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ANALYTIC FORMULAE FOR DETERMINANT SYSTEMS 
FOR A CERTAIN CLASS OF FREDHOLM OPERATORS 

IN BANACH SPACES 

1. Introduction 
R. Sikorski [6] has constructed a determinant system for any linear and 

continuous Fredholm operator I + T in a Banach space, where T is a quasi-
nuclear operator. 

A. Buraczewski [3] has obtained analytic formulae for a determinant 
system for any linear continuous operator I + T in a Banach space, where 
T k is a quasi-nuclear operator for some positive integer k. 

The purpose of this paper is to show how to construct effectively a deter-
minant system for any linear and continuous operator A = S+T in a Banach 
space, where 5 is a fixed Fredholm operator, U is a quasi-inverse of 5, T is 
a such operator, that if index d(S) = d > 0, then ( U T ) k is a quasi-nuclear 
operator for some positive integer k. Similarly, if d(S) = d < 0, then ( T U ) k 

is a quasi-nuclear operator. The obtained result is a generalization of the de-
terminant theory of operators of the form I + T, where Tk is a quasi-nuclear 
operator for some positive integer k. 

The possibility of the generalization was suggested by Prof. A. Bu-
raczewski to whom the author is very much indebted. 

2. Preliminaries 
Let X, E be fixed Banach spaces over the same real or complex field K. 

The norms in X and E are denoted by || | |x and respectively. 
A pair (S , X ) is said to be a pair of conjugate Banach spaces, if there 

exists a continuous bilinear functional I : E x X —• K whose value at a 
point (£,x) £ E x X is denoted by £x (i.e. / ( f , x ) = £x) and which satisfies 
the following conditions: 
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(a) if £x = 0 for every £ G E , then i = 0; 
(a') if fcc = 0 for every x £ X , then £ = 0. 

The bilinear functional I is called the scalar product on E x X. 
It follows from conditions (a), (a') and from continuity of / , tha t every 

element £ G E can be interpreted as a linear continuous functional on X and, 
analogously, every element x £ X can be interpreted as a linear continuous 
functional on E . In symbols 

(1) X c E ' , E c r . 
Hence, to each element f G E we can assign two norms: and | |£ | |x- , 
where 

(2) m \ x - = sup{|far| : \\x\\x < 1}. 

Similarly, to each element x £ X we can assign two norms: ||x||.y and , 
where 

(2') ||a;||=. = sup{|i®| : | |f | | = < 1}. 

If II IISi II ||x* a r e equivalent norms in E and | | | |x , |||| =•• are equivalent norms 
in X , then a pair ( E , X ) is said to be a pair of isomorphically conjugate 
Banach spaces. A pair ( E , X ) is a pair of isomorphically conjugate Banach 
spaces if and only if, in interpretation (1), E is a closed subspace of X*, and 
X is a closed subspace of E*. 

Let op(E,X) be the set of all continuous bilinear functionals 
A : E x X —> K whose value at a point G E x X is denoted by 
£i4x (i.e. ,4(£,a:) = and satisfying the following conditions: 

(b) for every £ 6 E there exists 77 G E such that t]x = £Ax for every 
x e l ; 

(b') for every x G X there exists y G X such that = for every 

Note that such 77 and y have to be unique. 
Every functional A G op(E, X ) can be interpreted as a linear continuous 

mapping A : E —• E defined by the formula £A = TJ, where 77 is the ele-
ment satisfying the condition (b) and also as a linear continuous mapping 
A : X —» X defined by the formula Ax = y, where y is the element satisfying 
the condition (b'). Elements of op(E,X) are called operators. 

For any A G op(E,X) let us introduce the following notation: 
#( ,4) = {Ax : x G X} , N(A) = {* G X : Ax = 0}, 

K(A) = {tA:S£ =•}, Af(A) = {£ G S : = 0}. 
The set op(E, X ) is a linear space with respect to natural definitions of 

algebraic operations. It is a Banach space equipped with the norm defined 
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as follows 

P | | = s u p { | M * | : | K I U < l , 11*11* < 1 } 
= sup{| |/lx|U : | |x|U < 1} = sup{| |MIU = IKIU < 1} 

for every A € op(E,X). 
It is also a Banach algebra with the unity, where the multiplication is 

defined by the formula 

(4) i{AlA2)x = {iAl){A2x) for AuA2eop(E,X),x)£~xX. 

