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SOME REMARKS ON 2-ELEMENTS 
A N D 2-SUBGROUPS OF FINITE GROUPS 

The notations and terminology are standard (see for example [1]). All 
groups will be finite. 

D E F I N I T I O N , i) A rational group is a group all whose irreducible charac-
ters are rational valued. 

ii) An ambivalent group is a group all whose irreducible characters are 
real valued. 

iii) A 2-ambivalent group is a group all whose irreducible characters are 
real valued on the 2-elements. 

P R O P O S I T I O N 1 (see [5]). A group G is rational i f f 
Aut(A') ~ NG(K)/CG(K) 

for all cyclic subgroups Ii of G. 
T H E O R E M 2 . Let G be a rational group such that 

Aut(A') ~ NG(K)/CG(I<) 

for all 2-subgroups K of G. Then: G ~ G'Zi where G' is a 3-group and Z-i 
inverts all elements of G'. 

P r o o f . We shall prove first that the Sylow 2-subgroups of G are isomor-
phic to Z-i - Suppose G has a 2-subgroup K of order 2", n > 2. By Gaschutz's 
theorem (see [2]) Out(K) has an element of order 2. Let A = L/CG(K) be a 
Sylow 2-subgroup of NG{K)/CG{K) • The order of A is less than the order 
of NG{K)/CG{K) I hence L contains a 2-subgroup of order strictly greather 
than the order of K. So, by induction we can construct 2-subgroups of G of 
arbitrarily large order. This is a contradiction. 

Now, by Walter's theorem [7] G has a normal subgroup N > 02'(G) such 
that G/N has odd order and N/O^iG) ~ SxP where S is a2-group and P is 
a direct product of simple groups of the form L i(k),k > 3 ,k = 3,5(mod 8) 
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or k = 2P, or the Janko simple group J ( l l ) , or is of Ree type. Since G 
is a rational group, N = G and hence G/Oy{G) ~ 5 x P. The simple 
groups listed before are not rational, hence G/OyiG) ~ 5 . Therefore G 
is 2-nilpotent and 5 £ Syl2(G). For every rational group G, Oi>(G) C G' 
therefore G' = Or(G). 

We shall prove now by induction on |G| that G' is a 3-group. Let L be a 
minimal normal subgroup of G. Then L is an elementary abelian p-group. 
Suppose p — 2. Then L ~ 5 £ Syl2(G!) is normal in G, therefore L = M = G. 

Suppose now p / 2. Then L ^ G\ ( G / L ) ' is a 3-group by induction 
and \G\ = 2.3a.pb. Let x £ G of order p and X = < x >. Then NA(X) > 
S € Syl2(G) and NG{X)' < CG{x) < CG(x)S < N G { X ) . Since CG(2:)5 
is selfnormalizing in G it follows that CG(x)S = N G ( X ) . Then Aut(A') ~ 
NG{X)/CG(X) ~ 5 / ( 5 n CG(x)) ~ Z2 a n d t h u s p = 3 . 

COROLLARY 3 . Let G be a group such that Aut(K) ~ NG{K)/CG(I\) 
for all subgroups of G. Then G ~ 5j, 52 or S3. 

P r o o f . Clearly G is a rational group by Prop. 1. Analogously in view 
of the first part of the proof of Theorem 2, the Sylow 3-groups of G must 
have order 3. 

P R O P O S I T I O N 4 . A group G is 2-ambivalent i f f for every 2 element x £ G 
there is an element z £ G such that xz = i - 1 . 

P r o o f . Analogous to the proof of the similar proposition for ambivalent 
groups (see [2]). 

It is easy to prove the following: 

P R O P O S I T I O N 5 . Factor groups of 2-ambivalent groups are 2-ambivalent 
groups. 

D E F I N I T I O N . Let ( H , Y ) be a permutation group on the set y and x € H. 
The cyclic group (x) acts on Y and one obtains a decomposition of Y into 
tranzitive constituents, the orbit of Y. Denote 0(x,y) the orbit of y £ Y. 
We say that (H , Y) is 2-ambivalent transversal iff for every 2-element x £ H 
there is some element z £ H such that x2 = i - 1 and zO, x,y = O < x,y > 
for every y £ Y. 

Let ( f , x ) £ GurH. Define z* : GY - GY by x*f{y) = f x ( y ) - f x - i ( y ) 
where s = |0(x,2/)| . This product is called the cycleproduct (see [4] pp. 40). 

