

Ion Armeanu

SOME REMARKS ON 2-ELEMENTS
AND 2-SUBGROUPS OF FINITE GROUPS

The notations and terminology are standard (see for example [1]). All groups will be finite.

DEFINITION. i) A rational group is a group all whose irreducible characters are rational valued.

ii) An ambivalent group is a group all whose irreducible characters are real valued.

iii) A 2-ambivalent group is a group all whose irreducible characters are real valued on the 2-elements.

PROPOSITION 1 (see [5]). *A group G is rational iff*

$$\text{Aut}(K) \simeq N_G(K)/C_G(K)$$

for all cyclic subgroups K of G .

THEOREM 2. *Let G be a rational group such that*

$$\text{Aut}(K) \simeq N_G(K)/C_G(K)$$

for all 2-subgroups K of G . Then: $G \simeq G' \mathcal{Z}_2$ where G' is a 3-group and \mathcal{Z}_2 inverts all elements of G' .

P r o o f. We shall prove first that the Sylow 2-subgroups of G are isomorphic to \mathcal{Z}_2 . Suppose G has a 2-subgroup K of order 2^n , $n \geq 2$. By Gaschutz's theorem (see [2]) $\text{Out}(K)$ has an element of order 2. Let $A = L/C_G(K)$ be a Sylow 2-subgroup of $N_G(K)/C_G(K)$. The order of A is less than the order of $N_G(K)/C_G(K)$, hence L contains a 2-subgroup of order strictly greater than the order of K . So, by induction we can construct 2-subgroups of G of arbitrarily large order. This is a contradiction.

Now, by Walter's theorem [7] G has a normal subgroup $N \geq O_{2'}(G)$ such that G/N has odd order and $N/O_{2'}(G) \simeq S \times P$ where S is a 2-group and P is a direct product of simple groups of the form $L_2(k)$, $k > 3$, $k \equiv 3, 5 \pmod{8}$

or $k = 2^p$, or the Janko simple group $J(11)$, or is of Ree type. Since G is a rational group, $N = G$ and hence $G/O_{2'}(G) \simeq S \times P$. The simple groups listed before are not rational, hence $G/O_{2'}(G) \simeq S$. Therefore G is 2-nilpotent and $S \in \text{Syl}_2(G)$. For every rational group G , $O_{2'}(G) \subset G'$ therefore $G' = O_{2'}(G)$.

We shall prove now by induction on $|G|$ that G' is a 3-group. Let L be a minimal normal subgroup of G . Then L is an elementary abelian p -group. Suppose $p = 2$. Then $L \simeq S \in \text{Syl}_2(G)$ is normal in G , therefore $L = M = G$.

Suppose now $p \neq 2$. Then $L \not\simeq G'$, $(G/L)'$ is a 3-group by induction and $|G| = 2 \cdot 3^a \cdot p^b$. Let $x \in G$ of order p and $X = \langle x \rangle$. Then $N_G(X) > S \in \text{Syl}_2(G)$ and $N_G(X)' < C_G(x) < C_G(x)S < N_G(X)$. Since $C_G(x)S$ is selfnormalizing in G it follows that $C_G(x)S = N_G(X)$. Then $\text{Aut}(X) \simeq N_G(X)/C_G(x) \simeq S/(S \cap C_G(x)) \simeq \mathbb{Z}_2$ and thus $p = 3$.

COROLLARY 3. *Let G be a group such that $\text{Aut}(K) \simeq N_G(K)/C_G(K)$ for all subgroups of G . Then $G \simeq S_1, S_2$ or S_3 .*

Proof. Clearly G is a rational group by Prop. 1. Analogously in view of the first part of the proof of Theorem 2, the Sylow 3-groups of G must have order 3.

PROPOSITION 4. *A group G is 2-ambivalent iff for every 2 element $x \in G$ there is an element $z \in G$ such that $x^z = x^{-1}$.*

Proof. Analogous to the proof of the similar proposition for ambivalent groups (see [2]).

It is easy to prove the following:

PROPOSITION 5. *Factor groups of 2-ambivalent groups are 2-ambivalent groups.*

DEFINITION. Let $\langle H, Y \rangle$ be a permutation group on the set Y and $x \in H$. The cyclic group $\langle x \rangle$ acts on Y and one obtains a decomposition of Y into transitive constituents, the orbit of Y . Denote $O\langle x, y \rangle$ the orbit of $y \in Y$. We say that $\langle H, Y \rangle$ is 2-ambivalent transversal iff for every 2-element $x \in H$ there is some element $z \in H$ such that $x^2 = x^{-1}$ and $zO, x, y = O \langle x, y \rangle$ for every $y \in Y$.

Let $\langle f, x \rangle \in GwrH$. Define $x^* : G^Y \rightarrow G^Y$ by $x^*f(y) = f_x(y) \dots f_{x^{s-1}}(y)$ where $s = |O\langle x, y \rangle|$. This product is called the *cycleproduct* (see [4] pp. 40).

