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ON A SYSTEM OF NONLINEAR SINGULAR INTEGRAL 
EQUATIONS IN A N EUCLIDEAN SPACE Rn 

1. Introduction 
Consider in an Euclidean space Rn, (n > 3), a system of p + 1 closed 

(n — l)-dimentional Lapunov surfaces So, S i , . . . , S p , (p > 0), having no 
common points. The surface So is the boundary of a bounded region fio 
containing the surfaces S\, S2, • • •, Sp. Let ft denote the set of all those points 
of the region Qo which do not lie on the surfaces S i , S2, • • • , S p . If p = 0, 
then SI = fi0. So ft = ft,, where are separable, simply-connected 
or multi-connected regions. Let f(y) be a complex function in any one of 
the regions i i i , 1^2»- - 1 and N(x) - a complex function defined at each 
point x ^ ( 0 , 0 , . . . , 0) by the formula 

(1) N(x) = F(x')\x\~n 

where x ' denotes the central projection of the point x on the unitary sphere 
u>, with centre ( 0 , 0 , . . . , 0 ) . We then have x = \x\x'. Assume tha t F(x') 
satisfies on the sphere u the condition 

( 2 ) \F{x')-F{y')\<Kw\x' 0 < hu < 1, ku > 0 , 

and, moreover, the condition 

(3 ) f F{x')dx' = 0 . 
Ul 

After Zygmund ([6], p. 468-505) and Pogorzelski ([4], p. 8), we define 
the singular integral 

( 4 ) f N(x - y)f(y)dy = l im / N(x - y)f(y)dy, " 6—»0 J 

n n, 
where denotes the set of all points y of the set Q satisfying the condition 
\x - y| > e. 
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Let us now recall the definition of a certain class of the functions intro-
duced by Pogorzelski ([4], p.6) in connection with investigation of properties 
of multidimensional singular integral (4). 

We denote by the class of all complex functions f ( x ) defined for 
x £ f2 and satisfying the conditions 

(5) \ x - x a \ a \ f ( x ) \ < f i j , 

(6) \ x - x s \ a + h \ f ( x ) - f ( y ) \ < K f \ x - y \ , 

where \x — y\ denotes the Euclidean distance of two arbitrary points x and y 
situated within any of the regions i i i , , - - - i f i p + i ; ^ « is the point of one of 
the surfaces So, S i , . . . , S p for which the distance \x — x s | reaches, for a fixed 
x £ i i , a lower limit. We assume that \x — x s | < |y - j/s | and parameters a 
and h are fixed for a given class and satisfy the conditions 

(7) 0 < a < 1, 0 < / i < l , a + h< 1; 

/xf and K j are posit ive constants which may depend on / . 

Denote by A'/ ) the subclass of which is obtained by fixing 
the values of f i j and K j independently o f f . 

In the sequel we make use of properties ([4], p. 17) of n-dimensional 
singular integral 

(8) $ ( x , u ) = f N(x - y, u)f(y)dy, 
n 

where f ( y ) £ Hh
a. 

The aim of this paper is t o give a proof for the existence of a solution of 
a system of nonlinear n-dimensional singular integral equations, that system 
being of arbitrary power. 

If the system is finite (see [4], p. 33) or countable (see [5]), we can apply 
one of the hitherto used methods , consisting in considering the Cartesian 
product nr=i ^k or nr=i r e s P e c t i v e l y , of the metric spaces A = Aj = 
A2 = . . . with a natural metric induced by the metric in A. 

However, if the system is uncountable, this method fails, since an un-
countable Cartesian product of metric spaces is not , in general, metric space. 
In this s ituation we shall use a topological method based on more general 
theorem of Schauder-Tikhonov ([1], p.227). As far as author knows, uncount-
able system of singular integral equations in Rn has not yet been examined. 
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2. Statement of the problem 
Consider in the set SI a system of nonlinear integral equations 

( 9 ) <P„(X) = M x ) + f -Y,X)$AX,YA<P-r(Y)}'reT]DY, V E T , 

n 

with unknown functions {v-y(®)}-Y€T> where T is an arbitrary set of indices. 
We make the following assumptions: 
I. SI is defined as in Section 1. 
II. Nu(x,u) is a complex function defined as follows in the domain 

{ ( x , u ) : x e Rn - { 0 } , u € ft} 

(10 ) N„(x,u)=Fl'{^U\ ( x = x'|x|), £ T, 

where Fl/(x',u) is defined in the domain {(x',u) : x' £ u, u £ Si} and 
satisfies for v £ T the conditions 

(11) | F V { X \ U) - < Kn[\X' - x'\hN + \u - 5|fc'], 

u,u £ Sli,i = 1 , 2 , . . . , p + 1, 

( 1 2 ) J F„(x',-)dx'= 0. 

