Leszek Jan Ciach

DUAL OF NON-COMMUTATIVE $L^{p\infty}$ -SPACES WITH 0

1. Preliminaries

Let τ be a faithful normal semifinite trace on a semifinite von Neumann algebra \mathcal{M} . Under the strong sum, strong product, and the adjoint operation, the set of all closed densely defined τ -measurable operators affiliated with \mathcal{M} forms a *-algebra $\overline{\mathcal{M}}$ [7]. If $a \in \overline{\mathcal{M}}$, the function

$$a(\cdot):(0,\infty)\mapsto[0,\infty),$$

defined by setting

$$a(t) = \inf\{s \ge 0 : \tau(e_{\bullet}^{\perp}) \le t\}, \qquad t > 0$$

where $|a|=(a^*a)^{\frac{1}{2}}=\int_0^\infty s\,de_s$ is the spectral decomposition of |a|, is called the decreasing rearrangement of a. We define $\overline{\mathcal{M}}_0=\{a\in\overline{\mathcal{M}}:a(t)\to 0\text{ as }t\to\infty\}.$

DEFINITION 1. For $0 , <math>a \in \overline{\mathcal{M}}$, we define

$$||a||_{p\infty} = \sup\{t^{\frac{1}{p}}a(t): t>0\}.$$

The non-commutative $L^{p\infty}(M) = L^{p\infty}$ -space (non-commutative weak L^p -space) is the collection of all $a \in \overline{\mathcal{M}}_0$ such that

$$||a||_{p\infty}<\infty.$$

 $L^{p\infty}$ is a quasi-Banach space (see [2], Th. 2.1).

2. Dual of non-commutative $L^{p\infty}$ -spaces with 0

Theorem 1. For 0 ,

$$L^{p\infty}(\mathcal{M})^* = \{0\}$$

if M has no minimal projection.

354 L. J. Ciach

Proof. Suppose that h is a nonzero continuous linear functional on $L^{p\infty}$. We take a nonzero selfadjoint element $a \in L^{p\infty}$ such that $h(a) \neq 0$. Then there exist a commutative von Neumann subalgebra $\mathcal N$ of $\mathcal M$ such that $a \in \overline{\mathcal N}_0$ and a *-isomorphism U from $\overline{\mathcal N}$ onto $\overline{\mathcal A}$ where $\mathcal A = L^\infty(0, \tau(\sup |a|))$ such that (Ub)(t) = b(t) for any t > 0 and $b \in \overline{\mathcal N}$ (see [1], Lemma 1.3). The restriction of the *-isomorphism U to $L^{p\infty}(\mathcal N)$ is an isometry onto $L^{p\infty}(\mathcal A)$. Moreover, $h(U^{-1}\cdot) \in L^{p\infty}(\mathcal A)^*$, $h(U^{-1}Ua) = h(a) \neq 0$, which is a contradiction since $L^{p\infty}(\mathcal A)^* = \{0\}$ [3].

Suppose that there exists a minimal projection e in \mathcal{M} . Putting h(e) as an arbitrary non-zero complex number, we define $h(\lambda e) = \lambda h(e)$, $\lambda \in \mathbb{C}$ and h(a) = h(eae), $a \in L^{p\infty}$. Then h is a non-zero linear functional on $L^{p\infty}$. Since $|h(a) - h(a_n)| = |h(e(a - a_n)e)| = |\lambda_n||h(e)|$ and $|\lambda_n|\tau(e)^{\frac{1}{p}} = |\lambda_n||e||_{p\infty} = ||e(a - a_n)e||_{p\infty} \le ||a - a_n||_{p\infty}$, h is continuous.

Let \mathcal{H} be an arbitrary Hilbert space over the field \mathbb{C} of complex numbers $\mathcal{B}(\mathcal{H})$ the von Neumann algebra of all bounded linear operators from \mathcal{H} into \mathcal{H} . To show finally that $L^{p\infty}(\mathcal{B}(\mathcal{H}))^* = \mathcal{B}(\mathcal{H})$ is a simple deduction from the observation that

$$\operatorname{tr}(|a|) = \int_{0}^{\infty} a(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} a(t) dt \le ||a|| + ||a||_{p\infty} \sum_{n=1}^{\infty} n^{-\frac{1}{p}}$$

$$\le ||a||_{p\infty} \left(1 + \zeta \left(\frac{1}{p} \right) \right)$$

and from the fact that the Banach envelope of $L^{p\infty}(\mathcal{B}(\mathcal{H}))$ is isometric to $L^1(\mathcal{B}(\mathcal{H}))$ — the ideal of trace class operators equipped with the usual trace norm (see [6], [9]). Any linear continuous functional h on $L^{p\infty}(\mathcal{B}(\mathcal{H}))$ is of the form $h(a) = \operatorname{tr}(ab) = \operatorname{tr}(ba)$ for some $b \in \mathcal{B}(\mathcal{H})$.