The unity of this algebra is the scalar product I defined by the formula 
£Ix = £x for (f , x) e E x X. 

An operator B G op(E, X), such that 

(5) ABA = A, BAB = B. 

is said to be a quasi-inverse of an operator A 6 op(E,X). 
For fixed elements x<j € X, £o € E let xo • £o stands for the operator 

defined as follows 

(6) £(x0 • to)x = (£*<>)(&*) for (£, x)eExX. 

The operator Xo • to G >^0 is called a one-dimensional operator. 
Any finite sum of one-dimensional operators is called a finitely dimen-

sional operator. Thus 
n 

(7) 
i=l 

is an n-dimensional operator, where x, € X, & € E, i = 1 , . . . , n are fixed. 
Let (E,X) be a pair of isomorphically conjugate Banach spaces. 

Let cn(E,X) denote the space of all linear continuous functionals T 
on op(E,X), which determine functionals TV € op(E,X) defined by the 
formula 

(8) l T r x = ? { x - £ ) f o r ( £ , x ) e ~ x X. 

Elements of the Banach space cn(E,X) are called quasi-nuclei. If for an 
operator T G op(E,X) there exists a quasi-nucleus T 6 cn(E,X) such 
that T = 7 y , then T is said to be quasi-nuclear and T is said to be a 
quasi-nucleus ofT. 

The operator (7) is quasi-nuclear and the functional Zi®xi defined 
by the formula 

n n 
(9) ( 2 6 ® S O W = for every A € op(E,X) 

i=i ¿=i 
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is its quasi-nucleus. The quasi-nucleus & ® is said to be finitely 

dimensional. 

For a fixed operator C G op(E, X) let us define quasi-nuclei CT and TC 
on o p { E , X ) by the formulae 

(10) ( C T ) { A ) = T ( A C ) , { ? C ) { A ) = T ( C A ) for every A <E o p ( E , X ) . 

Let D be an (n + m)-linear functional on En x Xm. The value of D at 
a point ( f t , . . . , £ „ ) 6 En x Xm is denoted by 

(11) D ( y 

For fixed T € cn(E,X), if D can be interpreted as a function of the 
variables let us define the ( ( n - l ) + (ni — l))-linear functional F D D 
on En~l x Xm~l (see [4]) by the formula 

(12) ( ^ t W f 2 ' " " ! n ) = H A ) , 
\ x 2 , . . . , x m ) 

where 

(12') " " M 
\ i i , . . . , xmJ 

for 6 E , Xj G X , i = 1 , . . . , n, j = 1 , . . . , m. 

If n > 1 and m > 1, then interpreting TDD as a function of the variables 
&,X2, for fixed Q € cn(E, X), we can define the ((n - 2) + (m — 2))-linear 
functional Q • T • D on En~2 x Xm~2 by the formula 

( 1 3 ) { G \ 3 T U D ) ( ^ M = G { B ) , 

\X3, xmJ 

where 

( 1 3 ' ) £2Bx2 = ( T O D ) ( M 
\ x 2 , . . . , xmJ 

for Zi e E, Xj e X, i = 2 , . . . , n, j = 2 , . . . , m. 

Let k = min(n, m), € c n ( E , X ) , i = 1 , . . . , Ar. Interpreting 
• . . . • f i • i ) as a function of variables £k, xk, we can define the 

((n-Jfc) + (m-Jk))-linear functional T k U T k - i U . . . U T X U D on E n - k x X m ~ k 

as follows 

(14) ( r k n r k - 1 n . . . n r l n D ) ( ( i k + u M = r k ( A k ) , 
\xk+1, • • •, X m j 

where 
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(14') f k A k x k = ( r k - l a . . . n f l n D ) ( i k ' " " \xk, ..., XmJ 
for & € E, Xj £ X, i = k,.. ,,n, j = k,..., m. 

If T is a fixed quasi-nucleus in cn(E, X), then FH will denote the map-
ping which assigns TO D to every (n + m)-linear functional D on En x Xm. 
Clearly, 
(15) F k U T k - X 

is the composition of mappings -F id , . . . , determined by quasi-nuclei 
..., Tk in cn(E, X). We will denote by Tk the modified fc-th power of a 

quasi-nucleus T in cn(E, X), that is, 

(16) T k = A - F D T U . . . T U . K ' it! 
k—times 

In particular, Tx = TH. 

