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1. Introduction

The authors of the paper [6] have classified all the connected, complete
and simply connected Riemannian manifolds (M, ¢) for dim M = 3, 4, which
admit a non-trivial homogeneous structure T of class T5.

I shall generalize the results of the paper [6] to the five-dimensional
case, i.e., for dim M = 5. Because the solution to this problem is very large
I present here separately the essential and independent part (F) of this
solution, see the last formula (xvi).

I have come to the conclusion that it is necessary to summarize here
the basic facts about the Riemannian manifolds (M, g¢) admitting a homo-
geneous structure T of class T3 in the sense of F. Tricerri and L. Vanhecke
and the classification method presented in the paper [6].

Ambrose and Singer [1] have proved a theorem that a connected, com-
plete and simply connected Riemannian manifold (M,g) is homogeneous
(i.e. it admits a transitive group G of isometries) if and only if there exists
a tensor field T of type (1,2) such that

(i) 9(TxY,Z)+ g(Y,TxZ) = 0,
(AS) (i) (VxR)yz =[Tx,Ryz]— Rryvyz — Ry1y 2,

(iii) (VxT)y = [Tx,Ty] - TTst for all X,Y,Z € .‘f(M)
Here V and R denote the Levi-Civita connection and the Riemannian tensor
field, respectively. A tensor field T satisfying the conditions (AS) on M is
called a homogeneous structure on (M, g).

In [10] F. Tricerri and L. Vanhecke studied the decomposition of the
space of all the (algebraic) tensors T satisfying the condition (AS) (i) in
the irreducible components under the action of orthogonal group. In this
way they found three irreducible classes of possible homogeneous structure
denoted by Ty, Ty, Ts.
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In ([10], ppl7, 49, 56) the following theorems were proved:

Each connected, complete, simply connected Riemannian manifold
(M, g) satisfying the conditions (AS) is reductive homogeneous Rieman-
nian manifold of the form (M, g) = G/H with respect to the decomposition
g = m&bh of the Lie algebra g of G, where G is a group of isometries of
(M,g), and Adg(H)m C m. If the connected Riemannian manifold (M, g)
admits a non-trivial homogeneous structure 7" of class Ty, then (M,g) is a
space of constant curvature.

A connected, complete, simply connected Riemannian manifold (M, g)
admits a homogeneous structure of class Tj if and only if it is naturally
reductive homogeneous Riemannian manifold.

The following definition is equivalent to that following ([10], p. 38):

DEFINITION. A homogeneous structure D on a Riemannian manifold
(M, g) is said to be of class T, if the following two identities hold:

i DxY,Z)=0, (6i li ,
(iv) ngg( X ) (S is a cyclic sum)
(v) > 9(X,De,e;) = 0,

i=1

for any tangent vectors X,Y,Z and any orthonormal basis {e,...e,} be-
longing to T,M,pe M.

In what follows, we shall describe our classification method ([10], pp.
4-6).

Let V be the canonical connection of a reductive homogeneous Rieman-
nian manifold (M,g), M = G/H and g = m@h. Then the torsion tensor
field T and the curvature tensor field R of V are parallel, and so is g, i.e.,
there are satisfied the relations:

(vi) 6?:61}:63]:0.

We identify the subspace m C»g with the tangent space ToM at the
origin o € M via the projection 7 : G — G/H.

From the parallelism of T, R, g and from the supposition that the curva-

ture tensor Rxy : Z — RxyZ acts as a derivation on the tensor algebra
T(m) of m = ToM we have the following algebraic conditions:

(vii) Rxy -R=Rxy -T=Rxy-g=0,
(Viii) ﬁxy = —Ryx, Txy = —TyX,
(ix) S T5,yZ ~ Bxy2) =0,

(x) x?z R;XYZ =0, forall X,Y,Z € m.
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Now let D = V — V be the difference tensor field (we know already
that D is a homogeneous structure on (M, g)). Between D, g and T there is
satisfied the relation ([6], p. 4)

(xi) 29(DxY,Z) = g(Ty X, 2)+ 9(Tx 2,Y) + 9(Tv Z, X ), X, Y, Z € X(M).

From (xi) and (iv) - (v) it follows that the homogeneous structure D on
(M, g) of class T; can be characterized by the conditions:

i TxY,Z) =0,
(xii) X(;—;Zg( X )
(xii) Y 9(Tzei,ei) =0,

i=1

for all X,Y,Z € m and any orthonormal basis {ej,...,e,} C m. On the
basis of the considerations represented by the formulas (vii) - (xiii) we get
the following

PROPOSITION. Let (M, g) be a connected, complete and simply connected
Riemannian manifold admitting a non-trivial homogeneous structure D of
the class T,. Then (M, g) and D uniquely define a quadruplet (V,gq,T, R),
where V_is a vector space of dimension n, g is a positive inner product and
T # 0,R are tensor fields of type (1,2), (1,3), respectively such that the
conditions (vii)—(xiii) are satisfied.

Conversely, let (V, 9,7, 1‘:’,) be a quadruplet satisfying all the conditions
mentioned in the thesis of the above Proposition. Then we use a construction
of K. Nomizu ([10], p. 6) to attach to this quadruplet a Lie algebra g and a
subalgebra b of g.

