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ANALYTIC FORMULAE FOR DETERMINANT SYSTEMS
FOR A CERTAIN CLASS OF FREDHOLM OPERATORS
IN BANACH SPACES

1. Introduction

R. Sikorski [6] has constructed a determinant system for any linear and
continuous Fredholm operator I + T in a Banach space, where T is a quasi-
nuclear operator.

A. Buraczewski [3] has obtained analytic formulae for a determinant
system for any linear continuous operator I + T in a Banach space, where
T* is a quasi-nuclear operator for some positive integer k.

The purpose of this paper is to show how to construct effectively a deter-
minant system for any linear and continuous operator A = S+ 7T in a Banach
space, where S is a fixed Fredholm operator, U is a quasi-inverse of S, T is
a such operator, that if index d(S) = d > 0, then (UT)¥ is a quasi-nuclear
operator for some positive integer k. Similarly, if d(S) = d < 0, then (TU)*
is a quasi-nuclear operator. The obtained result is a generalization of the de-
terminant theory of operators of the form I + T, where T* is a quasi-nuclear
operator for some positive integer k.

The possibility of the generalization was suggested by Prof. A. Bu-
raczewski to whom the author is very much indebted.

2. Preliminaries

Let X, = be fixed Banach spaces over the same real or complex field K.
The norms in X and = are denoted by ||||x and |||z, respectively.

A pair (£, X) is said to be a pair of conjugate Banach spaces, if there
exists a continuous bilinear functional I : £ x X — K whose value at a
point (§,z) € = x X is denoted by £z (i.e. I(§,z) = £z) and which satisfies
the following conditions:
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(a) if éx =0 for every £ € =, then z = 0;
(a') if £z = 0 for every z € X, then £ = 0.

The bilinear functional [ is called the scalar product on = x X.

It follows from conditions (a), (a') and from continuity of I, that every
element £ € = can be interpreted as a linear continuous functional on X and,
analogously, every element z € X can be interpreted as a linear continuous
functional on =. In symbols

(1) XCZ=, ZcX"

Hence, to each element £ € = we can assign two norms: ||£||= and ||£||x-,
where

(2) 1€llx- = sup{|¢{=] : l|l=llx < 1}.
Similarly, to each element z € X we can assign two norms: ||z||x and ||z}=-,
where

(2') llz]|== = sup{|&z] : [I£]l= < 1}.

If|| llz, ]| llx+ are equivalent norms in = and ||||x, ||||=- are equivalent norms
in X, then a pair (=,X) is said to be a pair of isomorphically conjugate
Banach spaces. A pair (=, X) is a pair of isomorphically conjugate Banach
spaces if and only if, in interpretation (1), = is a closed subspace of X *, and
X is a closed subspace of =™*.

Let op(Z,X) be the set of all continuous bilinear functionals
A: Z x X — K whose value at a point (£,z) € = x X is denoted by
Az (i.e. A(E,z) = EAx) and satisfying the following conditions:

(b) for every £ € = there exists 7 € = such that nz = £Az for every
z € X;

(b") for every z € X there exists y € X such that £y = £Az for every
ez

Note that such 7 and y have to be unique.

Every functional A € op(Z, X)) can be interpreted as a linear continuous
mapping A : T — Z defined by the formula £A = 7, where 7 is the ele-
ment satisfying the condition (b) and also as a linear continuous mapping
A : X — X defined by the formula Az = y, where y is the element satisfying
the condition (b'). Elements of op(=, X) are called operators.

For any A € op(=, X) let us introduce the following notation:

R(A)={Az:z€ X}, N(A)={r€ X:Az =0},
R(A)={€A: €€ Z}, N(A)={Ee€Z:(A=0}

The set op(=, X)) is a linear space with respect to natural definitions of
algebraic operations. It is a Banach space equipped with the norm defined
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as follows

141l = sup{léAz| : lEll= < 1, llzllx < 1)
= sup{||Aallx : llzllx < 1} = sup{lléAll= : igll= < 1)

for every A € op(=Z, X).
It is also a Banach algebra with the unity, where the multiplication is
defined by the formula

(4) €(A1A2)z = (EA;)(Azz)  for A1, Az € op(=,X),(&,2) € E x X.