3. Structure of analytic formulae for the determinant sys tem 
Let (E,X) be a pair of isomorphically conjugate Banach spaces. Let 

S € op(E,X) be a fixed Fredholm operator of order r(5) = 0 and of index 
d(S) = d > 0. Let s j , . . . , Sd be a complete system of solutions of the equa-
tion Sx — 0, and U € op(E,X) be a quasi-inverse of 5. Let T £ op(E,X) 
denote such an operator that ( U T ) k is quasi-nuclear for some positive in-
teger k. It will be given an effective analytic formulae for the determinant 
system of the linear continuous mapping A = 5 + T. The operator A can 
be represented in the form A = S(I -f UT). We will show that operator A 
has a determinant system. It follows from the main theorem of [3], that for 
every integer I > k there exists an integer s > / such that 

(17) I + UT = ( ¿ o ) - 1 ^ + ( - l ) ' + 1 ( i / T ) ' ] = [/ + ( - l ) ' + 1 (^T) ' ] (y4o) - 1 , 
where 

(17') Ao = Y[(I + aiUT) 
t=i 

for all roots at\,..., a4_i of the equation a3 = 1, different from 1. 
Let T € cn(E,X) be a quasi-nucleus of the operator ( U T ) k , i.e. 

(18) £(UT)kx = T{x • 0 foT(t,x)eSxX. 
It follows from formulae (10) that the quasi-nuclei 
(19) [ ( - l ) i + 1 (C/T) 4 -*]^ and <F[(-1)3+1(£/T) ,-A:] 
determine the same quasi-nuclear operator ( — l) a + 1 ( t /T) 4 . Since the oper-
ator AQ defined by (17') is invertible and (—l) i + 1 ( i /T) s is a quasi-nuclear 
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operator, then in view of (17) we conclude that I + UT is a Fredholm op-
erator and, consequently, A is Fredholm as the composition of Fredholm 
operators S and / + UT. It follows from the main theorem of determinant 
theory (see [5]) that A has a determinant system. Our purpose is to construct 
this determinant system. 

Let (0„ ) be a determinant system for I , i.e. 

(20) 0 O = 1, 

e n r u • = 

for n = 1 , 2 , . . . , & G E, € X, i = 1 , . . . , n. Let us recall (see [4]), that 

(21) 6n,m{F) = r m O n + m for n, m 6 N, 

and the sequence (Gn(!F)) defined by the formula 

(22) 
0n(^) = £ en,m{?) 

m = 0 

is a determinant system for the operator I + ( U T ) k . 
In view of (19), (21), (22) the sequences 

(23) ( 0 n ( [ ( - l ) s + 1 ( t / T ) s - f c ] ^ ) ) and ( 0 n ( J T [ ( - i ) ^ i ( i / r ) s - f c ] ) ) 

are determinant systems for ( - l ) s + 1 ( i / T ) a . Consequently, we obtain 

(24) 0 n ( [ ( - l y + \ U T y - k } F ) = £ 0 n . m ( [ ( - l ) s + 1 ( i / T ) s - ^ ) , 
m = 0 

where 

(24') 0 n , m ( [ ( - l ) ' + 1 ( U T ) - k ] F ) ( * u M = 
\Xi, . . ., XnJ 

= {[(-iy+1(UT)-k]r)men+m(rn' '"'7?m' '"' M = 
\y It • • • , Vm i • • • , XnJ 

— TmtQ ( ^ » ' ' ' ' Vmi •> • • • i in \ 

- ( l ) J- "n+m ^ r ) . _ f c y i t ^ (UT)-"ym, *„ ..., x j 

for T)j G E, Xi, yj 6 X, i = 1 , . . . , n, j = 1 , . . . , m and similarly 

m = 0 
(25) © „ ( ^ [ ( - l ) ' + 1 ( £ / r ) - f c ] ) = £ 0 n . m ( ^ [ ( - l ) s + 1 ( ( / T ) s - f c ] ) , 

where 

(25') 
Vxi,. . . , ! „ / 
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= ( ^ [ ( - 1 y + \ u T y - k ] r e n + m ( l u i u M = 

\yi, ym) xl> •••> ^n / 

- (_l)m(i+1)/"m© +m (ril{UT)a~k, •••' T1m(UT)3~k, ..., \ \ J/l > •••» J/mj x1Ì •••» i n / 

for T)j £ E, x,, yj e X, i = 1,..., n, j = 1 , . . . , m. 
It follows from (20) that sequences (23) coincide. 
Let us denote 

(26) Dn = & n ( [ ( - i y + 1 ( U T y - k ] F ) 

= Gn(F[(-iy+1(UTy-k}) for n € N. 