Firstly, let h be the subalgebra of the Lie algebra End(V') spanned by
the ”curvature operations” IT’,Xy, X, YeV

Secondly, we define g as the direct sum of two vector spaces:

(xiv) a=V @ b.
Finally, we endowe the vector space g with the following brackets:

[X$Y]=(_TXY3—EXY)a X,YGV,
(xv) [4,X] = A(X), Ach, X eV,
[A,B]=AoB-BoA, A/Be€h.
Using the formulas (vii)—(xiii) one can easily check that the Jacobi identity
holds. Thus, g is a Lie algebra.
Now, let G be the simply connected Lie group whose Lie algebra is g,
and let H be the connected Lie subgroup of G corresponding toh. If H C G
is closed, then we can define the homogeneous space M = G/H. Then the

vector space V can be identified with the tangent space ToM at the origin
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0 € M via the projection 7 : G — G/H. G/H is reductive with respect to
the decomposition g =V @ h, because [h, V] C V and H is connected.

From the conditions (vi) and (xv) it follows immediately that the canon-
ical connection V of G/H has the curvature tensor and the torsion tensor

at the origin 0 € M = G/H equal to the prescribed R and f, respectively.
The inner product g on V yields on G/H a G-invariant Riemannian metrics,
and thus G/H is a homogeneous Riemannian manifold.

The conditions (xii)—(xiii) mean that the homogeneous structure D =
V — V is of class T,. Thus, we have proved the inverse Proposition.

Because we shall work in the sequel with the canonical connection V of
a homogeneous space G/H and not with the Levi-Civita connection V, we
shall always write simply T, R instead of T, Rin the quadruplet (V,g,T, R).

Now, as in the paper ([6], Propositions 1.3, 3.1) we consider a quadruplet
(V,9,T,R),dimV = 5.

Let us denote by ¢ = {A € End(V): A-g=A-T =0}. Here,all A € ¢
acting as a derivation on the tensor algebra 7(V') are skew-symmetric, and
all the curvature transformations Ryy, X,Y € V, must belong to ¢.

We must consider the following possibilities:

( (A) V is t-irreducible.
(B) There is a 4-dimensional t-irreducible subspace of V.
(C) There is a 3-dimensional ¢-irreducible subspace of V.
(D) There are two 2-dimensional E-irreducible subspaces
Span(e;,e2), Span(es,eq) C V and € acts trivially on
Span(es) C V.
(E) There is one 2-dimensional t-irreducible subspace

(xvi) {

Span(e;,ez2) C V, and ¢ acts trivially on
Span(es,eq,e5) C V.
{ (F)e= {0}, and hence R = 0.

If the subspace W C V,dim W = 2,3,4,is t-irreducible, then its orthogo-
nal complement W+ with respect to the scalar product g is still ¢-invariant.
In what follows we shall consider in this paper the cases (F) and (C). It
is necessary to underline that to the case (F) there are also reduced some
special subcases of (C) and (D) ( see the subcase (C;) in [6], pp. 14, 17).

In the second section the author will carry out a classification of five-
dimensional Lie algebras g = (V, T) of class T3, finding five classes of the Lie
algebras (V,T') containing the real parameters. This is a generalization of’
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Proposition 3.6, [6] for five-dimensional case. In the third section the author
shall determine the Lie algebras of derivations of the five-dimensional Lie
algebras (V,T) found above. This is a generalization of the algebraic“part”
of Proposition 3.7, [6] on the five-dimensional Lie algebras (V,T). In the
fourth section we shall present an application of the results obtained in the
previous section.

2. Classification of five-dimensional Lie-algebras of class T,
We consider a triplet (V, T, g) satisfying the following five conditions:

(1) (V,T)is a five-dimensional Lie algebra with the Lie multiplication
defined by the structure tensor T'(z,y) fulfilling the Jacobi identity,

(2) [z,9]=T(z,y),forz,y €V,

(3) g is an inner positive defined product on V,

(4) ngg([:z:, y],2) =0, for z,y,z € V, (& is a cyclic sum),

5
(5) Zg([z,eg], e)=0,forzeV,
i=1
for any orthonormal basis {e;, ez, €3,€e4,€5} of V.

In the sequel we shall denote the Lie algebra (V,T) shortly by g.

The conditions (4) and (5) have exactly the same meaning as the con-
ditions (6) and (7), respectively, in the paper [6], hence the Lie algebra g is
unimodular ([8], p. 318).

The considerations from ([6], p.18) can be generalized and thus we have
the following

LEMMA 1. If a finite dimensional Lie algebra g has provided with a posi-
tive defined inner product g, and if there are satisfied the conditions (1)-(5),
then the following relations are true:

(a) for any ideal i of g the orthogonal complement ht is
a subalgebra of g;
(6) (b) if z € hL, then ad, is symmetric on b;
(c) for the ideal b C g the conditions (4)-(5) are satisfied, where
the condition (4) is satisfied for every subalgebra b C g;
(d) a=h@ht, (a direct sum of vector subspaces).

Basing on the formulas (1)—(5) and using the notations:

5
(7) [e;,e,-]:T,iej:Ztij"ek, ,j=1,...,5,
k=1



408 L. Bieszk

after detailed calculations we obtain the following forms of the Lie brackets
of sought Lie algebra g which are characteristic for every orthonormal basis

{e1,...,es} on g:
([e1,€2) = thoer + tdhen + thhes + t1yeq + 15565,
[e1, €3] = tizer + tizer + t1ae3 + tiseq + 3365,
[er,eq) = tlyer + 13,60 + 83,63 + t,e4 + ti,e5,
[e1,es) = tlser + tiser + tses + tseq + (—t]; — ti3 — tly)es,
[e2,e3) = (3 — t]y)er + i€z + 1333 + thzeq + tises,
[e2,ea) = (834 — tia)er + t3ye2 + th,e3 + t5,e4 + t3qes,
le2,es) = (835 — t]2)er + 3se2 + thses + thseq + (2, — 133 — tiy)es,
le3,eq] = (134 — tia)er + (134 — th3)e2 + tieea + tigeq + tiyes,
les,es] = (835 — t3)er + (835 — t33)ez + tisea + tiseqt

(ts + 53 — t34)es,
[ea,es] = (t1s — t4)er + (835 — 3 )ea + (855 — 34 )ea+
\ (—tls — 35 — 135 )eq + (2 + 34 + 134 )es.