The unity of this algebra is the scalar product I defined by the formula
&Iz = £z for (€,2) € E x X.
An operator B € op(Z, X), such that

(5) ABA=A, BAB=B.

is said to be a quasi-inverse of an operator A € op(=Z, X).
For fixed elements o9 € X,&{ € = let zq - & stands for the operator
defined as follows

(6) E(zo - €0)z = (Ex0)(&oz) for (€,2) € = x X.

The operator zg - & € op(=Z, X) is called a one-dimensional operator.
Any finite sum of one-dimensional operators is called a finitely dimen-
sional operator. Thus
n
(7) Z z - &,
i=1
is an n-dimensional operator, where z; € X, £, € =,i=1,...,n are fixed.
Let (Z,X) be a pair of isomorphically conjugate Banach spaces.
Let ¢n(Z,X) denote the space of all linear continuous functionals F
on op(Z, X ), which determine functionals Tx € op(=, X) defined by the
formula

(8) ETrx = F(z-€) for(é,z)€ Z x X.

Elements of the Banach space c¢n(=, X) are called quasi-nuclei. If for an
operator T € op(=,X) there exists a quasi-nucleus F € cn(Z, X) such
that T = T, then T is said to be quasi-nuclear and F is said to be a
quasi-nucleus of T'.

The operator (7) is quasi-nuclear and the functional }_;_, & ®z; defined
by the formula

(9) (Z &E® z;)(A) = Zf,-Ax.-, for every A € op(=, X)
i=1 =1
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is its quasi-nucleus. The quasi-nucleus Y|, & ® z; is said to be finitely
dimensional.

For a fixed operator C € op(Z, X) let us define quasi-nuclei CF and ¥C
on op(=, X) by the formulae

(10) (CF)A)= F(AC), (FC)A)= F(CA) forevery A€ op(Z,X).

Let D be an (n + m)-linear functional on =" x X™. The value of D at
a point (1,...,€n, Z1,-..,Zm) € E™ x X™ is denoted by

(11) D(f"“"gn).

T1yee:9Typ

For fixed F € ¢n(Z,X), if D can be interpreted as a function of the
variables &1, z;, let us define the ((n — 1) + (m — 1))-linear functional #O D
on Z"71 x X™~1 (see [4]) by the formula

62» ey En _
(12) (FO D)(% Im) = F(A),
where
(12") &g Axn =D(El’ R fn)
L1, «-+3 T

foréiez, rjeX,t=1,...,n,j=1,...,m.

If n > 1and m > 1, then interpreting 7 O D as a function of the variables
&, zq, for fixed G € en(=, X), we can define the ((n — 2) + (m — 2))-linear
functional GO FO D on Z™ 2 x X™~2 by the formula

(13) (GD}‘DD)(&” 5") = G(B),
T3y, «-+y Im
where
(13')  &Bz,=(FO D)(&’ 5")
T2y ceey Ty
for{ie=, z;eX,i1=2,...,n, j=2,...,m.
Let ¥ = min(n,m), F; € ¢n(E,X), ¢ = 1,...,k Interpreting

Fr-10O...0F O D as a function of variables £, zx, we can define the
((n—k)+(m—k))-linear functional F,OF;_,0...0F O0Don E"*x X™~k
as follows

(14) (kafk_lEI...CJ}'IDD)(ka,...,5"
Tk4ly «ooy Ty

) = 7o),

where
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€ky - o En)

(14') kakz‘k = (fk—l D...Dfl DD)(
Tky 0.y ITm
for{ie=Z,z;eX,t=k,...,n,j=k,...,m.
If F is a fixed quasi-nucleus in e¢n(=, X), then 0O will denote the map-
ping which assigns 3 D to every (n+ m)-linear functional D on =" x X™.

Clearly,
(15) F.OF_,0...0F~K0
is the composition of mappings F,0,..., Fx0O determined by quasi-nuclei

Fi,...,Frin cn(Z, X). We will denote by F* the modified k-th power of a
quasi-nucleus F in ¢n(Z, X), that is,

1
k _
(16) Fr=g

FOFO...70O.

k—times

In particular, 7! = F0O.