Remark 1. The space $F(\mathcal{H})$ of all finite-dimensional operators in $\mathcal{B}(\mathcal{H})$ is not dense in $L^{p\infty}(\mathcal{B}(\mathcal{H}))$ (see [2], Prop. 2.7). However, using the above representation of $h \in L^{p\infty}(\mathcal{B}(\mathcal{H}))^*$, we see that $F(\mathcal{H})$ is dense in $L^{p\infty}(\mathcal{B}(\mathcal{H}))$ in its weak topology.

3. Dual of non-commutative $L^{1\infty}$ -space

DEFINITION 2 (see [2], [4]). For $0 < r \le 1$, $a \in \overline{\mathcal{M}}$, we define

$$a(t,r) = \begin{cases} \sup \{ \tau(p)^{-\frac{1}{r}} ||pa||_r : t \le \tau(p) < \infty \}, & 0 < t \le \tau(1), \\ 0, & t > \tau(1), \end{cases}$$

where

$$||pa||_r = \tau (|pa|^r)^{\frac{1}{r}} = \left\{ \int_0^\infty (pa)^r (t) dt \right\}^{\frac{1}{r}}.$$

DEFINITION 3 (see [2], [4]). For any $a \in \overline{\mathcal{M}}$ and $0 < r \le 1$, we define

$$\widetilde{a}(t,r) = \left\{\frac{1}{t}\int_{0}^{t}a^{r}(s)\,ds\right\}^{\frac{1}{r}}, \quad t>0.$$

It is not hard to prove the following inequalities ([2], Prop. 2.3)

$$a(t) \le a(t,r) \le \widetilde{a}(t,r), \quad t > 0, \ a \in \overline{\mathcal{M}}_0.$$

We define four continuous non-trivial semi-norms $N_0(\widetilde{N}_0), N_\infty(\widetilde{N}_\infty)$ on $L^{1\infty}$ by

DEFINITION 4 (cf. [4]). For $a \in L^{1\infty}$, we define

- (i) $N_0(a) = \limsup_{t\to 0} t^2 a(t, 1-t),$
- (ii) $N_{\infty}(a) = \limsup_{t \to \infty} a(t, 1 \frac{1}{t}),$
- (iii) $\widetilde{N}_0(a) = \limsup_{t\to 0} t^2 \widetilde{a}(t, 1-t),$
- (iv) $\widetilde{N}_{\infty}(a) = \limsup_{t \to \infty} \widetilde{a}(t, 1 \frac{1}{t}).$

For $a, b \in \overline{M}_0$, 0 < r < 1, we have ([5], 4.9, th. 4.7)

$$||p(a+b)||_r \le 2^{\frac{1}{r}-1}(||pa||_r + ||pb||_r)$$

and

$$(\widetilde{a+b})(t,r) \leq 2^{\frac{1}{r}-1}(\widetilde{a}(t,r)+\widetilde{b}(t,r)).$$

As a consequence, we obtain the subadditivity of $N_0(N_\infty)$, $\widetilde{N}_0(\widetilde{N}_\infty)$. The homogeneity is also satisfied.

Since

$$\begin{split} t^2 a(t,1-t) &\leq t^2 \widetilde{a}(t,1-t) = t^2 \left\{ \frac{1}{t} \int_0^t (a(s))^{1-t} \, ds \right\}^{\frac{1}{1-\epsilon}} \\ &\leq \|a\|_{1\infty} t^2 \left\{ \frac{1}{t} \int_0^t s^{t-1} \, ds \right\}^{\frac{1}{1-\epsilon}} = \|a\|_{1\infty} t^{\frac{-t}{1-\epsilon}}, \\ a\left(t,1-\frac{1}{t}\right) &\leq \widetilde{a}\left(t,1-\frac{1}{t}\right) = \left\{ \frac{1}{t} \int_0^t (a(s))^{1-\frac{1}{\epsilon}} \, ds \right\}^{\frac{t}{\epsilon-1}} \\ &\leq \|a\|_{1\infty} \left\{ \frac{1}{t} \int_0^t s^{\frac{1}{\epsilon}-1} \, ds \right\}^{\frac{t}{\epsilon-1}} = \|a\|_{1\infty} t^{\frac{1}{\epsilon-1}}. \end{split}$$

We have continuity of $N_0(\tilde{N}_0)$ and $N_\infty(\tilde{N}_\infty)$ in $L^{1\infty}$. The seminorms $N_0(\tilde{N}_0)$ are non-trivial (see [4] and Remark 3). If $\tau(1) = \infty$, then $N_\infty(\tilde{N}_\infty)$ are also non-trivial (see Remark 3).