In the formulas (8) there are 35 essential parameters t:-‘j which must sat-
isfy the 10 Jacobi identities. Hence, a further investigation of the Lie algebra
g immediately by the aid of the structure constants tf‘j is very complicated.
Also, we shall determine the corresponding Lie group G.

From (8) it follows immediately that tr(ad,,) = 0, ¢ = 1,...,5, hence
the Lie algebra g is unimodular, as expected.

If all tfj = 0, then g = R®. Thus in the sequel we shall suppose that not

all tf‘j are equal to zero.

In order to simplify the further detailed calculations we shall describe
some facts of the algebraic nature, [7)].

[t is well known that changing the basis of the Lie algebra g in the
following way (we adopt the Einstein’s summation convention):

(9) es = Ale;, A= [AL], det(A)#£0, i=1,...,n, ¢ =1,...,n/,
then the structure constants t:-‘j defined by the change of the basis are trans-

formed according to the formula

(10)  th, =ALAL AN tE,  dgk=1,...n, 4K =1, 7

(8)

where [Aﬁ'] =A"l
The structure constants are skew-symmetric: tf‘j = —tf,-, and must satisfy
the conditions (4)-(5), see for n = 5 the right hand side of the formula (8).
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By the aid of the formula (7) an endomorphism g — ¢’ is defined (also
for an arbitrary n), where g’ = [g, g] is a derived Lie algebra.

From (9) we receive easily an endomorphism g — ¢’ of the form
(11) [6,",6_,"] = 2A£,' Aj;] [e,-,e_,-],
wherei < j, ' <3, t,7=1,...,n, 4,5/ =1,...,n',;and P = (4,5), P' =
(i', j') are ordered in the lexicographic order of the magnitude of pairs
(3, 7), (¢, j'), respectively.

The sets {[ei, e;], i < j}, and {[e;,ej], i’ < j'} of the fundamental Lie
brackets of the Lie algebra g constitute separately the sets of generators of

the derived Lie algebra g’.
Thus is true the following lemma

LEMMA 2. From (7)-(11), and ([7], pp. 7, 11) we have the following
relations

m)_mrD:[Dg(Aﬂz[zdbqﬂ, P=1,...,(),
det(D) = [det(A4)]" ™" # 0, P=1,...,;

(12) { (b) dim g’ is invariant under the change of the basis on g;

(¢) dimg' = rank(C), where C is in general a matriz of the
coefficients of the decomposition of the [e;, e;] for an

{ arbitrary n, analogously as for n =5 in (8).

In the sequel we shall apply Lemma 2 for n = 5 to the considerations
and calculations.

Because dim g = 5, then it follows from ([2], §§ 4, 5) that the sought Lie
algebra g is not simple.. Thus, we must consider the following cases:

(I)  There is a 4-dimensional ideal h C g;
(IT)  There is a 3-dimensional ideal § C g;
(III) There is a 2-dimensional ideal h C g;
(IV) There is a 1-dimensional ideal ) C g.

(13)

In what follows we shall consider the above cases (i)-(iv) step by step.
We shall consider only the orthonormal basis {e;,es,€3,€4,€5} C g.
We shall prove the following

THEOREM 1. If g is a five-dimensional non-abelian Lie algebra provided
with an inner scalar product such that there are fulfilled the conditions (1)-
5), then the Lie algebra g, and its corresponding Lie group G have one of
he following forms:

a)a=sl(2,R)DR?, G=SL(2,R)x R?;
b)a=e(1,1)@R?, G =E(1,1)x R
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c) g = R3AR? with the multiplication table:

( [ei,e4) = aie,1=1,2,3,0; #0, 1 + a2 + a3 = 0,

[ej, ex] = O otherwise,

G = Gy X R, where
e“1t 0 0

z
(14) { .
0 e 0
G = 0 0 et Z ’ (‘Tv Y, 2, t) € R‘(I,y,z,t) ;
0 0 0 1

{ see ([5], p- 10);
d) g = R*AQR? with the multiplication table:

[elae‘i] = aey, [62164]=IB621 [63164]:' —(a+ﬂ)€3,
[eZv 65] = 7e€2, [83’65] = —7¢€3, a,7 # 07 ﬂ'a"bitmry;
lei, ;] = 0 otherwise;

J ey 0 0 z
g Al o e 0yl (@uzuve |
0 0 e {(atBu—vv ,|> R5($,y,2,u,”) ‘

0 0 0 1

{see ([5], p. 10, type 9));

e) @ = R*AQR with the multiplication table:
[85,65] = i€y, 1= 1721314 a; # 07 a + a3 +03 + a4 = 07
(ej, ex] = O otherwise,

et 0 0 0

0 et 0 0

G = 0 0 et 0
0 0 0 et

0 0 0 0

see ([5], p. 6, type 2)).

In the subcases a),b) we have to deal with the orthogonal direct sum of
two ideals, and in the subcase c), d), e) — with the orthogonal semidirect
sum of two abelian ideals of the Lie algebra.