3. Structure of analytic formulae for the determinant system

Let (Z,X) be a pair of isomorphically conjugate Banach spaces. Let
S € op(=,X) be a fixed Fredholm operator of order 7(S5) = 0 and of index
d(§)=d > 0. Let s;,...,84 be a complete system of solutions of the equa-
tion Sz = 0, and U € op(Z, X) be a quasi-inverse of S. Let T € op(=, X)
denote such an operator that (UT)* is quasi-nuclear for some positive in-
teger k. It will be given an effective analytic formulae for the determinant
system of the linear continuous mapping A = S + T. The operator A can
be represented in the form A = S(I + UT). We will show that operator 4
has a determinant system. It follows from the main theorem of [3], that for
every integer | > k there exists an integer s > [ such that

(17) T+ UT = (Ao) [T + (1) (UT)’] = I + (-1)"* (UT)*)(4o) 7",

where
s—1

(17') Ao = [[U + aiUT)
i=1
for all roots a;,...,as_; of the equation a®* = 1, different from 1.
Let F € cn(Z, X) be a quasi-nucleus of the operator (UT)*, i.e.

(18) EUT)*z = F(z-€) for (£,z) € E x X.
It follows from formulae (10) that the quasi-nuclei
(19) [(-1)**}(UT)*~*F and F[(-1)"*'(UT)*"*]

determine the same quasi-nuclear operator (—1)*+!(UT)?*. Since the oper-
ator Ag defined by (17’) is invertible and (—-1)**!(UT)® is a quasi-nuclear
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operator, then in view of (17) we conclude that I + UT is a Fredholm op-
erator and, consequently, A is Fredholm as the composition of Fredholm
operators S and I + UT. It follows from the main theorem of determinant
theory (see [5]) that A has a determinant system. Qur purpose is to construct
this determinant system.

Let (©,) be a determinant system for I, i.e.

(20) Qo =1,

&Ly ... &iza

N

By Sn fnzl fnzn
forn=1,2,..., & €5, z; € X, i=1,...,n. Let us recall (see [4]), that

(21) Onm(F)=F"Optm forn,meN,
and the sequence (@,(F)) defined by the formula

(22) Ou(F)= D Oum(F)

m=0
is a determinant system for the operator I + (UT)F.
In view of (19), (21), (22) the sequences

(23)  (Oa(I(-1)"HUT)™*)F)) and (On(F[(-1)"H(UT)™*))

are determinant systems for (—1)**t*!}(UT)*. Consequently, we obtain

(24) G- UTYMF) = Y Oum(((-1)H(UT)"H]F),

m=0
where
(241) 6n,m([(—1)3+1(UT)s—k]]:)(61’ seey fn) -
Tly <00y Ty
— -1 s+1 UT s—k}- m@n m(’ll, «vey N, Ela vy fn) -
([( ) ( ) ] ) * Y, «o-4y Ymy 15, -~y Ty
—_ (_1ym(s+1) m m, LR Mm, 617 LR 671
= (=)™ Oy m ((UT)’“"yl, oo (UT)Y oy, 2y, oo xn)

for &,mj€ =, z5,y; € X,i=1,...,n,j=1,...,m and similarly

(25) Qn(f[(—l)“-l(UT)’—k]) = Z @n'm(}'[(_l)s-f-l(UT)s—k]),
m=0
where

(25" Onm(FI-1y Ty (S =

Tlye:yTn
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=(f[(_l)s+l(UT)a—k])m6n+m(7717 cevs TNm, 61’ ey fn):

Y, -y Ymy, T1, ...y Iy
- (—l)m(’+1)}-m@n+m (ﬂl(UT)s_k, ey T]m(UT)’_k, £la ey f’n )
Y1, tey Ym, Ty, ..y In

for&,n;€ 2, x5y, € X,0=1,...,n,5=1,...,m.

It follows from (20) that sequences (23) coincide.

Let us denote
(26) Dy = 0x([(-)**(UT)™")7)

= On(F[(-1)**'(UT)*"*]) forneN.

We shall recall the following property of determinant systems (see [5]).