We shall recall the following property of determinant systems (see [5]). 
If (D n ) is a determinant system for A £ op(E,X) and B £ op(E,X) is 

invertible, then 

<27> c - ( A „ : : : : A . ) 

for n £ N, £ E, Xi £ X, i = 1,..., n 
is a determinant system for BA, and 

(27') d J ^ - 1 ' — 
\ Xi, . . . , x „ J 

for n £ N, & £ E, X{ £ A", i = 1,..., n 

is a determinant system for AB. Then, in view of (27), (27'), bearing in 
mind (24), (26) and (17), the determinant system ( D n ) for I + UT is of the 
form 

oo 
(28) D n = Y ^ D n , m for n,m £ N, 

m=0 

where 

— \m(s+l) T-TOiQ / Vii •••> Vmi \ 
' Un+m\(UTY-kyu ..., (UT)-kym, Aq*!, A0xn) 

or 

V^i , . • V x i ' / 

frniUT)'-", ..., rim(UT)'-k, 6^0, ..., 
n + m \ i/l, Dm > •••, I , / 

for e E , Xi,yj £ X, i = 1,..., n, j = 1 , . . . , m. 
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Since S + T = S(I + UT), r (5) = 0, d(S) = d > 0, U is a quasi-inverse 
of 5 , s i , . . is a basis of N(S), then, applying Theorem (ix) in [1] and 
formula« (28'), (28"), we obtain 

Theorem 1. The sequence (Vn) defined by 

oo 
(29) P n = £ 2>„,m for n,meN, 

m = 0 

where 

(29') = 
\ X1,••• , •cn / 

- n ( • • • ' ^ -

~ Un+d'm\Vxu...yUxn,Sl, ..., ¿J ~ 
= ( _ i r ( » + i ) j r - 0 n + d + m 

f m, ••••> Vm, 6 , •••> fn-M \ 
\(UT)-k

yi,..., (UT)'-kym, • • •, • • •, A0sdJ 

or 

(29") V n , m ( l 1 ' - ~ ' t l + i ) = D n + d , m ( r f i ' „ , i n + d , ) = 
\ X i , . . . , Xn J T \ t / X l , . . . , t / x „ , S i , . . . , S d / 

= ( - l ^ ' + ^ x 

jrme (m(UT)'-k,..., Vm(UTy~k, Mo,..., 6,-mAO \ 

for £i,T)j 6 E, xt,yj € X, i = 1,..., n + d, j = 1,... ,m, / = 1,..., n is a 
determinant system for A = S + T, where S is a Fredholm operator of order 
r(S) = 0, and of index d(S) = d > 0, ( U T ) k is a quasi-nuclear operator for 
some positive integer k and a quasi-inverse U of S. 

Now if S = I , then U = I and we obtain Buraczewski's formulae for 
the determinant system for operator I + T, where Tk is quasi-nuclear for 
some positive integer k, given in [3]. If Ar = 1, i.e. UT is quasi-nuclear, then 
T is also quasi-nuclear and Ao = / , s = k = 1. Hence, we obtain formulae 
given in [1] for the determinant system for S + T, where 5 is a Fredholm 
operator and T is quasi-nuclear. Moreover, the obtained analytic formulae 
are independent of the choice of a quasi-inverse U of S. 

Assume that V € op(E,X) is another quasi-inverse of the operator 
S(r(S) = 0, d(S) = d> 0). It follows from [2], that 
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for some £ e K(U) = N{U)X = E for i = 1 , . . d . 
It can be verified by the induction argument, the validity of the lemma 

L E M M A 1. The following identity holds 

(31) (VT)" = ( f fT)" + £ £ ^ 
J=2 t, + ...+t( = n-<+l ji j,-i = l 

1-2 

[ ( n CjmT(UTy-sjm+1)(UTy'-^h -C^TiUTY' 
m=1 

n—1 

ii >••••>» =1 m=l 

/ o r a// positive integers n. 