THEOREM 6. *If $GwrH$ is a 2-ambivalent group then both G and H are 2-ambivalent groups.*

Proof. H is a factor group of $GwrH$, hence by Prop. 5 H is 2-ambivalent.

Let $g \in G$ be a 2 element. Define $f : Y \rightarrow G$ setting $f(y) = g$ for every $y \in Y$. Then $1^*(f)(y) = f(y) = g$ for every y , therefore $1^*(f) = f$. Hence

$|(f; 1)| = |g|$. Since $GwrH$ is an 2-ambivalent group, there is an element $(h; z) \in GwrH$ such that $(h; z)(f; 1)(h; z)^{-1} = f(y)^{-1} = g^{-1}$ hence G is 2-ambivalent.

Remark. Hence to construct new 2-ambivalent groups by wreathing it is to consider only 2-ambivalent groups. In general, it is not true that the wreath product of two 2-ambivalent groups is an 2-ambivalent group.

THEOREM 7. *Let G be a 2-ambivalent group and $\langle H, Y \rangle$ a 2 ambivalent transversal group. Then $Gwr\langle H, Y \rangle$ is 2-ambivalent.*

Proof. Let $(f; x) \in GwrH$ be a 2-element. We have to show that $(f; x)^{-1} \simeq (f; x)$. By the definition of the wreath product x is a 2-element. Clearly $(f; x)^{-1} = (f^{-1}x^{-1}z; x)$. Since H is 2 ambivalent transversal, there is an element $x \in H$ such that $x^z = x^{-1}$ and $zO(x, y) = O(x, y)$ for every $y \in Y$. Then

$$(1; z)(f; x)^{-1}(1; z)^{-1} = (f^{-1}x^{-1}z; x).$$

Denote $f^{-1}x^{-1}$ by g . We shall prove now that $(g_z; x) \simeq (f; y)$.

It is straithforward to prove that $x^*(g_z)(y) = (x^*(f)(z^{-1}(y)))^{-1}$ for every $y \in Y$. Since $zO(x, y) = O(x, y)$, then $z^{-1}(y) \in O(x, y)$ and therefore $(x^*(f)(z^{-1}(y)))^{-1} \simeq x^*(f)(y)$. Hence $x^*(g_z)(y) \simeq (x^*(f)(y))^{-1}$. Since G is 2-ambivalent group and $x^*(f)(y) \in G$ is a 2-element then $(x^*(f)(y))^{-1} \simeq x^*(f)(y)$. Therefore $x^*(g_z)(y) \simeq x^*(f)(y)$.

We shall construct now a $w : Y \rightarrow G$ such that $(w; 1)(g_z)(w; 1)^{-1} = (f; x)$.

Let $Y = O(x, y_1) \cup \dots \cup O(x, y_q)$ be the orbit decomposition of the action of $\langle x \rangle$ on Y with pairwise disjoint factors. Then

$$O(x, y_i) = \{y_i, x^{-1}(y_i), \dots, x^{-(s_i-1)}(y_i)\}.$$

Let $w(y_i)$ be an element of G such that $w(y_i)x^*(g_z)(y_i)w(y_i)^{-1} = x^*(f)(y_i)$ for $i = 1, \dots, q$. By the previous such an element exists.

For $1 \leq k \leq s_i - 1$, set

$$w(x^{-1}(y_i)) = \{f(y_i)f_x(y_i) \dots f_{x^{k-1}}(y_i)\}^{-1}w(y_i)\{g_z(y_i) \dots g_z(x^{x^{-(k-1)}}(y_i))\}$$

so w is defined on all Y . It remains to verify that $(w; 1)(g_z; x)(w; 1)^{-1} = (f; x)$. This follows if we prove that $wg_zw_x^{-1} = f$ or equivalently $w(y)g_z(y)w(x^{-1}(y))^{-1} = f(y)$ for every $y \in Y$.

For $y \in y_i$ it is easy to see that $w(x^{-1}(y_i)) = f(y_i)^{-1}w(y_i)g_z(y_i)$. In general, we write $y = x^{-k}(y_i)$ and the statement follows immediately.

Remark. Since the symetric group S_n and the alternating groups A_n are 2-ambivalent transversal groups on $Y = \{1, \dots, n\}$ then $GwrS_n$ and $GwrA_n$ are 2-ambivalent groups iff G is a 2-ambivalent group.

DEFINITION. Let G be a finite group. A subgroup H of G is said to be *strongly embedded in G* if the following conditions are satisfied:

- (1) H is a proper subgroup of even order.
- (2) For any element $x \in G - H$, the order $H \cap H^x$ is odd (see [6] p. 391).