The Lie groups Go, and G are isomorphic to the Lie groups of inner
automotorphisms corresponding to the suitable Lie algebras whose adjoint
representations are faithful.

Proof in the case (I). We shall receive all the results (14)a - (14)e. Let
{e1,€2,€3,€4,€5} be an orthonormal basis of g = h@h*, (a direct sum of
two vector subspaces) such that h = Span(e;, €3, e3,€4), and b1 = Span(es)-
Because the ideal b fulfills the condition (6)c, hence from ([6], Proposition

(:t, y, z’ u’ t) E
" R5(z,y,2,u,t)

— 82 Ne 8
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3.6), and (I) in (13) we get the following four subcases for h:

( Ia) b =sl(2,R)@P R, (an orthogonal direct sum of two ideals),
where for sl(2, R): [e1, e2] = Aze3, [e2,e3] = Ajey,
[63161] = ’\262, Al,’\2 > 0’
A3 = =21 — Ag;
Ib) h=-e(1,1) PR, (an orthogonal direct sum of two ideals),
where for e(1,1): [e1,e2] = 0, [e2,e3] = Aey,
[es,e1] = —Aea, A #0;
Ic) b= R]QR, (an orhogonal semidirect sum of two
abelian ideals);

(15) ¢

\Id) b=R4.

In the subcase Ic) one can choose an orthonormal basis {ej, €2, €3, €4}
of h such that R® = Span(e;,ez,e3), R = Span(eq), and [e;,eq4] = aje;,
t=1,2,3, a1 + a3 + a3 = 0, where not all ¢; are equal to zero. If one of
the coefficients «; is equal to zero, then the subcase Ic) is reduced to the
subcase Ib). Hence, we suppose for the future in the subcase I¢) that all

a; £0,i=1,2,3.
In the first subcase (15)/a we receive the result (14)a.
From (8) it follows that the sought Lie algebra g has the following Lie
brackets:
([e1,e2] = Ases, [e2,e3] = Arey, [es,e1] = Aze,
[e1,€4]) = [e2,€4] = [e3,€4] = 0,
(16) le1,es] = tiser + tsez + tises + tiseq,
[e2,e5] = tise1 + thser + t3sea + tise,
[e3,es] = tse1 + t35e2 + t35e3 + t5eq,

 [es,€5] = t?sel + t;5‘32 + t‘;‘,ses + t?sﬁ + (—t%s - t%s - tgs)e'b

Now, substituting the Lie brackets (16) into the Jacobi identity we get
that all tfj = 0, hence we have received the result (14)a.

In the second subcase (15)Ib we shall obtain the results (14)b, (14)d.
In the subcase Ib we receive the Lie brackets of the form (16) with
Az = 0,Ay = =X} = —X # 0. Using first the Jacobi identity and next
introducing a new orthonormal basis of the form:
ep=jle1te), e =1(e1-e) e =e,
(17) €3 = %(/\63 + pes), €5 = L(—pes + des),

where a=\/A2+u2 #0, u=1t+1t,
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then the brackets (16) transform into the following ones (we omit the
prime /)

le1,e3] = aer, [e2,e3) = Pes, [eq,e3] = —(a + B)ey,
(18) [e2,€5] = Xea, [eq,€5] = —Ney, [ei,ej] = 0 otherwise,
_22 A
where (= A +;w’7= (,u+1/).
a a

The sought Lie algebra g has the form g = Span(e;, e, e4)@Span(ez,e5) =
R3QR?.
From Lemma 2 and (18) we get the inequality

(19) 2 <dimg’ < 3.

If dimg' = 2, then v = 0, and § = —a. Hence, the Lie algebra g repre-
sented by the Lie brackets (18) is of type (14)b.

If dimg’ = 3, then ¥ # 0. Using the matrix representation of ad,,,
= 1,2,3,4,5, and calculating them on the basis of (18), we see that the
adjoint representation ad: g — adg is faithful.

In connection with this we present here certain general information, see
(4], Chap. II, §.5, p. 126, and next.

The Lie group of inner automorphisms Int(g) is Lie group correspond-
ing to the Lie algebra g, represented by formula (18). To every ad,, ,k =
1,2,3,4,5 presented in the matrix form there corresponds a vector field X

as an infinitesimal linear transformation on R®(z!,z?,z3, x4, z%):

5
9 .
(20) Xk = Z a}zjg, for [a}] = —ad,,, k=1,...5.

)
i,j=1

Thus, for the Lie algebra g presented by (18) we receive the following vector
fields respectively

(¥ - —qul o —
Xl—' aua.’t’ X2—( au 7”)8 ’
_— 0 d o
(21) { X3 _az% +ﬂy%—(a+ﬂ)25g,
d 0 0
kX4 =[(a+ﬂ)u+‘71’]a—z, X5=7y6—y_7z$'

The vector fields (21) are dependent, but linearly independent.

In this paper we shall use several times the method of finding the integral
curve or orbit of a differentiable vector field X on the space R™(z!,...,z").
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Let be given a differentiable curve
(22) {cp:I—»R"(:c‘,...,a:"), I =(a,p),
o(t) = (2} (t),...,z™(t), @(0) =120 =(2zl,...,2}), tel,

and a differentiable vector field X on R"(z!,...,z") defined on a neigh-
bourhood U 3 z¢ such that
9z’

(23) X = ZX‘ 9 Xiz',...,z").
i=1

The differentiable curve (22) is called an integral curve (or an orbit) of
X if it is a solution of the following system of differential equations:

(24) { dzdt(t) = Xi(z!(t),...,2™(t), i=1,...,n,
¢(0) = 2o.
Therefore if X, # 0, there exists an integral curve of X through zo,
([4], p-41).