Since ( U T ) k is a quasi-nuclear operator for some positive integer k, de-
termined by a quasi-nucleus T, then ( V T ) k , in view of (31) is also a quasi-
nuclear operator, determined by a quasi-nucleus T , defined as follows 

(32) 7 = £ t 
1=2 «, + ...+ :, = fc-/+l ji Ji_j =1 

1-2 

Jl 
m=l 

Jt-1 

J i , - J t = l m=l 

Similarly as (X>n) let us define a determinant system (T>*) for A = S + T, 
replacing ( U T ) k by ( V T ) k . It M o w s from (29), (29') and (29"), that 

(33) 

where 

(33') 

for n,m £ N, 
m=0 

Tj* / « » • • (n+ii | _ 
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= ( - i r ^ R n 0 n + d + m 

\ ( V T ) - k y u - (VT)'-kym, ¿oVx,, . . . , A0Vxn, A0su A0sd J 

or 

( 3 3 " ) K m i i 1 ' f " + d ) = 
v ^ l i • • • > *n / 

= ( _ ! ) " • ( ' + » ) x 

(rii(VT)-k,...,Tim(VT)-k,t1Ao,..., U+dAo 
n + d + m V 2/1. »rn, F x i , . . . , V x „ , S l , . . . , 3d 

for t]j £ i f , xi, yj 6 X, i = 1 , . . . , n -f d, j = 1 , . . . , m, / = 1 , . . . , n and 
A0 = + where a i , . . . , a a _ i are roots of the equation a' = 1, 
different from 1. 

Let us consider the class of quasi-inverses of 5, which can be represented 
in the form (30), where Q € Ai(T) for i = 1 , . . . i.e. 

d 
(34) + 

i=i 

Let V belong to the class (34). Then, in view of (31) and (32), it is easily 
seen, that 

(35) (VT)n = (UT)n for all n € N, and 7 = 7 . 

Moreover, Aq = Aq. Hence, bearing in mind (33'), we obtain 

(36') V n , m ( i U = 
\ *1) • • • i •cn / 

i l , •••> £n+d \ 
d d | 

MUII + ^(C.-xi)i4o«.-, • • •, AoUxn + £«iXnMo«», -Ao«i, . . . , Aqsj 1 
i=l i=l / 

= ( - l ) m ( i + 1 ) ^ m < 9 n + d + m 

( Vm, ill •••> in +d \ 
\(UTy~kyu .. .,(UTy-kym, A0UXl,... ,A0Uxn,A0Sl, . . . , A0sdJ' 
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Similarly, using (33"), we have 

0 6 " ) V n . m ( i U = 

= ( - l ) m ( 5 + 1 ) ^ m 0 n + d + m 

/m(UT)-k,...,ihn(UT)-k, hAo ^ Zn+dAo \ 

I »1, •••, Tim, Uxi + . . . , Uxn + «1,. -,3d J 
^ i=l » = 1 / 

= ( - l ) m ( S + 1 >X 

T m Q ( v i ( U T ) ° - k , . . . , r , m ( U T y - k , t 1 A o , . . . , \ 

" + d + m V f l ' •••> Vm, Uxu ...,Uxn,SU ..., Sd J ' 

In view od (36') and (36") the determinant systems (Vn) , (2?*) defined by 
formulae (29) and (33), respectively, coincide. In other words, a determinant 
system for S + T, where 5 is a Fredhoim operator of order zero and of non-
negative index, and ( U T ) k is quasi-nuclear, does not depend on the choice 
of a quasi-inverse of S from the class (34). It is not yet known whether a 
determinant system for the considered operator S + T is independent of the 
choice of an arbitrary quasi-inverse of S. 

Let us consider A = S+T, where S G op(E, X) is a Fredhoim operator of 
order r{S) = 0 and of index d(S) = d < 0, T € op(E, X) is a such operator 
that ( T U ) k is quasi-nuclear for some positive integer k and for a quasi-inverse 
U of S. Let <7\,.. .,<j-d denote all linearly independent solutions of £S = 0. 
Similarly as in the previous case, the operator A can be represented in the 
form A = (I + TU)S. It can be shown on the basis of the main theorem of 
[3], that for every integer / > k there exists an integer s > I such that 

( 3 7 ) i + t u = ( B o r ' i i + i - i y + ' i T u y ) = [i + ( - i y + 1 ( T u y ] ( B 0 ) - \ 

where 
3-1 

(37') Bo = H ( I + a iTU) 
i=i 

for all roots £*i,.. . , a 4 _ i of the equation a 3 = 1, different from 1. 
If T G cn(~,X) is a quasi-nucleus of (TU)k, then ( - 1 ^ ( r c / ) * is a 

quasi-nuclear operator determined by quasi-nucleus [( — iy+1(TU)s~k]J7 and 
also by ^ [ ( - l ) * + 1 ( T ^ ) ' - f c ] . 