u> 

III. Complex functions f„{x),x £ Sl,u £ T , satisfy the conditions 

(13) 
"'Ml s Ä •a I 

X 

where |ar - x3\ < |x — x4|. 
IV. Complex functions ^^(x, y, { « ^ „ g r ) , v £ T, are defined in the do-

main {(x,y, u„) : x £ i i , y £ SI, ti„ £ I I } , where II denotes here a plane of 
complex variable, and 

A f 
(14) l ^ i i . y . W - y e T ) ! < 1 ¡ - + A f sup |u„|, v£T, 

12/-JM i/€T 
(15) | $ „ ( ® , y , { « 7 } 7 € T ) - $ „ ( i , y , { t t . , } . T e r )| 

- i T ^ F * + A sup | « - « | , 

where 

(16) 0 < / i < / i i < l , h<hN< 1, a > 0, a + h<l, 

Af ' , Af, K', K are positive constants; x and x are arbitrary points situated in 
one of the regions i i i , , • • •, ftp+i (both in the same). Moreover, we assume 
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that |x - x s | < |x - x s | . The same assumption we made with respect to pair 
of the points y,y. 

3. Proof of the existence of a solution of (9) 
Consider a set C(Sl) consisting of all complex functions f(x) defined in 

the set il, continuous in every region i l j , j = 1 , 2 , . . . , p + 1, and satisfying 
the condition 

(18) sup|x - is|°+'l|<1p(a;)| < oo, 
Q 

where a and h are constants appearing in the assumptions (14), (15). 
In the usual way we define the sum of two elements of this set and the 

product of an element of this set and a real number. Hence the set C(il) is 
a linear space. Consider the set A = l i v e r ^v being a Cartesian product of 
the spaces A„, where A„ = C(i l) for each f £T. The set A consists of all 
systems {y>i/(x)}i/eT complex functions, defined and continuous on il. 

In the space A^, v £ T, we define the norm ||<,p(x)|| of its point <p(x) by 
the formula 

(19) ||<,(*)|| = s u p [ | x - x s r + V * ) l ] -
ren 

The space A„, u £ T, is a locally convex Hausdorff space (see e.g. [1], p. 116). 
We define a topology in the Cartesian product A by taking as the basis 

of open sets all the sets of the form Ili/ex where D„ is an open set in 
Au and jD^ = A„ for almost all u (see e.g. [2], p.252). The so-defined linear 
topological space A is a locally convex Hausdorff space (see [1], pp.31, 116). 

For every 1/ £ T let Zv denote the subset of all points in the space A„ 
satisfying the conditions 

(20) | x-xs\a\<p(x)\<R, 
(21) \x - ^ r + V x ) - <p(x)\ < R\x - x | \ 

where R is a positive constant, x and x are situated in one of the regions 
i l l , • • •, i ip+i(both in the same) and satisfy the condition |x — x4 | < 
|x — x, | . Obviously, the set Zv, v £ T, is convex. 

Let 
r+V(z), x € SI, 

F(x) = 

where f(x) £ HThe so defined function F(x) is uniformly bounded and 
uniformly continuous in a bounded domain il. So the set Z„, v £ T, is 
compact by virtue of Arzela theorem. 
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Consider in the space A the set Z = n ^ g j ^v This set consists of all 
systems {<f u {x ) }^T of functions satisfying for every u € T conditions (20) 
and (21). The set Z, being a Cartesian product of convex, compact sets, is 
itself convex and compact, (cf. e.g. [2], pp. 158-159, 250-252). 

Basing on (9) we define on the set Z the following transformation 

(22) M * ) = / » ( * ) + f * ) * * [ * , y . W y ì W l d y , f € i \ 

which associates with each point {y? 1 / (x)}^ 6 j of the set Z a point 
in the space A. Now we shall show that the constant R in the assumptions 
(20), (21) can be chosen in such a way that the operation (22) would trans-
form the set Z into itself. 

Note that, because of the assumptions (14), (15) and the conditions (20), 
(21), we have 

(23) \y-ya\a\*»[x,y,{My)}»eT]\<M' + MR, v e T , 
(24) |î/ - y . r + f c |*„[x , y, W y ) } 7 e r ] - * „ [ * , y, W » ) } 7 6 t ] | < 

where y and y (x and x) are arbitrary points situated in any of the regions 
iij, ii2) • • •» iip+i(both in the same), satisfying the condition |y—¡/a| < |y—y4| 
(|x-x5| < |i-i j|) . Thus, basing on (13), (23), (24) and the above mentioned 
theorem of Pogorzelski, we have 

(25) | a : - x 3 \ a \ M x ) \ < C i ( M ' + MR) + C2{K'+ KR) + M}, v € T, 

where \x - x4| < |x — x4| and Ci,C2,C[,C'2 are positive constants indepen-
dent of /„ , N„. 