356 L. J. Ciach

An important application of the above considerations is contained in the following

THEOREM 2. Dual of the space $L^{1\infty}(\mathcal{M})$ is non-trivial.

Proof. By the Hahn-Banach theorem and the above constructions of $N_0(\widetilde{N}_0)$, $N_{\infty}(\widetilde{N}_{\infty})$.

Remark 2. If h is a continuous linear functional on $L^{1\infty}(\mathcal{M})$, then there exists a unique element $b \in \mathcal{M} + L^1(\mathcal{M})$ such that $h(a) = \tau(ba) = \tau(ab)$ for

$$a \in \overline{F_{\tau}(\mathcal{M})} = \{a \in L^{1\infty}(\mathcal{M}) : \lim ta(t) = 0 \text{ as } t \to 0 \text{ or } t \to \infty\}$$
(see [2], [10]). It is clear that $\widetilde{N}_0(a) = 0$, $\widetilde{N}_{\infty}(a) = 0$, $a \in \overline{F_{\tau}(\mathcal{M})}$.

4. Haagerup's $L^p(\mathcal{M})$ -spaces and weak L^p -spaces

We now assume that \mathcal{M} is a general von Neumann algebra (not necessarily semi-finite) and let \mathcal{N} be the crossed product of \mathcal{M} by the modular automorphism group of a fixed weight on \mathcal{M} . The Haagerup's $L^p(\mathcal{M})$ -spaces are contained in $L^{p\infty}(\mathcal{N})$, 0 , and we have

$$a(t) = \frac{1}{t^{\frac{1}{p}}} ||a||_p, \quad t > 0, \ a \in L^p(\mathcal{M}),$$

 $\|\cdot\|_p$ -the norm (quasi-norm) in the $L^p(\mathcal{M})$ -space where a(t) is relative to the canonical trace τ on \mathcal{N} (see [5], [8]).

Remark 3. For $a \in L^1(\mathcal{M})$, we have

(1)
$$\widetilde{N}_0(a) = \widetilde{N}_{\infty}(a) = ||a||_1.$$

Moreover, it is known that $L^1(\mathcal{M})$ is order isomorphic to the predual \mathcal{M}_* and $h \in L^1(\mathcal{M})^*$ iff $h(a) = \operatorname{tr}(ab) = \operatorname{tr}(ba)$, $a \in L^1(\mathcal{M})$, for some $b \in \mathcal{M}$, where $\operatorname{tr}(\cdot)$ is a positive linear functional on $L^1(\mathcal{M})$ and $\|h\| = \|b\|$ (see [8]). By the Hahn-Banach theorem and equality (1) there is an $\widetilde{h} \in L^{1\infty}(\mathcal{N})^*$ such that $\widetilde{h}(a) = h(a) = \operatorname{tr}(ab)$ for $a \in L^1(\mathcal{M}) \subset L^{1\infty}(\mathcal{N})$ and some $b \in \mathcal{M}$, $\widetilde{h}(a) = 0$, $a \in F_{\mathcal{T}}(\mathcal{N})$.

Secondly, we consider the Haagerup's L^p -space and weak L^p with p > 1.

DEFINITION 5. For
$$p > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$, $a \in \overline{\mathcal{N}}$, we define
$$\|a\|_{p1} = \frac{1}{p} \int_{0}^{\infty} t^{-\frac{1}{q}} a(t) dt,$$

$$\|a\|_{p1}^{\#} = \frac{1}{p} \int_{0}^{\infty} t^{-\frac{1}{q}} \widetilde{a}(t, 1) dt.$$

The non-commutative $L^{p1}(\mathcal{N}) = L^{p1}$ -space is the collection of all $a \in \overline{\mathcal{N}}_0$ such that $||a||_{p1} < \infty$. L^{p1} , p > 1 are Banach spaces, $||\cdot||_{p1}^{\#}$, p > 1 is a norm (see [2], Prop. 2.4) and

$$||a||_{p1} \leq ||a||_{p1}^{\#} \leq q||a||_{p1},$$

 L^{p1} is the Köthe dual of $L^{q\infty}$ (see [2], Th. 2.4). By that, if $b \in L^{p1}$, then the linear functional h_b

$$a \rightarrow h_b(a) = \tau(ab) = \tau(ba), \quad a \in L^{q\infty},$$

is continuous, h_b is called normal.