Calculating the one-parametr groups of the inner automorphisms of the
Lie algebra g by the method of orbits (24) successively for the vector fields
(21), and presenting them in the matrix form as elements of the affine group
of transformations, we shall receive by the multiplication the following form
of the sought Lie group of the automorphisms of g:

eau 0 0 ar 0
0 ePutrvy 0 ﬂy vy

(25) Gl = 0 0 e—(a+»6)u_'7u(a+ﬂ)z 72 , (;,5y1 Z, u’ v) E )
0 0 0 1 0 (z,9,2,u,v
0 0 0 0 1

We omit here the detailed calculations.

Thus, changing in the Lie algebra g = Span(e;, e2,e4)3 Span(ez,e5) =
R*@R? with the Lie brackets of the form (18) only the numeration of two
vectors: e3 — e4, and e4 — e3, we see that we have received for g the
result (14)d. In what follows it suffice to prove that the Lie group G; of
the form (25) is isomorphic to the Lie group G of the form (14)d. For this
purpose we introduce the following group mapping ¢ : G — Gy:

(26)

RSP 0 i e“* 0 0 ar 0

0 ePutv 0 y 0 efut 0 By 7Y

v 0 0 e-(atBu—vv, =0 0 elorDumw (a+B)z 7z
0 0 0 1 0

0 90 0 1 0 0 0 0 1
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We shall prove the following

LEMMA 3. The mapping ¢ : G — G, defined by the formula (26) is a
Lie group isomorphism, i.e., there are satisfied the following two conditions

a) ¢ : G — G, is an abstract group isomorphism,

b) ¢ : G — G is a diffeomorphism of two differentiable manifolds.

Proof. The verity of the condition a) follows immediately from the
elementary group calculations. To prove the condition b) we shall use the
Proposition 5.4.4 from ([2]. p.77). In order to obtain this we introduce two
auxiliary group mappings of the additive group R(z,y, z,u,v) into G, G,
respectively:
(27) {‘Pl : Rs(-"«',y,Z,U, U)—> G’ G e GL(4aR)’

@2 : R®(z,y,2,u,v) > G, G € GL(5,R),
where the submanifolds (and subgroups) G, G, are determined by the for-
mulas (14)d, and (25).

Analysing exactly the above mentioned Proposition 5.4.4 we see that
there are satisfied all its assumptios by ¢;, ¢2. Thus, our mappings ¢, 2
are diffeomorphisms of manifolds. From (26), and (27) we receive easily
that ¢ = 207!, hence ¢ is a diffeomorphism, and Lemma 3 is completely
proved. Thus, we have received the result (14)d, completely.

In the subcase (15)Ic we obtain the result (14)d.

In this subcase we receive from (6)b, and (8) the following Lie brackets:

[e1,€e2] = 0,[e1,e3] = 0,[ez,e3] =0,

(28) {[6,‘,64]20,'6,‘, i=1,2,3, a; #0, oy + a3 + a3 = 0,
lej,es]=..., 7 =1,2,3,4, have the same forms as in (16).

Now, using the Jacobi identity we obtain for [ej,es5], j = 1,...,4 the

relations

[61,65] = t}sel + 1%562 + t?sella

[e2,e5] = tfse1 + thsez + tisea,

[es, es] = t3se1 + t3sea + tisea,

[eq, e5] = 0, t}s + t%s + tgs =0,

and additionaly are fulfilled the following three conditions

(30) (a1 — a2)ty = 0,(a; — a3)t35 = 0, (az — a3)t3; = 0.

Now, we introduce the following two endomorphisms

(29)

F(e4),G(es) : Span(ey, e2,€e3) —> Span(e;, e2,¢€3)
defined on the basis {e;, e2,e3} C b in the following way
(31) F(€4)(6,‘) = [€§,€4], G(CS)(et') = [e,',65], t= la 21 3.
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From (27)-(30) it follows that the endomorphisms F(eq), and G(es) are
symmetric and commutative, hence on the basis of a suitable theorem from
Linear Algebra there exist the orthonormal common eigen vectors {e}} C
Span(e;, ez, e3) of F(eq), and G(es) such that there are fulfilled the following
relations (we omit the prime ’)

[65,84] = €y, t= 1,2,3,(1.‘ ?é 0,0] +az+a3= Oa
(32) [er, e5] = Biei, 1=1,2,3, B1 + B2+ B3 =0,

(ej, ex] = 0 otherwise.
Taking into account the symmetry condition of the formulas (32) we shall
change the basis of g in the following way

el=e€;, =123, €= %(0164 + Pres),
es = 2(-bres + aes), a=+/ai + 05 #0.

Substituting (33) into (32) we obtain after routine calculations the fol-
lowing forms of the Lie brackets (we omit the prime ’):

(e1,e4] = ey, [62,64] = fe,, [63,64] = —(a + P)es,
w

(33)

[61165] = 07 [62,65] = ez, [63,65] = —7e€s,
[ei,e;] = 0 otherwise,
where 8 = 2(a1az + B182), ¥ = L(1B; — az1).

From (32)-(33) it follows that dim g’ = 3, hence the Lie brackets (34)
represent the Lie algebra g of type (14)d, see (18)-(25). We omit here the
detailed calculations.

In the subcase (15)Id we receive the results (14)b, c, and (14)e.

