 

are diffeomorphisms of manifolds. From (26), and (27) we receive easily 
that if = f 2 0 V f 1 ' h e n c e <P is a diffeomorphism, and Lemma 3 is completely 
proved. Thus, we have received the result (14)d, completely. 

In the subcase (15)/c we obtain the result (14)d. 
In this subcase we receive from (6)6, and (8) the following Lie brackets: 

[eue2] = 0 , [e i ,e 3 ] = 0,[e2 ,e3] = 0, 
[cj,c4] = a t e j , i = 1,2,3, a{ ^ 0, ax + a 2 + a 3 = 0, 

> \eii es] = • • • 5 3 = 3,4, have the same forms as in (16). 
Now, using the Jacobi identity we obtain for [ej,e5], j = 1 , . . . , 4 the 

relations 
[ei,e5] = ij5ex + t\se2 + <?5e3, 

(29) l [e2,es] = ¿15^1 + t l s e 2 + 
[e3,e5] = <?5ei + t\he2 + <^e3, 
[e4,e5] = 0, <}5 + + «35 = 0. 

and additionaly are fulfilled the following three conditions 

(30) (a, - a2)t2
15 = 0 , ( a , - a3)t3

15 = 0 , ( a 2 - a3)t%5 = 0. 

Now, we introduce the following two endomorphisms 

F(e4),G(e5) : Span(ei, e2, e3) —• Span(ei ,e 2 ,e 3 ) 

defined on the basis {e i , e 2 , e 3 } C t) in the following way 

(31) F(e4)(ei) = [et-,e4], G(es)(e<) = [e„e5], ¿ = 1,2,3. 

(28) 
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(32) 

(33) 

From ( 2 7 ) - ( 3 0 ) it follows that the endomorphisms F(e4), and G(e5) are 
symmetric and commutative, hence on the basis of a suitable theorem from 
Linear Algebra there exist the orthonormal common eigen vectors { e { } C 
S p a n ( e i , e 2 , e 3 ) of F(e4), and G(e5) such that there are fulfilled the following 
relations (we omit the prime ') 

[ei,e4] = a ^ j , i = 1 , 2 , 3 , a ; ± O.c*! + a 2 + a 3 = 0, 
[ei,e5) = 0iei, i= 1 , 2 , 3 , ft + ft + ft = 0, 

[ej, ek\ = 0 otherwise. 

Taking into account the symmetry condition of the formulas (32) we shall 
change the basis of 0 in the following way 

e'j = ej, ¿ = 1 , 2 , 3 , e'4 = ¿ ( a i e 4 + ftes), 

e'5 = i ( - f a e 4 + a x e 5 ) , a = y/a\ + ft2 / 0. 

Substituting (33) into (32) we obtain after routine calculations the fol-
lowing forms of the Lie brackets (we omit the prime '): 

' [ e 1 , c 4 ] = a e 1, [e2, e4] = / ? e 2 , [e 3 ,e 4 ] = - ( a + 0)e3, 
(34) [ei ,e5] = 0, [e 2 ,e 5 ] = 7e 2 , [e 3 ,e 5 ] = ~-ye3, 

> [ei'ej] = 0 otherwise, 

where /3 = ¿ ( a n a j + ft ft), 7 = ^ ( a j f t - a 2 f t ) . 
From ( 3 2 ) - ( 3 3 ) it follows that dimp' = 3, hence the Lie brackets (34) 

represent the Lie algebra g of type (14)d, see ( 1 8 ) - ( 2 5 ) . We omit here the 
detailed calculations. 

In the subcase ( 1 5 ) I d we receive the results (14)6, c, and (14)e. 
Thus, from (8), and Lemma 1, (6)6, c it follows that the Lie algebra p has 

the following Lie brackets: 

[ei ,e5] = ai€\ + 61 e2 + cie 3 + d\e4, 
[e 2 ,e 5] = 61 e! + 62e2 + c 2e 3 + d 2 e 4 , 
[e3 ,es] = c i€i + c 2e 2 + c 3 e 3 + d3e4, 
[e 4 , c 5 ] = diei + d2e2 + d 4e 3 -(- d4e4, 
[ei,ej] = 0 otherwise, a\ + 62 + c3 + d4 = 0. 

For the symmetric endomorphism ades defined by formula (35) there 
exists a new orthonormal basis { e i , e 2 , e 3 , e 4 } C f) such that 

[e, ,e5] = A,e,, i = 1 , 2 , 3 , 4 , A! + A2 + A3 + A4 = 0, 
[ej, e/t] = 0 otherwise, + A2 + A3 + A4 ^ 0. 