We see that the operation (22) transforms the set Z into itself, if the 
constant R from (20) and (21) satisfies the inequalities 

n 

< (K' + KR)[\x - x\k + \y - 3/1*], «/ € T, 

and 

(26) \ x - x a \ ° + h \ r l > u ( x ) - M x ) \ 

< [C[(M' + MR) + C'2{K' + KR) + Kj]\x - x|\ u € T, 

(27) 
Mf + C\(M' + MR) + C2{K' -I- KR) < R, 
Kf + C[(M' + MR) + C'2{K' + KR) < R. 

Simple calculation leads to the conclusion that if 

(28) 
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then we can choose R in such a way that the system (27) holds. Namely, we 
can take 

(Mj + W + CtK' KJ + C[M' + CiK'\ 
(29) R — max ^ l _ C i M _ C i K - 1 _ C[M - C'2K )' 

Hence, if the constants of the problem satisfy the conditions (28) , then 
with R defined by (29) the operation (22) transforms the set Z into 
itself. 

Now we shall show that the transformation (22) is continuous in the 
space A. Let M* denote a directed set ([2], p. 150) and T\ be any finite 
subset of T. Consider an arbitrary net i/6t, m G M*, 
of point of the set Z, convergent to a point U = {(¿„(x)}^^- We have to 

prove that the net of transformated points U m — {ipim\x)}„¿t is con-
vergent to the point U = {ipu(x)}ueTi being the image of U under the 
transformation (22). Accordingly, it suffices to show that for every neigh-

bourhood W of the point U there exists mo <E 
M * such that F ' € W, 

for all m ^ mo ( > denotes here the order relation in the set M * ) . Since 
the neighbourhood W is an open set, we can assume that it is of the form 
r L € T W „ where Wy is an open set in A„ and Wv = A„ for almost all i>. 
Hence it suffices to check that for every u 6 T\ the net tj;[,m\x) is conver-
gent to the point ip^x) . For a fixed i> convergence of the net rpl, (x) to 
the point rpu(x) is understood in the sense of the metric in the space 
i.e. 
(30) ]im\\U{m\x)-U(x)\\ 

m 

= limm supn |z - " M*)\ = 0, v € T. 

Consider the difference 

(31) ^um\x) - W(x) = f N„(x - y, *)*„[*, y, {^\y)}^T]dy 
n 

- f Nu{x - y,x)$v[x,y, {<pv(y)}v£T]dy, v eT, m e M*. 
n 

To estimate (31) let us consider a neighbourhood Ii(x,rt) of the point 
x € fi and of radius re > 0. Let 

(32) ^ ( i l - W ^ / f W + f ^ i ) , K T , m 6 M*, 

where K = 9.P\k(x,ri). If \x - x„\ > r £ , then, by (12), 
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(33) /*(*) 

K 

- f N„(x - y,®){iv[®,y,{v«/(y)}i'6T] - *v[x,x,{<pv{x)}vzT]}dy. 

K 

Hence, by (15) and [4], p. 37, we can state that for every e > 0 there exists 
such a radius re that 

( 3 4 ) \x-x3\°+h\I?(x)\<e-, v t T . 

If — £s| < r t , then we have 

(35) / * ( * ) 

= f Nu(x - y,x){*u[x,y,{<plmXy)}ueT}- *^x,xAvim)(x)}»eT}}dy 

K, 

+ f N„(x - 2/,20{$„[z,i/,{¥V(j0}MET] - {fu(x)}ueT}}dy 

K, 

+ f Nu{x - y , z ) { $ „ [ x , y , M m ) ( y ) } « , e : r ] - W v ( y ) } » e T ] } d y , 

K-K, 

where Ks denotes a sphere with center x and radius - xs\. Basing on the 
investigations given in [4] (pp. 11, 37), we can state that in this case also we 
have 

( 3 6 ) \x-x.\a+k\I?(*)\<^ ^ T . 

Now, by (15), we have 

(37) ! / ? " k ( i ) | 

< sup sup[i„ - V . - W - mv)\JK „,.+>*• 

By the uniform convergence of the net U ^ = {y?im^(:r)} to the point 
U = { i f u ( x ) } , v 6 T, and the estimation of the last integral given in [4] 
(p. 11), we state that for every e > 0 there exists m' 6 M" such that 

(38) sup[|x - x.\a+hI?-K(x)\ < if m X m!. 
x€0 2 
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Combining (36) and (38), we have the result 
lim sup[|z - x s |°+ ' l |Vi /

m) - 0„(*)| = 0, i/ € T, 
m xGO 

which completes the proof of continuity of the transformation (22). 
Hence all assumptions of Schauder-Tikhonov theorem are satisfied. By 

this theorem, the system (9) has at least one solution U*(x) = {<fl(x)}„gx 
in the set Z. So we have the following result. 

THEOREM. If assumptions I - IV and condition (27 ) hold, then there ex-
ists a system of functions { ( ^ „ ( X ) } , , ^ , being a solution of system (9 ) and 
satisfying conditions (20), (21) with R given by (29). 
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