Thus, from (8), and Lemma 1,(6)b, c it follows that the Lie algebra g has
the following Lie brackets:

[e1,e5] = arer + brez + c1e3 + dyeq,
[e2,e5]) = bre1 + baey + c2e3 + daey,
(35) [e3, es] = cre1 + caey + c3e3 + daey,
[eq,e5] = diey + daez + dyes + dyeq,
[ei, €;] = 0 otherwise, a; + b2 +¢3+dy =0.

For the symmetric endomorphism ad., defined by formula (35) there

exists a new orthonormal basis {e, e;,€3,e4} C b such that
[e,-,es]zz\;e,-, t= 1’27374) ’\1+/\2+/\3+/\4=0,
[e;,ex] = 0 otherwise, A2 + A2 + 2% 4+ A2 # 0.

On the page 407 we have supposed the noncommutativity of the sought

Lie algebra g.

(36)
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With respect to the eigenvalues Ay, A2, A3, A4 of ad,, we must distinquish
three essential non-trivial possibilities.

For A1, Ay # 0,A3,24 = 0 we receive the result (14)b. For Ay, Ay, A3 #
0, ¢y = 0 we obtain the result (14)c. At last, for all A; # 0,2 = 1,2,3,4 we
get result (14)e. We omit all the detailed calculations.

The calculations and considerations presented above are characteristic
for the next cases (II), (III), (IV).

Proof in the case (II). The sought Lie algebra g, and the corresponding
Lie group can admit all the forms (14)a—(14)e.

Let {e1,...,es} be an orthonormal basis of g such that h =
Span(e;, e2,€3),h+ = Span(ey, e5). Because on the basis of the formula (6)c
of Lemma 1 the ideal b is an unimodular Lie algebra, then from ([6], p. 18)
it follows that

(37) h = sl(2, R) or ¢(1,1) or R>.

Supposing that the subalgebra h* is abelian or not , and repeating the
considerations from ([6}, pp. 19-20), and also using the previous method
represented by the formulas (16)-(25), we get in the first subcase of (37)
the result (14)a. In the second subcase of (37) we receive the results (14)b,
and (14)d. In the third subcase of (37) for h being abelian we receive the
results: g = R®, and (14)b, (14)c, (14)d. At last, supposing that h* is not
abelian we receive the results:(14)b, (14)c, (14)e.

We omit here all the detailed calculations, because they are analogical
as in the case (I).

Proof in the case (III). We get here all the results of type (14)a—(14)e
as previously.

Let {ey,...,es} be an orthonormal basis fo g such that = Span(e;, e2),
ht = Span(es, e4,€5). Supposing first that the Lie subalgebra b is not uni-
modular ([8], p.309), i.e., for a suitable orthonormal basis {es, eq, €5} of h*
there are fulfilled the relations

(38) { [e3, e4] = aeq + Pes, [e3,es5] = veq + bes,
[64,65] = 0, a+ 6= 2,
then on the basis of (6), and (8) we shall receive the special cases of (14)b,
(14)c, (14)d, and (14)e.
In the second place, supposing that ht is unimodular, i.e., of the type
(37), then we obtain the results (14)a, (14)b, and special subcase of (14)e.
We omit here all the detailed calculations.

Proof in the case (IV). We get results of types (14)a — (14)e. Let
{e1,...,e5} be an orthonormal basis of g such that h = Span(e;),ht =
Span(es, €3, eq,€5),8 = h®h*, (a direct sum of two vector subspaces). From
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Lemma 1, and formula (8) it follows that the sought Lie algebra g has the
following Lie brackets

( [e1,€i] = t};e1, i = 2,3,4,5,

[62,‘-’3] = t%362 + tgaes + t%384 + tgaeSa

[e2,e4] = t3ie2 + t3,e3 + thseq + t3, €5,

[e2,e5] = t3se2 + t35e3 + tiseq + (t, — 133 —~ t34)es,

[ea,eq] = (134 — t33)e2 + thseq + tiges,

les,es] = (35 — B3 )ez + t3sea + thseqa + (ts — 835 — thy)es,
e, e5] = (835 — B34 )e2 + (t55 — 34)es + (—tis — 135 — t35)eq+

{ +(thy + 13, + 13y )es.

Thus, from (39) it follows that there is true the following equivalence:

(39) <

(40)  H* is unimodular if and only if t}, = t1; =], = t}; = 0.
Now, we shall distinguish two subcases.
A) bt is unimodular.

The unimodular Lie subalgebra bt is an ideal of g.

Hence, the sought Lie algebra g is an orthogonal direct sum of two ideals:
g = h@ht, where h = R, and h' has one of the forms (15)Ia — Id.

Applying to hL successively the formulas (15), and (68)-(69), after the
elementary analysis we obtain finally the results (14)a—(14)c. Also, we get
the trivial result g = R5. We omit the detailed calculations.

B) p' is not unimodular.

In this subcase the Lie algebra g receives one of the forms (14)b, (14)c,
(14)e, and a particular form of (14)d.

On the basis of ([8], p.318) for a finite dimensional Lie algebra g is true
the following

LEMMA 4. The linear mapping
(41) troad: g — R
ts a homomophism of Lie algebras.
Its kernel as an ideal
(42) u= {z € g:tr(ad(z)) = 0)}

of an unimodular Lie algebra of g. If dim g = n, then for g nonunimodular
dimu=n-1.
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In the subcase B) there is satisfied the reletion (we denote the suitable
new orthonormal basis of g once again by {e;, e2,€3,¢€4,€5}):

(43) ht = u@ut, (a direct sum of vector subspaces),

where u = Span(ez, €3, e4),ut = Span(es).

