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ON THE STRONG COMPONENTWISE STABILITY
AND H-MATRICES

1. Introduction

An algorithm for solving a system of linear equations is said to be nu-
merically stable if a solution z, obtained by that method, satisfy a relation
(A+ E)z = b, where ||E|| is of order ¢ ||A||, € is the relative computer preci-
sion. If E = [e;;], A = [a;j] and |e;;| are of order ¢|a;;|, then an algorithm is
numerically stable in a componentwise sense. Such problems are considered
in [2], [1], [11] etc.

An algorithm for solving linear equations is strongly stable for a class
of matrices C' if for each A € C, the computed solution to Az = b satisfies
AZ = b, where A € C and A is close to A.

Bunch, Demmel and van Loan, [3], show that any stable algorithm on the
class of nonsingular symmetric matrices is also strongly stable on the same
matrix class. Smoktunowicz [11], considers the class of diagonally dominant
symmetric matrices and obtain the strong componentwise stability.

In this paper we consider the class of symmetric H-matrices, which in-
cludes the class of symmetric diagonally dominant matrices, investigated by
Smoktunowicz, and show that if an algorithm is stable for some matrix from
that class it is also strongly stable in a componentwise sense. Motivation for
such investigation lies in the fact that systems of linear equation with an
H-matrix arise frequently in practise. Also, some well-known algorithms are
stable for some subclasses of H-matrices, for example Gaussian elimination
without pivoting (LU decomposition) on column diagonally dominant matri-
ces etc. For discussion about stability one can see [2], [3], [9] and referenced
cited there.

2. H-matrices
For A = [a;;] let M(A) denote its modular matrix, i.e. M(A) = [m;],
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|aii|a l=]7
e {_laij|7 i #

DEFINITION 1. Matrix A € R™" is said to be an M-matrix if A is regular,
a;; <0,t# jand A"l >0.
DEFINITION 2. Matrix A € C™" is said to be an H-matrix if M(A) is an

M-matrix.

DEFINITION 3. Matrix A = [a,;] is an SDD (strictly diagonally dominant)
matrix if

lasi| > Zla.ﬂ, i1=1,...n
Jj#i
THEOREM 1 [4]. Matriz A is an H-matriz if and only if there ezists a
reqular diagonal matriz W such that AW is an SDD matriz.
Let N = {1,2,...,n}, N(i) = N\ {i}, and for 4 = {a;j], let
i-1

Pi(A)=Z|aij|, P{(A) = Z|aij|a Qi(A) = max |a;], i€ N.

i#i =1 JENE)

DEFINITION 4. Matrix A € C™" is called lower semistrictly diagonally
dominant if and only if
laii| > Pi(A), 1€ N,
laii| > P/(A), i€ N.
For some subclasses of H-matrices, matrix W such that AW is an SDD

matrix can be found as in the next theorem.

THEOREM 2 (7). Let one of the following conditions for a matriz A and
a diagonal matriz W = diag(w,, wy,...w,) be satisfied:

(i) A ts a lower semistrictly diagonally dominant and

!
1>wn>.1)"_(A_)’

P{(A) + 3 iy wilaijl

Qg

1> w; >

ti=n-1,...,1;
(ii) A is not an SDD matriz and
a;; >0, ai;aj; > P.(A)PJ(A), 1 € N, ] € N(l)
Then there ezists exactly one p € N such that a,p, < Pp(A). Let
w; =1, 1€ N(p),
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P,(A .
wp > _p(_), Qip = 0, 1€ N(p),
Gpp

,,e(Pa(A) 1+m {““"—P‘(A); ic N(p), aip;éO});

pp |a:p|

or

(iii) There ezists 1 € N such that
aii (aj; — P;(A) + lajil) > Pi(A)lajl, j € N(3),
and w; = 1, j € N(2),

w; > Pi(A), if @;=0, j€N(),

wie( (A tm {‘”J"—P"(A); j € N(i), aj,-¢o}).

it |(1j,'|

or

Then the matriz AW is an SDD matriz.

3. Strong stability for symmetric H-matrices

Using a simple generalization of technique given in [11] we obtain more
general result given in the next theorem.

THEOREM 1. Let A be a symmetric H-matrizc, W = diag (wy, w2, ..., wy)
regular diagonal matriz such that AW is an SDD matriz and

lasillwi (1= 3¢) > (1+€) ) laijllw;l.
J#i
If (A+ E)Z = b, where |E| < ¢]A| and T # 0, then there exists a matriz
F = FT such that (A+ F)T = b, |F| < 3¢|A| and A+ F is a symmetric
H-matriz.

Proof. Let us introduce vector y as
z=Wy.
Then, the system (A + E)Z = b becomes
(AW + EW)y = b,

where AW is an SDD matrix.
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Case 1:
7] < 192l £ ... <l

For the matrix F' = [f;;] we can choose

fir = en,

fij=ej, 1=1,2,...,n, 3=14+1,...,n,

and
i-1 ;T
fii=ei+ Z(eij - eji) ﬁ
=1
Ify;=0theny; =¥ =...=¥i—-1 =0 and f;; = 0. Otherwise

i-1
fiTi = euFi+ Y (eij — €5) T,
ij=1

so, in both cases equality £z = FT is satisfied.
Case 2: Let P be a permutation matrix such that
P?TT = [gplvgﬂv .- -)ypn]T
and
[9p1] < ¥p2l < - - |Ypnl -

Let 7 = Pf = PWy, A= PAPT, E=PEPT, b= Pb Matrix Ais a
symmetric H-matrix and

From the previous case we can conclude that there exists a symmetric matrix
F such that (Z+ f‘) Z = b and ,F‘ <3 l;f' .If we take F' = PTFA‘P, then
F is a symmetric and (4 + F)z = b. Also,

|F| = 'PTﬁpl < 3¢1P|T \2| |P| = 3¢ |A|.

So, we have proved that there exists a symmetric matrix F with the property
|F| < 3¢ |A| which satisfies

(A+F)Z=b.

To complete the proof, we have to show that A + F is an H-matrix. It is
enough to prove that (A + F)W is an SDD matrix
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Y laii + fisl lwil 3 (laisl + 1) lws] < (1 +€) D lais w1 -

J# J#i IEL

From the inequality given in the theorem we have

(1+)D laij [wjl < (1= 3¢) |a] |wil -
i

As | fii] < 3elai;|, we have

> lai; + fijl lwil < (aiil = 1fiil) [wil < Jaii + fishlwil
i#i

which means that (A + F') W is an SDD matrix and the theorem is proved.

In the paper [11] inequality

lasillwil (1= 3¢) > (1+€) Y aijl|wjl.

J#i

is replaced with the inequality

lasil (1 - 3e) > (1+3¢) Y _ layjl,
i

for a SDD matrix A. As € is supposed to be a relative computer precision
and for any SDD matrix AW we have

lasllwi] > ) laijllwl,

i

neither of these conditions doesn’t seem too restrictive.
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