Hence, in view of (37), I+TU is Fredhoim. Consequently, A is a Fredhoim 
operator as a composition of Fredhoim operators I + TU and 5. 
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Since (0„(^ r ) ) is a determinant system for I+(TU)k, the sequence ( D n ) , 

defined by 

(38) ^ „ = 6 > n ( [ ( - i r + 1 ( T i / r - f c ] J F ) 
= & n ( F [ ( - i y + 1 ( T U y - k ) ) f o r n £ N , 

is a determinant system for ( - l ) i + 1 ( T f / ) 4 . Thus we obtain 

oo 
(39) D n = Y : Dn,m for n , m e N , 

m=0 

where 

<*> :::: i:) = 
_ / I \m(a+l) -erne, ( *7l > • • • » Vmi £l> • • • • £n \ 
- ( 1 ) J- U n + r n y { T u y - k y u { T u y - k y m X u X J , 

and also 

<»•> M*.: ::::£)-
= ( - i ) ™ i * + ' ) ^ ™ e n + m ( n C r v ) " " - •••• i ™ ( T V ) - \ {, 

\ I/l ) • • • Ì 1Im ) xl » • • • i xn J 

f o r Zi, T)j e E , Xi,yj e X , i = l , . . . , n , j = l , . . . , m . 

It follows from properties (27), (27') and from the formula (37) that a 
determinant system ( D n ) for I + TU is of the form 

oo 
(40) Dn = ^ Dn,m for n,m £ N , 

m=0 

where 

<40'> :::: £ ) = 
_ / - i \m(s+l) Tm /a | 1 

' & n + m \ ( T U y - k y 1 , . . . A T U y - k y m , B o x u . . . , B o x n ) 

or 

(40") A i . m f * 1 ' ¡ n ) = 
\ X i , ..., £n / 
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= (m(Tuy-k,..., r,m(Tuy~k, e,b0, . . . , t n B 0 \ 
{ ' n + m V yi> y X n ) 

for fr, rjj £ E, Xi,yj € X , i = 1,.. .,n, j = 1 , . . . , m . 
Similarly as in Theorem 1, applying the formulae (40), (40'), (40"), we 

obtain 

THEOREM 2. The sequence (Vn) defined by 
oo 

(41) v n = ^ 2 v n , m for n,m € N, 
m=0 

where 

(41') ^ m f ^ ' T
i n ) 

7") ( t l U , . . . , <Ti, . . . , <7_d\ _ 
- Un-d,m I „ „ I -\ Xi, . . . , Xn-.d J 

= ( - l j ^ ' + ^ x 

Tmi9 ( ' 7 ? m ' ' ' • ' " " a ~ d ^ 
"-d+m\(TU)>-k

yi, ...,(TUy~kym, BoXl, B0xn.d J 
or 

(41") V ^ i t " " / \ ) = 
\ •C1» • • • •> *n—d J 

= ( - 1 r ( s + l ) / - m 0 n _ d + m 

(m(TUy-k, ...,Vm(TUy-k,^UB0, ...^nUBo^rBo, . . . , <r_dJ0o\ 

\ f l i •••> i/m, «1, ^n-d / 
for e E, xhyj £ X , i = 1 j = 1 , . . . , m , / = l , . . . , n - d, is a 
determinant system for A = S + T, where S is a Fredholm operator of order 
zero and of index d < 0, ( T U ) k is quasi-nuclear for some positive integer k 
and for a quasi-inverse U of S. 

