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1. Introduction 
An algorithm for solving a system of linear equations is said to be nu-

merically stable if a solution x, obtained by that method, satisfy a relation 
{A + E)x = b, where ||.E|| is of order e HAH, e is the relative computer preci-
sion. If E = [ejj], A = [ajj] and |eij| are of order f|a«j|, then an algorithm is 
numerically stable in a componentwise sense. Such problems are considered 
in [2], [1], [11] etc. 

An algorithm for solving linear equations is strongly stable for a class 
of matrices C if for each A £ C, the computed solution to Ax = b satisfies 
Ax = b, where A 6 C and A is close to A. 

Bunch, Demmel and van Loan, [3], show that any stable algorithm on the 
class of nonsingular symmetric matrices is also strongly stable on the same 
matrix class. Smoktunowicz [11], considers the class of diagonally dominant 
symmetric matrices and obtain the strong componentwise stability. 

In this paper we consider the class of symmetric H-matrices, which in-
cludes the class of symmetric diagonally dominant matrices, investigated by 
Smoktunowicz, and show that if an algorithm is stable for some matrix from 
that class it is also strongly stable in a componentwise sense. Motivation for 
such investigation lies in the fact that systems of linear equation with an 
H-matrix arise frequently in practise. Also, some well-known algorithms are 
stable for some subclasses of H-matrices, for example Gaussian elimination 
without pivoting (LU decomposition) on column diagonally dominant matri-
ces etc. For discussion about stability one can see [2], [3], [9] and referenced 
cited there. 

2. H-matrices 
For A = [a,ij] let M(A) denote its modular matrix, i.e. M(A) = [mjj], 
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TUij 
( ktil, i = j, 

DEFINITION 1. Matrix A £ Rn'n is said to be an M-matrix if A is regular, 
aij < 0, i / j and A~l > 0. 

DEFINITION 2. Matrix A £ Cn'n is said to be an H-matrix if M(A) is an 
M-matrix. 

DEFINITION 3. Matrix A = [a^] is an S D D (strictly diagonally dominant) 
matrix if 

THEOREM 1 [4]. Matrix A is an H-matrix if and only if there exists a 

regular diagonal matrix W such that AW is an SDD matrix. 

Let TV = { 1 , 2 , . . . , n } , N(i) = N \ {¿ } , and for A = [a0 ] , let 

t - i 
= P/(A) = ^|a t J | , Qt(A) = majc |au|, i E N. 

DEFINITION 4. Matrix A 6 Cn,n is called lower semistrictly diagonally 
dominant if and only if 

|a,,| > Pi{A), i 6 N, 

|a„| > Pl(A), i e TV. 

For some subclasses of H-matrices, matrix W such that AW is an SDD 
matrix can be found as in the next theorem. 

THEOREM 2 [7]. Let one of the following conditions for a matrix A and 

a diagonal matrix W = diag(wi,W2, •. - wn) be satisfied: 

( i ) A is a lower semistrictly diagonally dominant and 

Grin 

1 > Wi > , i = n — 1,..., 1; 
an 

( i i ) A is not an SDD matrix and 

al{ > 0, auajj > Pi{A)Pj{A), i £ TV, j £ N(i). 

Then there exists exactly one p £ TV such that app < Pp{A). Let 

w, = 1, i£ TV(p), 



or 
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P Ml 
wp > aip = 0, » € N(p), 

avv 

(iii) There exists i £ N such that 

ai{ ( a j j - Pj(A) + | a j t | ) > i M ^ K . I , j e N(i), 

and Wj = 1, j 6 N(i), 

P(A) 
Wi > if aji = 0, je N(i), 

(lit 
or 

+ j e m , „ „ ¿ o } ) . 

Then the matrix AW is an SDD matrix. 

3. Strong stability for symmetr ic H-matrices 
Using a simple generalization of technique given in [11] we obtain more 

general result given in the next theorem. 

T h e o r e m 1. Let A be a symmetric H-matrix, W — diag (wt,w2,..., wn) 
regular diagonal matrix such that AW is an SDD matrix and 

|atl||u>,| (1 - 3e) > (1 + £) h j l K I -

If (A + E)x = b, where < e\A\ and i / 0, then there exists a matrix 
F = Ft such that (A + F)x = b, |F| < 3e|j4| and A + F is a symmetric 
H-matrix. 

P r o o f . Let us introduce vector y as 

x = Wy. 

Then, the system ( A + E)x = b becomes 

(AW + EW)y = b, 

where AW is an SDD matrix. 
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Case 1: 

|yil < \h\ < • • • < I&I-

For the matrix F - [f,j] we can choose 

/ n = e n , 

fij = i = 1 , 2 , . . . , n, j = i + 1 , . . . , n , 

and 

/ » = e t l + V ( e t J - e j i ) ^ . fri WiVi 

If yi = 0 then y1 = y2 = . . . = yi - i = 0 and fa = 0. Otherwise 

i - l 
faXi = ^ ^ {^ij ~~ eji)xj, 

j=i 

so, in both cases equality Ex = Fx is satisfied. 

Case 2: Let P be a permutation matrix such that 

PyT = [yPuyp2,---,ypn}
T 

and 

pn I • 

Let x = Px = PWy, A = PAPT, E = PEPT, b = Pb. Matrix A is a 
symmetric H-matrix and 

+ x = b. 

From the previous case we can conclude that there exists a symmetric matrix 
F such that b and < 3e . If we take F = PTFP, then 

F is a symmetric and (A + F)x = b. Also, 

\F\ = pTpp < 3 e | f T A \P\ = 3E\A\. 
So, we have proved that there exists a symmetric matrix F with the property 
| F | < 3e which satisfies 

(A + F)x = b. 

To complete the proof, we have to show that A + F is an H-matrix. It is 
enough to prove that (A + F) W is an SDD matrix 
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£ K + UiI \r»i\ < £ (l°o-l + l/'-il) K l < ( ! + £ ) £ K i l K l • 
j ^« J*« 

From the inequality given in the theorem we have 

As |/¿¿| < 3f |a,j | , we have 
£ la«i + fa\ K l ^ ( M " l/"D K l ^ l a " + fa I K l ' 

which means that (A + F) W is an SDD matrix and the theorem is proved. 
In the paper [11] inequality 

is replaced with the inequality 

|ait-| (1 - 3c) > (1 + 3c) la^l, 

for a SDD matrix A. As e is supposed to be a relative computer precision 
and for any SDD matrix AW we have 

K I K I > 

neither of these conditions doesn't seem too restrictive. 
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