If $h \in L^{q \infty *}$ and h(a) = 0 for

$$a \in \overline{F_{\tau,q}} = \{a \in L^{q\infty} : \lim t^{\frac{1}{q}} a(t) = 0 \text{ as } t \to 0 \text{ or } t \to \infty\},$$

then h is called singular (h_b is singular iff b = 0!).

We define two continuous non-trivial semi-norms K_0 (K_∞) on $L^{q\infty}(\mathcal{N})$ by

DEFINITION 6. For all $a \in L^{q\infty}(\mathcal{N})$, we define

- (i) $K_0(a) = \limsup_{t\to 0} t^{\frac{1}{q}} \widetilde{a}(t,1),$
- (ii) $K_{\infty}(a) = \limsup_{t \to \infty} t^{\frac{1}{q}} \widetilde{a}(t, 1)$.

It is clear that $K_0(a)=0$ $(K_\infty(a)=0)$ if $a\in \overline{F_{\tau,q}}$, by that, if the linear functional h is continuous with respect to K_0 (K_∞) , then h is singular. Moreover, if $a\in L^q(\mathcal{M}), q>1$, then we have

$$K_0(a) = K_{\infty}(a) = p||a||_q.$$

Let now $h_b \in L^{q\infty}(\mathcal{N})^*$ for some $b \in L^{p1}(\mathcal{N})$. Then there exists a unique element $T(b) \in L^p(\mathcal{M})$ such that (see [8])

$$h_b(a) = \tau(ab) = \operatorname{tr}(aT(b)), \quad a \in L^q(\mathcal{M}).$$

The mapping $T: L^{p1}(\mathcal{N}) \to L^p(\mathcal{M})$ is linear and continuous. On the other hand, for $a \in L^q(\mathcal{M})$,

$$|\operatorname{tr}(aT(b))| \le ||a||_q ||Tb||_p = \frac{1}{p} K_0(a) ||Tb||_p \left(\frac{1}{p} K_{\infty}(a) ||Tb||_p\right).$$

As a consequence we obtain:

There exists a singular functional $h \in L^{q\infty}(\mathcal{N})^*$ such that

$$h(a) = \operatorname{tr}(aT(b)) = \tau(ab) = h_b(a), \quad a \in L^q(\mathcal{M})$$

for some $b \in L^{p1}(\mathcal{N})$.

Finally, let us assume that 0 .

Remark 4. If \mathcal{M} has a minimal projection, then there exists a non-zero continuous linear functional on $L^p(\mathcal{M})$ with $0 . On the other hand, <math>L^{p\infty}(\mathcal{N})^* = \{0\}$ since \mathcal{N} has no minimal projection. As a consequence, $L^p(\mathcal{M})$ has no topological complement in $L^{p\infty}(\mathcal{N})$, 0 .

References

- [1] V. I. Chilin, A. V. Krygin, P. A. Sukochev, Local uniform and uniform convexity of non-commutative symmetric spaces of measurable operators, Math. Proc. Cambridge Phil. Soc. 111 (1992), 355-368.
- [2] L. J. Ciach, Some remarks on the non-commutative Lorentz spaces, Comm. Math. 26 (1986), 201-217.
- [3] M. Cwikel, On the conjugates of some function spaces, Studia Math. 45 (1973), 49-55.
- [4] M. Cwikel, Y. Sagher, L(p, ∞)*, Indiana Univ. Math. J. 21 (9) (1972), 781-786.
- [5] T. Fack, H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math. 123 (2) (1986), 269-300.
- [6] N. J. Kalton, N. T. Peck, J. W. Roberts, An F-space sampler, London Math. Soc. Lecture Notes, Series 89, Cambridge Univ. Press, 1984.
- [7] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 104-116.
- [8] M. Terp, L^p-spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
- [9] K. Watanabe, On extreme points of the unit ball of non-commutative L^p -space with 0 , Sci. Reports of Niigata Univ. Series A 25 (1989), 5-10.
- [10] F. J. Yeadon, Non-commutative L^p-spaces, Math. Proc. Cambridge Phil. Soc. 77 (1975), 91-102.

INSTITUTE OF MATHEMATICS ŁÓDŹ UNIVERSITY ul. Stefana Banacha 22 90-238 ŁÓDŹ, POLAND

Received January 30, 1996.