T H E O R E M 6 . If GurH is a 2-ambivalent group then both G and H are 
2-ambivalent groups. 

P r o o f . H is a factor group of GurH, hence by Prop. 5 H is 2-ambivalent,. 
Let g £ G be a 2 element. Define / :Y —• G setting f ( y ) = g for every 

y £ Y. Then 1 *{f){y) = f ( y ) = g for every y, therefore !* ( / ) = / . Hence 
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| ( / ; 1 ) | = |<7|. Since GURH is an 2-ambivalent group, there is an element 
(h\z) € GutH such that (h; z ) ( f ; l){h; z)'1 = f{y)~l = g~x hence G is 
2-ambivalent. 

R e m a r k . Hence to construct new 2-ambivalent groups by wreathing it 
is to consider only 2-ambivalent groups. In general, it is not true that the 
wreath product of two 2-ambivalent groups is an 2-ambivalent group. 

THEOREM 7. Let G be a 2-ambivalent group and < H,Y > a 2 ambivalent 
transversal group. Then Gujr(H, Y) is 2-ambivalent. 

P r o o f . Let ( / ; x ) G GurH be a 2-element. We have to show that 
(f\x)~1 ~ ( f ; x ) . By the definition of the wreath product x is a 2-element. 
Clearly ( / ; x ) _ 1 = ( / _ 1

I - i z ' , x ) . Since H is 2 ambivalent transversal, there 
is an element x € H such that xz — x~x and zO(x,y) = 0(x,y) for every 
y £ Y. Then 

(l-,z)(f;x)-\l;z)-i = ( f - \ - l z ; x ) . 
Denote f~l

x-1 by g. We shall prove now that ( g z \ x ) ~ ( / ; y). 
It is straithforward to prove that xm(gz)(y) = (x*(/ ) (^ - 1 (2/)) ) _ 1 for ev-

ery y € Y. Since zO(x,y) = 0(x;y), then z~1(y) € 0(x;y) and therefore 
(x*(/)(z-1(2/)))"1 * x ' ( f ) ( y ) . Hence x*(g,)(y) ~ ( ^ ( / X y ) ) " 1 . Since G is 
2-ambivalent group and x*(f)(y) £ G is a 2-element then ( x * ( f ) ( y ) ) ~ 1 ~ 
x*(f){y). Therefore x'(gx)(y) ~ x ' ( f ) ( y ) . 

We shall construct now a w : Y —> G such that (u;; 1) _ 1 = 
(/;*)• 

Let Y = 0(x, yi) (J . . . |J 0(x, yq) be the orbit decomposition of the ac-
tion of (x) on Y with pairwise disjoint factors. Then 

0(x,yi) = {yitx-\yi),...,x-l«-l\yi)}. 

Let w(yi) be an element of G such that w(y{)x*(g2)(yi)w(yi)~1 = x*{f)(yi) 
for i = 1 , . . .,q. By the previous such an element exists. 

For 1 < k < Si — 1, set 

« • ( z - ' t a ) ) = if(yi)Myi) • ••fx>->(yi)}-1v(y,){9z(yi) • • •9z(xI~ik~1\y,))} 
so w is defined on all Y. It remains to verify that (w\ 1)(<7Z; x)(w\ l ) - 1 

= ( f ] x ) . This follows if we prove that wgzw~x = / or equivalently 
w(y)9z(y)w(x~1(y))-'1 = f ( y ) for every y € Y. 

For y € y{ it is easy to see that u ^ a r - 1 ^ ) ) = f { y i ) ~ l w ( y i ) g z ( y i ) . In 
general, we write y = x_ f c(j/ t) and thq statement follows immediately. 

R e m a r k . Since the symetric group Sn and the alternating groups An 

are 2-ambivalent transversal groups on Y = { l , . . . , n } then GwrSn and 
GwrAn are 2-ambivalent groups iff G is a 2-ambivalent group. 
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DEFINITION. Let G be a finite group. A subgroup H of G is said to be 
strongly embedded in G if the following conditions are satisfied: 

(1) H is a proper subgroup of even order. 
(2) For any element x eG-H, the order H f ) H* is odd (see [6] p. 391). 