Suppose that V £ op(E,X) is another quasi-inverse of the operator 5 
with r (5 ) = 0 and d(S) = d < 0. It follows from [2], that 

-d 
(42) V = + 

i—i 

for some z,- € R(U) = Af(U)L = X for i = 1 , . . . , -d. 
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Analogously, as in the case of a non-negative index (formula (31)), we 
can verify by the induction on n 

L E M M A 2 . The following i d e n t i t y holds 

n -d 

(43) ( T V r = ( T U ) n + J 2 E E 
1=2 «i + ...+i, = n-/+l j .71-1 = 1 

[( n < T j m ( T U y - T z j m + l ) ( T U Y ' - ' T z j , • , ( T U ) 1 ' + 

m=1 
-d n —1 

jl t" • tjn — 1 m = l 

for all n = 1 , 2 , . . . . 

Similarly, as in (32), if ( T U ) k is a quasi-nuclear operator for some positive 
integer k, determined by some quasi-nucleus F , then ( T V ) k , in view of (43), 
is also a quasi-nuclear operator, determined by a quasi-nucleus T , defined 
as follows 

(44) 7 = T + £ £ 
1=2 i, + ...+ i, = /s=i+l jl i(_ 1 = 1 

1-2 

m=l ' 
-d k-1 

[ ( n ' i - P u y - T z j ^ y ^ i T u y ' s { T U T 

m=1 
-d k-1 

+ E 
il jk = 1 "»=1 

Replacing i/ by V and T by in (37'), (41') and (41"), we obtain a 
determinant system for A = S + T, where ( T V ) k is quasi-nuclear. 

Let us consider the class of quasi-inverses of 5 , which can be represented 
in the form (42), where Z{ € N{T) for i = 1 , . . . , —d, i.e. 

-d 

(46) {U + Y , z < - ° r . Z i e N ( T ) } . 
«=i 

In a similar way as in (36'), (36"), applying elementary properties of deter-
minants, it is easy to verify, tha t a determinant system for S + T, where 5 
is a Fredholm operator of order zero and of negative index, and ( T U ) k is 
quasi-nuclear, does not depend on the choice of a quasi-inverse of S from 
the class (46). 
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Now let us consider the most general case. Let S € op(E,X) be any 
Fredholm operator, and let U € op(E,X) be a quasi-inverse of 5. Let 
T £ op(E,X) be such, that if the index of S is non-negative, then ( U T ) k 

is quasi-nuclear, and similarly if the index of S is negative, then ( T U ) k 

is quasi-nuclear for some positive integer k. Let and <7i,...,<7m 

denote bases of N(S) and Af(S), respectively. It follows from the basic prop-
erties of Fredholm operators that there exist elements u i , . . . € X and 
7"!,..., rm 6 E such that 

(47) SU - I - ^ Ui • Oi where a{Uj = 6{j for i,j = 1 , . . . ,/z, 
1 = 1 

m 

US = I — Si • Ti where rtSj = ¿ tJ for i,j= 1,..., m. 
i=l 

Let us take r = min(/x,m) and let R = 5, • G{ and L = u, • T{. 
Then the following identities hold: 

m — r 

(48)(S + L)(U + R) = I and {U + R){S + L) = I - ^ s,-+,r r+ i if d(S) > 0; 
1=1 

H-r 
(U + R)(S + L) = I and ( 5 + L)(U + R) = I - ^ ur+lar+i if d(S) < 0. 

1=1 

By (48), So = S + L is a Fredholm operator of order r(So) = 0 and of index 
d(So) = d(S), and that Uo = U + R is a quasi-inverse of Hence, the 
operator S + T can be expressed in the form 

(49) S + T = So + (T - L). 

Suppose that d(S) > 0. Since ( U T ) k is quasi-nuclear, R and L are finitely 
dimensional, then, evidently, [Uo{T — L)]k is a quasi-nuclear operator. Let 
us denote by Tq its quasi-nucleus. In view of (49), bearing in mind that 
. s r + 1 , . . . , s m is a basis of N(So), in order to obtain effective formulae for 
determinant systems for the operator A = S + T it is sufficient to substitute 
S0 for S,T - L for T, U0 for V and To for T in (29') and (29"). 

Similarly, suppose that d(S) < 0. Since ( T U ) k is quasi-nuclear, then it 
is easy to verify that [(T — L)Uo]k is also quasi-nuclear. Denoting by To 
its quasi-nucleus, bearing in mind that a r + i , . . . , a^ is the basis of Af(5o) 
and substituting 5o for S,T — L for T, Uq for U and To for T in (41') and 
(41"), we obtain analytic formulae for determinant systems for the operator 
A = S + T. 
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