On the page 407 we have supposed the noncommutativity of the sought 
Lie algebra p. 

(35) 

(36) 
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With respect to the eigenvalues Aj, A2, A 3 , A4 of ad e s we must distinquish 
three essential non-trivial possibilities. 

For Aj, A2 ^ 0, A 3 , A4 = 0 we receive the result (14)6. For Aj,A2,A3 ^ 
0,A4 = 0 we obtain the result (14)c. At last, for all Aj / 0, i = 1 ,2 ,3 ,4 we 
get result (14)e. We omit all the detailed calculations. 

The calculations and considerations presented above are characteristic 
for the next cases (II), (III), (IV). 

P r o o f in the case (II). The sought Lie algebra g, and the corresponding 
Lie group can admit all the forms (14)a-(14)e. 

Let { c i , . . . , e s } be an orthonormal basis of p such that f) = 
Span(ei ,e2,e3) , f) x = Span(e4,es). Because on the basis of the formula (6)c 
of Lemma 1 the ideal f) is an unimodular Lie algebra, then from ([6], p. 18) 
it follows that 

(37) f) = sl(2,R) or e ( l , l ) or R3. 

Supposing that the subalgebra f)x is abelian or not , and repeating the 
considerations from ([6], pp. 19-20), and also using the previous method 
represented by the formulas (16)-(25), we get in the first subcase of (37) 
the result (14)a. In the second subcase of (37) we receive the results (14)6, 
and (14)(f. In the third subcase of (37) for f)1 being abelian we receive the 
results: 0 = R5, and (14)6, (14)c, (14)d. At last, supposing that f)x is not 
abelian we receive the results:(14)6, (14)c, (14)e. 

We omit here all the detailed calculations, because they are analogical 
as in the case (I). 

P r o o f in the case (III). We get here all the results of type (14)a-(14)e 
as previously. 

Let { e i , . . . , e 5 } be an orthonormal basis fo g such that i) = Span(ei,e2), 
= Span(e3 , e4 , Supposing first that the Lie subalgebra f) is not uni-

modular ([8], p.309), i.e., for a suitable orthonormal basis {e3,e4 ,es} of f)-1-
there are fulfilled the relations 
/3 gx f [e3 ,e4] = a e 4 + / ? e 5 , [e3,e5] = + ¿e5, 

I [e4 ,e5] = 0, a + 6 = 2, 
then on the basis of (6), and (8) we shall receive the special cases of (14)6, 
(14)c, (14)d, and (14)e. 

In the second place, supposing that f j 1 is unimodular, i.e., of the type 
(37), then we obtain the results (14)a, (14)6, and special subcase of (14)e. 
We omit here all the detailed calculations. 

P r o o f in the case (IV). We get results of types (14)a - (14)e. Let 
{ c i , . . . , e s } be an orthonormal basis of p such that f) = Span(ei), f)x = 
Span(e2, e3 , g = [)© f)-1, (a direct sum of two vector subspaces). From 
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Lemma 1, and formula (8) it follows that the sought Lie algebra g has the 
following Lie brackets 

' [ e i , e i ] = i = 2 , 3 , 4 , 5 , 

[e2,e3] = t\3e 2 + <23e3 + <23e4 + <23 e5, 
[e2,e4] = t\4e2 + <24 e3 + <24̂ 4 + <24 e5, 

(39) < ^2 ' es] = + <25̂ 3 + <25̂ 4 + (<12 ~ <23 -<24^5, 
[C3.C4] = (¿24 " <23^2 + <34«4 + & e 5 , 
[C3,C5] = (<25 - <23 )®2 + <35 e3 + <35 e4 + (<13 ~ <23 ~ <34 )e5, 
[e4,Cs] = (<25 ~ < 2 4 + (<$5 ~ <34)̂ 3 + ( —<15 " <£5 " <3s)«4 + 

+(<14 +<24 + < 3 4 ^ 5 • 
Thus, from (39) it follows that there is true the following equivalence: 

(40) f)x is unimodular if and only if t\2 = <}3 = <{4 = t\s = 0. 

Now, we shall distinguish two subcases. 

A) i)1 is unimodular. 
The unimodular Lie subalgebra f)1 is an ideal of g. 
Hence, the sought Lie algebra g is an orthogonal direct sum of two ideals: 

0 = 1)® f)1? where f) = .ft, and f}x has one of the forms (15)Ia - Id. 
Applying to f)1 successively the formulas (15), and (68)-(69), after the 

elementary analysis we obtain finally the results (14)a-(14)c. Also, we get 
the trivial result g = Rs. We omit the detailed calculations. 
B) fjx is not unimodular. 