If (D,) is a determinant system for A € op(=,X) and B € op(=,X) is
invertible, then

@ oa( g, 0 )
forneN, &€=, z;€X,i=1,...,n
is a determinant system for BA, and
(27) Da (f‘f:l’ o 5"ﬁ"1>
forneN, ez, z;€eX,i=1,...,n
is a determinant system for AB. Then, in view of (27), (27'), bearing in

mind (24), (26) and (17), the determinant system (D,,) for I + UT is of the
form

(28) Dn=)Y Dpp forn,menN,

m=0

where
Elv"'afn a3l 61 toe f
, _ y [} n —
(28) Dn,m(zl’“.’zn) —Dn.m (Aol'l, ...y, Aoz, =

— (_1\ym(s+1) rm M, sy Mm s fl’ reey £n
= 1) d 9n+m ((UT)’—kyla teey (UT)’—kym’ Aozy, ..., A0$n>

Dn’m(él,-.-,fn) :En,m (fle, ey anO) -

T1y...,Tp Z1y, ...y Tn

Ul(UT)’—k» crey Um(UT)’_k, EIAOa L) €nAO)

Y1, teey Ym, Ity vy Tn

for f,-,njez", I,’,ijX,iI ,...,n,7=1,...,m.

or

— (_l)m(s+l)]_—m0n+m (
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Since S+ T = SI+UT), r(S)=0,d(S) =d > 0,U is a quasi-inverse
of §, s1,...,84 is a basis of N(S), then, applying Theorem (ix) in [1] and
formulae (28'), (28"), we obtain

THEOREM 1. The sequence (D) defined by

[ o]
(29) Dp= Y Dum forn,meN,
m=0
where
' &1y -y €nta | _
(29) Dam (11,..., T, )_
=D fl) ey £ﬂ+d =
M\ Uzy, ..., Uzp, 8y, ..., 84
— (_l)m(3+l)}~m@n+d+m
M, ceey NMm, &, ., €ntd
(UTY*y1,...,(UT)* *ym, AoUz1, ..., AUz, AoS1, ..., Agsa
or
" 61""’£n+d _ 611 ey E'n-}-d _
(29%) D"'"‘(zl,..., Tn )_D"“'"‘(Uzl, ey Uzp, 81, .., 84/)

— (_l)m(a+l) x

UT’"",..., UT"", Ao, ..., €ntdA
F™Onsdpm (Th( ) T ( ) €140 €ntdAo . Sd)

Y1, ey Ym, Uzlv sy U"crn

foréi,n; € Z,z,y; € X,i=1,...,n+d,5=1,....m,I=1,...,nisa
determinant system for A = S+ T, where S is a Fredholm operator of order
r(§) = 0, and of indez d(§) = d > 0, (UT)* is a quasi-nuclear operator for
some positive integer k and a quasi-inverse U of §.

Now if § = I, then U = I and we obtain Buraczewski’s formulae for
the determinant system for operator I + T, where T* is quasi-nuclear for
some positive integer k, given in [3]. If k = 1, i.e. UT is quasi-nuclear, then
T is also quasi-nuclear and Ag = I, s = k = 1. Hence, we obtain formulae
given in [1] for the determinant system for S + T, where S is a Fredholm
operator and T is quasi-nuclear. Moreover, the obtained analytic formulae
are independent of the choice of a quasi-inverse U of §.

Assume that V € op(Z, X) is another quasi-inverse of the operator
S(r(§)=10,d(S)=d > 0). It follows from [2], that
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d
(30) V=U+) s
=1

for some (; € R(U)= N(U)* =Zfori=1,...,d.
It can be verified by the induction argument, the validity of the lemma

LEMMA 1. The following identity holds
d

31 (VD"=UT)+Y 3 >

=2 Gy1+..+iy=n=I+1 j1,..,51-1=1

( ﬁ GuT(UT) ™55, J(UT) =85, - i, T(UT)"]
m=1

+ zd (ﬁ (j...TsJ'm“)sj, 'ijT]
jl ----- Ju=l m=1

for all positive integers n.