On the basis of Lemma 1,3, and formulas (42), we see that for the uni-
modular ideal u are satisfied both the conditions (4),(5), hence u can have
one of the forms (37). Thus, the endomorphism ad, |u' is symmetric on u,
and has the orthonormal eigenvectors {e}, e}, €4} C u.

We shall distinguish three subcases.
First of all, we present some general considerations.
Taking into account the formulas (39) and (42)-(43), then the Lie algebra

@ has the following Lie brackets:

([e1, €] = ther, i=2,3,4,5,

[e2, €3] = t33e2 + t35e3 + t35eq,

(e2,e4] = t%4e2 + t:2’4e3 + t§4e4,

(44) $ les,ed] = (134 — th3)er + t €3 + th,e,
[e2,e5) = t3s5ez + t35e3 + th5eq,

[e3, 5] = t3sex + 353 + tiseq,

 [eq, e5] = t%5‘32 + tgsea + (tis - t%s - tgs Jes.

Additionally there are satisfied the following conditions:
(45)  tp—133 13, =0, ty+1t33—13,=0, tiy+15,+13, =0

Because on the unimodular ideal u = Span(ez,e3,eq) C h* all the
tr(ad,,) = 0,7 = 2,3, 4, hence from (44) it follows that

(46) e+ 133 =0, t3—t33=0, 13,+15, =0
From (45) — (46) we receive that
(47) ti = ti3 = tiy = 0.

In the considered subcase B) the subalgebra h' is not unimodular hence
there must be satisfied the condition: tr(ad,,) = ti; # 0.

Finally, combining the formulas (44)-(47) we see that the sought Lie
algebra g has the following Lie brackets:
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( [e1,€5) = bey, 6 = tls #£0,

[e2, €3] = t3ze2 + t3ze3 + thaey,

[e2,e4] = 34e2 + th €3 — 3¢,

J [e3, e4] = (134 — t33)e2 — €3 + thzeq,

[e2, 5] = tsex + t35e3 + thseq,

[ea, es] = t3sez + t3sea + thseq,

[es, e5] = t3sex + thses + (=6 — ths — t35)eq,
( [e1,€;] =0, j=2,3,4

(48)

We must underline that the forms of the Lie brackets (48) in the con-
sidered subcase B are true in each orthonormal basis {e;,e2,€3,€e4,€5} C @
fulfilling the formula (43).

By). For the subcase u = Span(e;,e3,e4) = R® we obtain finally that
the sought Lie algebra g is of type (14)b or (14)c or (14)e.

B;). In this subcase u = ¢(1,1) = Span(ez,e3,€4), and on the basis of
(48) we obtain finally the following Lie brackets

(49) { [61,65] = 661) [62,65] = —%621 [63765] = -%63,6 # 01
' [e2,eq) = Aea, [es,eq] = —Aes, A #0, [ei,e;] =0 otherwise.

Thus we have g = R3@ R? = Span(e;, e2,e3)@Span(es, e4), and this is
a particular case of the result (14)d.

B3). In this subcase u = sl(2, R) = Span(e;, e3,€4), and have [ez, €3] =
Azeq, ez, e4] = Areg, [eq, €3] = Azez, A1, Ay > 0,23 = =X — Ay,

From the formula (48) we get finally a contraduction that § = 0.

Thus, the subcase B3) is not possible.

The proof of Theorem 1 comes to an end.

Analysing exactly the proof of Theorem 1 we get the conclusion that
from the theoretical point of view we can restrict our considerations only to
the case (I) in (13).

It is true the following

THEOREM 2. In each five-dimensional Lie algebra g satisfying the as-
sumptions of Theorem 1 there ezists a four-dimensional ideal h C g.

The proof follows immediately from the formulas (37), (38), (39)-(40),
(44).
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3. Algebras of derivations of five-dimensional Lie algebras (V,T)

Now, in the end, we shall determine the Lie algebra of derivations for
five types of Lie algebras (V,T) presented by Theorem 1, see the proofs of
Proposition 2.3, p.7, and Proposition 3.7, p.21, [6).

Let us calculate the Lie algebra ¢ = {A € End(V): A-g=A4-T =0}
where the endomorphisms A of V acts as derivations on the tensor algebra,
T(V). Let us put

S
(50) AC,‘ = Zaj,-ej, 1= 1,. . .,5.
j=1

The condition A - g = 0 means that the matrix a;; is skew symmetric,
and the relation A - T = 0 means that

(51) A(T(e,-,ej))z T(Ae,-,ej)+T(e,-,Aej), t,5h=1,...,5.

The Lie algebra £ is generated by the following basic endomorphisms
Aij € End(V),t # j:
(52) Aije; = €j, Ajje; = —e;, Ajjer =0, 1,5 £k, 1,5,k=1,...,5,

where the basis {e;} C V is orthonormal.
Now, we can formulate the following

THEOREM 3. Taking into account successively the formulas (14)a—{14)e
we receive that the sought Lie algebra € of the derivations has the following
forms:

or
t = Span( Az, Ags), for Ay = Ag;
b) &= Span(Ays);
{ t = {0}, for ay,as,a3 #, (all different a;,1=1,2,3),
c)

( { t = Span(Ays), for A # Az,
a)

or
t = Span(A4;2), for a; = az,a3 #;

(33) Va4 e={o}

(t = {0}, a1,a2,03,04 #,
or
t= Spa'n(A12)7 fOT a) = ay, Q3,04 #’
e){ or
¢ = Span(Ai2, A3q), for a1 = az,a3 = ag, a3 # a3,
or
\ & = Span(A12, A13, A23), for a; = a3 = a3, a4 # .
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Proof. The reality of Theorem 3 follows immediately from the formulas
(50)-(53), and (14)a—(14)e, after realizing the elementary calculations; we
shall present here the proof only for the subcase a).