In this subcase the Lie algebra g receives one of the forms (14)6, (14)c, 
(14)e, and a particular form of (14)<f. 

On the basis of ([8], p.318) for a finite dimensional Lie algebra g is true 
the following 

L E M M A 4 . The linear mapping 

(41) tr o ad : g — > R 

is a homomophism of Lie algebras. 

Its kernel as an ideal 

(42) u = {x £ g : tr(ad(i)) = 0)} 

Df an unimodular Lie algebra of g. If dim g = n, then for g nonunimodular 
dim u = n - l . 
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In the subcase B) there is satisfied the reletion (we denote the suitable 
new orthonormal basis of g once again by {ei ,e2?e3,e 4 ,es}) : 

(43) fj = u © u , (a direct sum of vector subspaces), 

where u = S p a n ^ ^ ^ e ^ u 1 = Span(es). 
On the basis of Lemma 1,3, and formulas (42), we see that for the uni-

modular ideal u are satisfied both the conditions (4), (5), hence u can have 
one of the forms (37). Thus, the endomorphism a d e j u 1 is symmetric on u, 
and has the orthonormal eigenvectors {e'2,e'3,e'4} C u. 

We shall distinguish three subcases. 
First of all, we present some general considerations. 
Taking into account the formulas (39) and (42)-(43), then the Lie algebra 

p has the following Lie brackets: 

' [ei,Cj] = f^e i , ¿ = 2 ,3 ,4 ,5 , 
[e2 ,e3] = t]3e2 + t%3e3 + t\3eA, 

[e2 ,e4] = ¿24 e2 + ¿24 e3 + <24 e4, 

(44) [e3 ,e4] = - tj3)e2 + <^4e3 + <^4e4, 

[C2,e5] = <25e2 + <25 e3 + <25e4> 
[e3,e5] = t\be2 + <^5e3 + ^se4, 

[e4 ,e5] = <25e2 + t\be3 + (<{5 - t\h - < 3 5 ) e 4 . 

Additionally there are satisfied the following conditions: 

(45) <J2 — <23 — <24 = <13 + <23 — i34 = <14 + *24 + '34 = 0-

Because on the unimodular ideal u = Span(e2,e3 ,e4) C i)1 all the 
tr(ade ,) = 0 , i = 2 ,3 ,4 , hence from (44) it follows that 

(46) 4 + t323 = 0, < 4̂ - t\3 = 0, & + t]4 = 0. 

From (45) - (46) we receive that 

(47) <12 — <ia — <14 — 0-'13 14 

In the considered subcase B) the subalgebra f)1- is not unimodular hence 
there must be satisfied the condition: tr(ade s) = <J5 ^ 0. 

Finally, combining the formulas (44)-(47) we see that the sought Lie 
algebra @ has the following Lie brackets: 
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' [ei,e5] = Sei, 6 = i}5 / 0, 

[C2,C3] = t]3e2 + 43€3 + 

[e2,e4] = <24e2 + *24e3 - <23e4» 
[C3,e4] = (<?4 — <23)^2 +<23^4» (48) \ . , , . 
[e2,e5] = «25^2 + <25e3 + <25^4, 

[C3,C5] = *25e2 + <35 e3 + ¿35e4, 

[e 4 ,e 5] = ¿25e2 + <35^3 + ( - 6 - ¿25 - <3s)e4, 
. [ e i , e j ] = 0, j = 2 , 3 , 4 . 

We must underline t h a t the forms of the Lie brackets (48) in the con-
sidered subcase B are t rue in each or thonormal basis { e i , e 2 , e 3 , e 4 , e s } C fl 
fulfilling the formula (43). 

B\). For the subcase u = Span(e 2 , e 3 ,64) = R3 we obtain finally t h a t 
the sought Lie algebra g is of type (14)6 or (14)c or (14)e. 

5 2 ) . In this subcase u = e ( l , l ) = Span(e 2 , e 3 »e 4 ) , and on the basis of 
(48) we obtain finally the following Lie brackets 

(49) / [ e i ' e s ] = ¿e i , [e2 ,e5] = - f e 2 , [e3 ,e5] = - f e 3 , i ^ 0, 
\ [e2,e4] = Ae2, [e3 ,e4] = - A e 3 , A ^ 0, [e»,ej] = 0 otherwise. 