Since (UT)F is a quasi-nuclear operator for some positive integer k, de-
termined by a quasi-nucleus F, then (VT)¥, in view of (31) is also a quasi-
nuclear operator, determined by a quasi-nucleus F, defined as follows

d

(32) ?=f+i > >

=2 'l++‘l=k-l+l jl v---'jl—l=1
-2
[( TI GuT@T)" s, )i, TWTY @ (UTY-15,,]

m=1
+ zd: [( ﬁ (,-st,-M,)c,-,T ® 8:',]-
Jiveenda=1 m=1

Similarly as (Dy,) let us define a determinant system (D};) for A = §+7T,
replacing (UT)* by (VT)*. It follows from (29), (29') and (29"), that

(33) D, =) D, fornmeN,
m=0
where

(33') D;m(ﬁh sey §n+d) -
! 7, Tn

sy
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= (-1 F 00 dpm

T, ey N, _617 ey _ él-f—d
(VT)""yl, ey (VT)""ym, AoVzy, ..., AoV z,, AgS1, ..., ApSq

or
(33/1) D;m(fh sy fn+d)=
! Tiy -2y ITp
= (~1)™*) x
f’"@ nl(VT)’—k, sy nm(VT)’_kaleOa ceey £n+d20
ndtm Y, ceey Ym, Vxl,--.,vzn,SI, ey Sd

for &i,pj € Z, oy, € X,i=1,...,n+d,5=1,...,m,l =1,...,n and
Ay = H;'__fll(1+agVT), where a;,...,a,_; are roots of the equation a® = 1,
different from 1.

Let us consider the class of quasi-inverses of S, which can be represented
in the form (30), where {; € N(T) fori =1,...,d, i.e.

(34) {U+2d:8i'CiiCi€N(T)}-
i=1

Let V belong to the class (34). Then, in view of (31) and (32), it is easily
seen, that

(35) (V)" = (UT)* foralln € N, and F = F.

Moreover, Ag = Ag. Hence, bearing in mind (33’), we obtain

! - 61’ ey £n+d -
(367) D"'"‘(:rl, T )—
1, ceey m,

=(=1 m(a+1)]_-m6
( ) n+d+m (UT)‘_kyI, _“'(UT)‘_kym’

61, ) En+d
d d
AoUzy + 3 (Giz1)Aosi, ..., AoUzn + 3 (Cizn)Aosi, Aosy, ..., Aosa

i=1 i=1

= (-1)"CHVEPG L irm

™, ey Mm, 611 ey €n+d
(UT)’_kyl,...,(UT)’—kym,AoU:El,...,AoU.’L‘n,Aosl, ceey Aosd )
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Similarly, using (33"'), we have

" - Ela *"s£n+d _
(36 ) Dn'm<1}1,..., Ty )—
= (_l)m(3+l)]_-m6n+d+m
m(UTY~E, .. am(UT)F, £ Ao, €ntdAo
d d
( v1, e ym, Uzl+Z(Cizl)si,---yUzn‘}'E(Cizn)-’i,ﬂ,--w’d)
i=1 i=1
— (—l)m(’“)x
FmO T’l(UT)’—ka---anm(UT)a—k,é.lAO’--w En-’-dAO
ntdtm n, ey Ym, UI]7"')Uzn7517 vy Sq '

In view od (36') and (36”) the determinant systems (D, ), (D},) defined by
formulae (29) and (33), respectively, coincide. In other words, a determinant
system for S + T, where § is a Fredholm operator of order zero and of non-
negative index, and (UT)¥ is quasi-nuclear, does not depend on the choice
of a quasi-inverse of § from the class (34). It is not yet known whether a
determinant system for the considered operator S + T is independent of the
choice of an arbitrary quasi-inverse of S.

Let us consider A = S+7T, where S € op(Z, X) is a Fredholm operator of
order r(S§) = 0 and of index d(S)=d < 0, T € op(=Z, X) is a such operator
that (TU)* is quasi-nuclear for some positive integer k and for a quasi-inverse
UofS. Let 0y,...,0_4 denote all linearly independent solutions of £5 = 0.
Similarly as in the previous case, the operator A can be represented in the
form A = (I+ TU)S. It can be shown on the basis of the main theorem of
[3], that for every integer | > k there exists an integer s > ! such that

(37) I+TU =(Bo) I +(-1)"*(TU)] = [I + (-1)"*(TU)*}(Bo) ™",

where
s—1
(37") By = [[( + aiTV)
i=1
for all roots ay,...,as—1 of the equation o® = 1, different from 1.