Thus, we have to deal with the Lie algebra g = h @ ¢ (orthogonal di-
rekt sum of two ideals), where hh = Span(e;,e;,e3) = sl(2R), and ¢t =
Span(eq,es) = R?, are represented by the Lie brackets:

{ [e1,e2] = Azes, [ez,e3) = Aer, [es,e1] = Azeq,

(54) [ei,ej] = 0 otherwise, Aj, Ay > 0,23 = A; — A,

Applying the formula (51) successively to the Lie brackets [e1, e2], [ej, €3],
[e2, €3] we obtain from (54), and (54) the following expressions:

{(’\l - /\J)alj = 0, 11] = 1’2’3)

55 . . .
(55) a4s is an arbitrary parametr, a;; = 0 otherwise.

The remaining Lie brackets [e;, e;] of type (54) does not give other con-
ditions on a;;.

From the formulas (54)-(55) we get for A; # A2, and A; = A; successively
the results ¢ = Span(A,;), ¢ = Span(A;2, Ags), as expected in the subcase
(53)a.

4. An application of the results of the previous sections

We shall apply the results obtained in the two previous sections to the
classification of the five-dimensional Riemannian manifolds (M, g) admitting
a homogenesous structure T of class T; in the case (C) of (xvi).

Let us consider the quadruplet (V,g,T, R), where the vector space V
has the dimension dimV = 5,¢g is a positive definite scalar product on
V,{e1,€2,€3,¢€4,€5} is the orthonormal basis of V, and T # 0, R are the
tensor fields of type (1,2),(1,3), respectively, such that all the conditions
(vii)-(xiii) are satisfied.

Considering the case (C), (xvi) we shall distinguish separately the two
following subcases (C}), (C2):

( (Cy) There is a 3-dimensional ¢-irreducible subspace
Span(e;,ez,e3) C V, and t acts trivially on the
subspace Span(eq,e5) C V;

(C2) There is a 3-dimensional ¢-irreducible subspace

Span(e;,e2,e3) C V,and & acts non-trivialy on the

{ subspace Span(eq,e5) C V.

(56) <
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In the subcase (C1) the Lie algebra ¢ has the following form (see (52)):
(57) ¢ = Span(A12, A3, Aa1),

At first, we recall that for the tensor algebra 7(V') the relation A-T =
0, A C tis equivalent to the following

(58) A(TxY)=TaxY + TxAY, X,YCV, AcCt

Acting by A = Ay,, As3, A3; successively on (58), and taking into ac-
count (8), we get after routine but tedious calculations, the following form
of the tensor T e;:

Te,eg = 0, Tel€3 = 0, Tezeg = 0,
Te,e4 = aey, Te,eq4 = aez, Te,e4 = aey,
Teles = bel, Tezes = bez, T63€5 = b€3,
Te,es = —3bey + 3aes, a,b€ R.

(59)

Omitting the trivial homogeneous structure T = 0 of class T3, we suppose
in the sequel that a% + % > 0.
Now, we introduce the new orthonormal basis {e},e},e5,¢e},ex} on V:

i=1,2,3, p=+va+8,

(60) aeq + bes), e = %(-—be., + aes).

—
M 0
B e
o
= D
P~ e

Substituting (60) into (59) (and omitting the prim /) we get easily

(61) {Tele4 = péy, T82€4 = pey, Tege4 = pés,

Te,es = 3pes, T.,e; =0 otherwise.

From (57) it follows that the curvature transformations have the follow-
ing forms

(62) { Re.'e,' = a;jA;2 + b,'jAzs + cijAar,

where a,'j,bgj,ng €ER,i,j=1,...,5.

Substituting (62) into the first and second reduced Bianchi identity (ix)-
(x), we get after the elementary calculations that

(63) a,-j=b.-j=c‘~_,~=0, i.,j:l,...,5.
Hence, we receive

(64) Ree, =0, i,j=1,...,5, hence h = {0} C ¢.
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Now, applying the “Nomizu construction” (xv), on the basis of (61), and
(62) we obtain the Lie algebra g =V @ &= (V,-T) of the forms:

g = Span(e, ez, €3,e5)Span(eq) = RYOR,
(65) [81,64] = péy, [62764] = pe2, [83,64] = p€3, p # 01
[es,eq] = —3pes, [ei,e;] =0 otherwise.

The result presented by the formula (65) is exactly the result (14)e for
oy = ay = a3 = p,aq = 3p,p # 0. See the last result (53)e.

In the considered subcase [(C1), formula (56)] we have proved the fol-
lowing

COROLLARY. Ifin the quadruplet (V,g,T, R) V contains a 3-dimensional
t — irreducible subspace Span(ey, e;, €3), and ¥ acts trivialy on the subspace
Span(eq, e5), then the non-trivial homogeneous structure T of class Ty de-
termines the result (14)e.

Repeating the above considerations and calculations for the subcase
[(C9),(56)], where & = Span(A4,3, 423, A31, A4s), then the Riemannian man-
ifold (M, g) has only the trivial homogeneous structure T = 0 of class T5.
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