Thus we have 5 = R3Q)R2 = S p a n ( e i , e 2 , e 3 ) @ S p a n ( e s , e 4 ) , and this is 
a particular case of the result (14)d. 

B3). In this subcase u = al(2,.ft) = Span(e 2 , e 3 , 64 ) , and have [e<2,e3] = 
A3e4,[e3 ,e4] = Aie 2 , [e4,e 2] = A 2e 3 ,A!,A 2 > 0,A3 = - A x - A2. 

From the formula (48) we get finally a contraduction tha t 6 = 0. 
Thus, the subcase B3) is not possible. 
The proof of Theorem 1 comes to an end. 
Analysing exactly the proof of Theorem 1 we get the conclusion t h a t 

from the theoretical point of view we can restrict our considerations only to 
the case (I) in (13). 

It is t rue the following 

THEOREM 2. In each five-dimensional Lie algebra g satisfying the as-
sumptions of Theorem 1 there exists a four-dimensional ideal f) C fl. 

The proof follows immediately f rom the formulas (37), (38), (39)- (40) , 
(44). 
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3. Algebras of derivations of five-dimensional Lie algebras (V,T) 
Now, in the end, we shall determine the Lie algebra of derivations for 

five types of Lie algebras (V,T) presented by Theorem 1, see the proofs of 
Proposition 2.3, p.7, and Proposition 3.7, p.21, [6]. 

Let us calculate the Lie algebra t = {A € End(V) : A • g = A • T = 0} 
where the endomorphisms A of V acts as derivations on the tensor algebra, 
T{V). Let us put 

(50) Aei = ^ a j i e j , i = l , . . . , 5 . 
i=i 

The condition A • g = 0 means that the matrix a{j is skew symmetric, 
and the relation A T = 0 means that 

(51) A(T( e i , e ; ) ) = T{Aeue3) + T{euAej), i,j,= 1,. . . , 5 . 

The Lie algebra t is generated by the following basic endomorphisms 
Aij £ E n d ( V ) , i / j : 

(52) Aijei = ej, A^ej = -e{, Aijek = 0, i,j ^ k,i,j,k- 1 , . . . , 5 , 

where the basis {e,} C V is orthonormal. 
Now, we can formulate the following 

T H E O R E M 3. Taking into account successively the formulas (14)a-(14)e 
we receive that the sought Lie algebra t of the derivations has the following 
forms: 

{ ( = Span( A45), for Ai / A2, 
or 

t = Span(>li2, ^45), for X^ = A2; 
b) t = Span(/445); 

= for ai1
Q;2,a3 A (all different at,i = 1,2,3), 

or 
I = Span(A12), for <*i = a2,a3 

d) E={0}; 
t = {0}, £*i, a 2 , <23, a4 
or 
I = Span(Ai2), for QJ = a 2 , a 3 , a 4 

e)^ or 
t = Span(i4i2, A34), forai = a2,a3 = a4,a2 ^ a3, 
or 
( = Span(i4i2, A13, >123), for ax = a2 = a3,a4 ^ . 

(53) 
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P r o o f . The reality of Theorem 3 follows immediately from the formulas 
(50)-(53) , and (14)a-(14)e, after realizing the elementary calculations; we 
shall present here the proof only for the subcase a). 

Thus, we have to deal with the Lie algebra g = f) ® t (orthogonal di-
rekt sum of two ideals), where f) = Span(ei ,e2,e3) = sl(2R), and Cx = 
Span(e4,e5) = R2, are represented by the Lie brackets: 

,_ . f [e i ,e 2 ] = A 3 e 3 , [e2 ,e3] = A x e i , [ e 3 , e i ] = A 2 e 2 , 
\ [e,-,ej] = 0 otherwise, A i , A 2 > 0, A 3 = A i - A 2 . 

Applying the formula (51) successively to the Lie brackets [ej, e2], [cj, e3], 
[e 2 ,e 3] we obtain from (54), and (54) the following expressions: 

(55) J ~ * j ) a i j = 0, i',j = 1 ,2 ,3 , 
\ CC45 is an arbitrary parametr, a u = 0 otherwise. 

The remaining Lie brackets [ei,€j] of type (54) does not give other con-
ditions on a,j. 

From the formulas (54)-(55) we get for A i ^ A 2 , and A j = A 2 successively 
the results C = Span(j4n j), t = Span(i4j2, Ats), as expected in the subcase 
( 5 3 ) a . 

4. An application of the results of the previous sections 
We shall apply the results obtained in the two previous sections to the 

classification of the five-dimensional Riemannian manifolds ( M , g ) admitting 
a homogenesous structure T of class T2 in the case (C) of (xvi). 