If F € en(=Z,X) is a quasi-nucleus of (TU)¥, then (—1)**(TU)* is a
quasi-nuclear operator determined by quasi-nucleus [(—1)**!(TU)*~*]F and
also by F[(-1)*+}(TU)*~*].

Hence, in view of (37), I+TU is Fredholm. Consequently, A is a Fredholm
operator as a composition of Fredholm operators I + TU and S§.
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Since (O,(F)) is a determinant system for I +(TU)*, the sequence (D),
defined by

(38) Do = 04([(-1)**(TU)**|F)
= O (F[(-1)*YY(TU)*"*]) forne N,

is a determinant system for (—1)**!(TU)*. Thus we obtain

(39) D, = Z T)-,,'m forn,me N,
m=0
where
’ n 611 AR f‘n _
(39)  Drm (1:1, ey :z:,,) -

— (_1\ym(s+1) rm M, ceey Mm, 61)----671
= (=)™ F " Ot m ((TU)""yl, ey (TU) *y 21, .. x,,) ’

and also
(39/[) En,m ( 617 (RN En ) .

Tly, +.ey Ty

= (_l)m(s+l)}‘m@n+m (nl(TU)’_kv (RN nm(TU)’-ka 61, e fn) ,

y1, RN Ym, L1y «+ey Tp

for&i,n;e S, zi,y; € X,i=1,...,n,5=1,...,m,
It follows from properties (27), (27') and from the formula (37) that a
determinant system (D, ) for I 4+ TU is of the form

(40) D, = Z Dn,ym forn,meN,
m=0
where
(401) Dn.m(fl’ ey En) -
Tly «e0y T
— (_1\m(s+1) Tm T, ERER} Im, El’ ey En
- ( 1) F 6n+m ((TU)""yl, “eey (TU)"“ym, BoI1, ceey Boa:,,)

or

(40”) Dn,m(é.h sy fn) =

Z1y --ey Tn
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= (—l)m(g+l)]:m9 (nl(TU)’_k’ ct nm(TU)’_k’ EIBO’ MR EnBO)
mm Y1, cees Ym> Ty, ..., ZIn
for &;,n; € Z, 25,9, € X,i=1,...,n,j=1,...,m.
Similarly as in Theorem 1, applying the formulae (40), (40'), (40"), we
obtain

THEOREM 2. The sequence (D,,) defined by

o0
(41) D, = Dppm for n,me N,
m=0
where
’ 617 seey g'n
(41) Dn,m (:L‘l, vy zn-—d)
=D fan ey E'nU$ d1y, ...y 0O_4q =
n-dim Iy, ceey Tn—d
— (_l)m(s+l)x
FmO ™, R} Mm, EIU, '-'7£nU7 Oty ...,0_4
n=dtm \ (TU)* %y, ..., (TU)* *yn, Boz, ..., Bozn_4
or
" 61, sy fn —
(41 ) Dn'm <$19 sy zn—d) -
D Ean ceey £nUa 01, R O_4q _
mehm oz, e Tn_d -
— (_l)m(3+l)}-m0n_d+m
(T]l(TU)"-k, AN T)m(TU)’—k, &HUBy, ..., §&UBy, 018y, ..., U_dBo)
h, ceey Yms Tly  oeey Tn_d

Jor&i,m; € =, z,y;, € X,t=1,...,n,5=1,....m,I=1,...,n—-d, isa
determinant system for A = S+ T, where S is a Fredholm operator of order
zero and of indez d < 0,(TU)* is quasi-nuclear for some positive integer k
and for a quasi-inverse U of S.