THEOREM 8 (see [6] p. 391). Let G be a group having a strongly embedded 
subgroup H. Then, we have of the following alternatives: 

(1) Every Sylow 2-subgroup of G contains exactly one element of order 
2. Thus a Sylow 2-subgroup of G is either a cyclic group or generalized 
quaternion group. 

(2) The group G posseses a normal series G > L > M > {1} such that 
both G/L and m are groups of odd order, and such that the factor group L/M 
is isomorphic to one of the simple groups PSL(2,q), Sz(q), or PSU(3,q), 
where q is a power of 2. 

In the first case (1), let t be any element of order two. Then, CG(0 is 
a proper subgroup of G and any proper subgroup of G containing C g ( 0 is 
strongly embedded in G. In the second case (2), every strongly embedded 
subgroup H of G is of the form H = NG(S)02, (G) for some 2-Sylow 
subgroup S of G. 

THEOREM 9 (see [3] p. 393). Let H be a strongly embedded subgroup of 
a group G. Let u be an element of 1(H) = {x £ H | x2 = 1, x ^ 1}. Then, 
the folowing proposition hold. 

(1) The set 1(G) = {a; £ G \ x2 = 1, x 1} is a conjugacy class of G. 
In other words, all involutions of G are conjugate. 

(2) The set 1(H) is a conjugacy class of H. Futhermore, if b = ax for 
A,B £ 1(H) and x £ G, then we have x £ H. 

THEOREM 10. Suppose the assumptions of Theorem 8(2). Then a Sylow 
2-subgroup of G is either homocyclic or a Suzuki 2-group and G/C>2,(G) is 
a 2-normal group. 

P r o o f . It is clear that we can suppose that 02>(G) is trivial. Let H 
be a strongly embedded subgroup of G. Because H(]H* is odd for any 
x £ G — H,S(~\T = {1} for any distinct S, T Sylow 2-subgroups of G. Let 
S be a Sylow 2-subgroup of G such that S < H. Then, by Theorem 8(2) 
H = Na(S) and by Theorem 9 1(H) is a conjugacy class of H. On the 
other hand, since 5 is a normal, nilpotent subgroup of H and H/S has odd 
order, H is solvable. By Thompson Theorem (see [2], p. 511), S is either 
homocyclic or a Suzuki 2-Group. 
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If S is homocyclic then 5 = Z(S) and H = NG(Z(S)) = Na(S) so that 
G/02,(G) is 2-normal. 

If 5 is a Suzuki 2-group, then (see [3], p. 313) S' = Z(S) = 1(H) U 1. 
Evidently, NG(S) < Na(Z(S)). Let x e Na(Z(S). Since S 1 ^ > Z(S) it 
follows that Ng(S) = Na(Z(S)) and G/02,(G) is 2-normal. 

THEOREM 11. Let G be a solvable rational group having a strongly embed-
ded subgroup. Then a Sylow 2-subgroup of G is isomorphic with the quater-
nion group of order 8 Q&. 

P r o o f . We can suppose that Or(G) is trivial. Let A = (1(G)). Then A 
is a normal subgroup of G and since G is solvable it contains an abelian min-
imal normal subgroup of G. Since 02'(G) is trivial it follows that A = 1(G) 
and A is abelian. Let H be a strongly embedded subgroup of G such that 
A < H. Then G has only one 2-Sylow subgroup S. Then G/S is also a ratio-
nal group so that G=S and S contain only one involution. By Theorem 10, 
then S is cyclic or quaternion group. Since S is also a rational group it follows 
that S is isomorphic to Zi or to Qs-

THEOREM 12. Let G be a solvable rational group having a strongly em-
bedded subgroup. Then G is isomorphic to E3Z2 where E3 is an elementary 
abelian 3-group and Zi inverts all elements of E3. G is involutory. 

P r o o f . By Theorem 11, a Sylow 2-subgroup S of G is Zi or Qs. By 
Corollary 36 of [4], if S is Z2 we have the asserts. If S is Qs then (see [6]) 
Z(G) contains an involution, therefore G cannot have a strongly embedded 
subgroup. 

COROLLARY 13. The only groups G having a strongly embedded subgroup 
which can be embedded without fusion in a symmetric group Sn are the 
groups G = E3Z2 of Theorem 12. 

P ro of. By [1] a group G can be embedded without fusion in a symmetric 
group if G is a Q-group. 
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