Let us consider the quadruplet (V,g,T, R), where the vector space V 
has the dimension dim V = 5, g is a positive definite scalar product on 
V, { e i , e 2 , e 3 , € 4 , e s } is the orthonormal basis of V, and T ^ 0,R are the 
tensor fields of type (1 ,2) , (1,3) , respectively, such that all the conditions 
(vii)-(xiii) are satisfied. 

Considering the case (C), (xvi) we shall distinguish separately the two 
following subcases (Ci ) , (C 2 ) : 

There is a 3-dimensional {-irreducible subspace 
Span(e i , e 2 , e 3 ) C V, and t acts trivially on the 
subspace Span(e4,es) C V; 
There is a 3-dimensional t-irreducible subspace 
Span(e i , e 2 , e 3 ) C V, and t acts non-trivialy on the 

subspace Span(e4,es) C V. 

(56) 

r ( C i ) 

(Ca) 
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In the subcase (C\) the Lie algebra t has the following form (see (52)): 

(57) t = Span(/li2, A23, A3l), 

At first, we recall that for the tensor algebra T(V) the relation A-T — 

0, A C C is equivalent to the following 

(58) A(TXY) = TaxY + TXAY, I J c K Act. 

Acting by A = An, A23, A31 successively on (58), and taking into ac-
count (8), we get after routine but tedious calculations, the following form 
of the tensor Te i : 

T e i e 2 = 0, TCle3 = 0, Te2e3 = 0, 

(59) 
Teie4 = aej, Te3e4 = ae2, Teje4 = ae3, 

Teie5 = bei, Te,e5 = be2, Te3e5 = be3, 

Te4e5 = —36e4 + 3aes, a, 6 G 

Omitting the trivial homogeneous structure T — 0 of class T2, we suppose 
in the sequel that a2 + b2 > 0. 

Now, we introduce the new orthonormal basis {e[,e'2,e'3,e'4,e'5} on V: 

f6Q) f e ; = Ci, i = 1,2,3, p = 

' \ e4 = p(ae4 + bes), e'5 = \{-beA + aes). 

Substituting (60) into (59) (and omitting the prim /) we get easily 

,fi , f TCie4 = pex, TC7e4 = /9e2, T6je4 = pe3, 

I T e « ^ = 3pe5, Te>ej = 0 otherwise. 

From (57) it follows that the curvature transformations have the follow-
ing forms 

,fi v i Re.e, = aijAu + bijA23 + CjjA3i, 

\ where a^, 6tJ, ct> € R, t, j = 1 , . . . , 5. 

Substituting (62) into the first and second reduced Bianchi identity ( i x ) -
(x ) , we get after the elementary calculations that 

(63) aij = bij = Cij = 0, i,j = 1,. . .,5. 

Hence, we receive 

(64) Reie, = 0, i,j = 1 , . . . ,5 , hence f) = { 0 } C t. 
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N o w , apply ing the "Nomizu construct ion" ( x v ) , on the basis of ( 6 1 ) , and 
( 6 2 ) we o b t a i n t h e Lie algebra 0 = V 8 t = (V, - T ) of the forms: 

( 6 5 ) 

' 0 = S p a n ( e i , e 2 , e 3 , e 5 ) 0 S p a n ( e 4 ) = R 4 Q R , 

[ e i , e 4 ] = p e i , [ e 2 , e 4 ] = p e 2 , [ e 3 , e 4 ] = pe3, p ^ 0, 

[ e 5 , e 4 ] = - 3 p e s , [e¿,ej] = 0 otherwise . 

T h e result presented by the formula (65) is exact ly the result ( 14 )e for 
a j = «2 = 013 = p,a4 = 3 p , p ^ 0. See the last result (53 )e . 

In the considered subcase [ ( C i ) , formula (56)] we have proved the fol-
lowing 

C O R O L L A R Y . If in the quadruplet (V,g,T, R) V contains a 3-dimensional 
t — irreducible subspace S p a n ( e i , e 2 , e 3 ) , and t acts trivialy on the subspace 
S p a n ( e 4 , e s ) , then the non-trivial homogeneous structure T of class T"2 de-
termines the result ( 14 )e . 

R e p e a t i n g the above considerat ions and calculat ions for the subcase 
[ ( C 2 ) , (56) ] , where t = S p a n ( 4 i 2 , -A23, - 4 3 i , j44s), then the Riemannian man-
ifold ( M , g ) has on ly the trivial h o m o g e n e o u s s tructure T = 0 of class T 2 . 
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