Suppose that V € op(=, X) is another quasi-inverse of the operator S
with r(§) = 0 and d(S) = d < 0. It follows from [2], that

~d
(42) V=U+ZZ.'-U,'

i=1

for some z; € R(U)=N(U)t =X fori=1,...,-d.
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Analogously, as in the case of a non-negative index (formula (31)), we
can verify by the induction on n

LEMMA 2. The following identity holds
n -d
(43) (TV)" =(TU)"+ Y > >
1=2 i1+...+i,=n—l+l jl....,jl_)=l
1_2 . . .
[( TI 0:n(TUYmT2;,, ) (TUY T2y, - 0, (TU) |+
m=1

n-1

5 (Tt o)

jlv"'vjn=l m=1
foralln=1,2,...

Similarly, as in (32),if (T'U)* is a quasi-nuclear operator for some positive
integer k, determined by some quasi-nucleus F, then (TV ), in view of (43),

is also a quasi-nuclear operator, determined by a quasi-nucleus F, defined
as follows

44) F=F+), > )

=2 i1 +...+4u=k=l+1j;,.,Ji-1=1
-
[( H O'jm(TU)'"‘TijH)Uj,_l(TU)" ® (TU)“_lzJ'l]'*'

m=1

~d
+ > |
Jhseees Je=1 m=
Replacing U by V and F by F in (37'), (41') and (41"), we obtain a
determinant system for A = § 4+ T, where (T'V)* is quasi-nuclear.

Let us consider the class of quasi-inverses of S, which can be represented
in the form (42), where z; € N(T)fori=1,...,—-d, i.e.

k-1
Tjm szm+l)ajk ® szx] .
1

-d
(46) {U+ZZ,"U,'ZZ,'EN(T)}.

=1
In a similar way as in (36'), (36”), applying elementary properties of deter-
minants, it is easy to verify, that a determinant system for § + T, where S
is a Fredholm operator of order zero and of negative index, and (TU)* is

quasi-nuclear, does not depend on the choice of a quasi-inverse of S from
the class (46).
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Now let us consider the most general case. Let § € op(=Z, X) be any
Fredholm operator, and let U € op(=Z,X) be a quasi-inverse of 5. Let
T € op(Z, X) be such, that if the index of § is non-negative, then (UT)*
is quasi-nuclear, and similarly if the index of S is negative, then (TU)*
is quasi-nuclear for some positive integer‘k. Let s3,...,85, and 04,...,0,
denote bases of N(S) and N(S), respectively. It follows from the basic prop-
erties of Fredholm operators that there exist elements uq,...,u, € X and
Tiy...,Tm € = such that

w

(47) SU:I—Zu,wa,- where o;u; = 6;; fori,j=1,...,pu,
m

US:I—ES."Ti where 7ys; = §;5 for 4,7 =1,...,m.

Let us take 7 = min(g,m) and let R =Y _,s;-0;and L = Y ._ u; -7
Then the following identities hold:

(48)(S+ LY U+R)=Tand (U+R)S+L)=1- Z SrqiTryi if d(§) > 0;

p=r
(U+R)S+L)=Tand (S+LYU+R)=1- 004 if d(S)<0.

=1

By (48), So = S+ L is a Fredholm operator of order r(5p) = 0 and of index
d(So) = d(S), and that Uy = U + R is a quasi-inverse of Sp. Hence, the
operator S + T can be expressed in the form

(49) §+T =S8 +(T-1L).

Suppose that d(S) > 0. Since (UT)* is quasi-nuclear, R and L are finitely
dimensional, then, evidently, [Up(T — L)]* is a quasi-nuclear operator. Let
us denote by Fy its quasi-nucleus. In view of (49), bearing in mind that
Sr41s---2Sm is a basis of N(Sp), in order to obtain effective formulae for
determinant systems for the operator A = §+ T it is sufficient to substitute
So for S, T — L for T, Uy for U and Fy for F in (29') and (29").

Similarly, suppose that d(S) < 0. Since (TU)* is quasi-nuclear, then it
is easy to verify that [(T — L)Up)* is also quasi-nuclear. Denoting by Fo
its quasi-nucleus, bearing in mind that o,41,...,0, is the basis of M(Sp)
and substituting So for §,T — L for T, Up for U and Fy for F in (41') and
(41"), we obtain analytic formulae for determinant systems for the operator
A=S5+T.
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