THEOREM 8 (see [6] p. 391). *Let G be a group having a strongly embedded subgroup H . Then, we have of the following alternatives:*

(1) *Every Sylow 2-subgroup of G contains exactly one element of order 2. Thus a Sylow 2-subgroup of G is either a cyclic group or generalized quaternion group.*

(2) *The group G possesses a normal series $G > L > M > \{1\}$ such that both G/L and M are groups of odd order, and such that the factor group L/M is isomorphic to one of the simple groups $PSL(2, q)$, $Sz(q)$, or $PSU(3, q)$, where q is a power of 2.*

In the first case (1), let t be any element of order two. Then, $C_G(t)$ is a proper subgroup of G and any proper subgroup of G containing $C_G(t)$ is strongly embedded in G . In the second case (2), every strongly embedded subgroup H of G is of the form $H = N_G(S)O_2(G)$ for some 2-Sylow subgroup S of G .

THEOREM 9 (see [3] p. 393). *Let H be a strongly embedded subgroup of a group G . Let u be an element of $I(H) = \{x \in H \mid x^2 = 1, x \neq 1\}$. Then, the following proposition hold.*

(1) *The set $I(G) = \{x \in G \mid x^2 = 1, x \neq 1\}$ is a conjugacy class of G . In other words, all involutions of G are conjugate.*

(2) *The set $I(H)$ is a conjugacy class of H . Furthermore, if $b = a^x$ for $A, B \in I(H)$ and $x \in G$, then we have $x \in H$.*

THEOREM 10. *Suppose the assumptions of Theorem 8(2). Then a Sylow 2-subgroup of G is either homocyclic or a Suzuki 2-group and $G/O_2(G)$ is a 2-normal group.*

Proof. It is clear that we can suppose that $O_2(G)$ is trivial. Let H be a strongly embedded subgroup of G . Because $H \cap H^x$ is odd for any $x \in G - H$, $S \cap T = \{1\}$ for any distinct S, T Sylow 2-subgroups of G . Let S be a Sylow 2-subgroup of G such that $S < H$. Then, by Theorem 8(2) $H = N_G(S)$ and by Theorem 9 $I(H)$ is a conjugacy class of H . On the other hand, since S is a normal, nilpotent subgroup of H and H/S has odd order, H is solvable. By Thompson Theorem (see [2], p. 511), S is either homocyclic or a Suzuki 2-Group.

If S is homocyclic then $S = Z(S)$ and $H = N_G(Z(S)) = N_G(S)$ so that $G/O_2(G)$ is 2-normal.

If S is a Suzuki 2-group, then (see [3], p. 313) $S' = Z(S) = I(H) \cup 1$. Evidently, $N_G(S) < N_G(Z(S))$. Let $x \in N_G(Z(S))$. Since $S^x \cap S > Z(S)$ it follows that $N_G(S) = N_G(Z(S))$ and $G/O_2(G)$ is 2-normal.

THEOREM 11. *Let G be a solvable rational group having a strongly embedded subgroup. Then a Sylow 2-subgroup of G is isomorphic with the quaternion group of order 8 Q_8 .*

P r o o f. We can suppose that $O_2'(G)$ is trivial. Let $A = \langle I(G) \rangle$. Then A is a normal subgroup of G and since G is solvable it contains an abelian minimal normal subgroup of G . Since $O_2'(G)$ is trivial it follows that $A = I(G)$ and A is abelian. Let H be a strongly embedded subgroup of G such that $A < H$. Then G has only one 2-Sylow subgroup S . Then G/S is also a rational group so that $G=S$ and S contain only one involution. By Theorem 10, then S is cyclic or quaternion group. Since S is also a rational group it follows that S is isomorphic to Z_2 or to Q_8 .

THEOREM 12. *Let G be a solvable rational group having a strongly embedded subgroup. Then G is isomorphic to E_3Z_2 where E_3 is an elementary abelian 3-group and Z_2 inverts all elements of E_3 . G is involutory.*

P r o o f. By Theorem 11, a Sylow 2-subgroup S of G is Z_2 or Q_8 . By Corollary 36 of [4], if S is Z_2 we have the asserts. If S is Q_8 then (see [6]) $Z(G)$ contains an involution, therefore G cannot have a strongly embedded subgroup.

COROLLARY 13. *The only groups G having a strongly embedded subgroup which can be embedded without fusion in a symmetric group S_n are the groups $G = E_3Z_2$ of Theorem 12.*

P r o o f. By [1] a group G can be embedded without fusion in a symmetric group if G is a Q -group.

References

- [1] V. Alexandru, I. Armeanu, *Sur les caractères d'un groupe fini*, C.R. Acad. Sc. Paris, 298, Serie I, No.6, 1984.
- [2] B. Huppert, *Endliche Gruppen*, Springer, 1967.
- [3] B. Huppert, N. Blackburn, *Finite Groups*, vol. 2, Springer, 1982.
- [4] A. Kerber, *Representations of Permutation Groups I*, Lecture Notes in Math. 240, Springer, 1971.

- [5] D. Kletzing, *Structure and Representations of Q-Groups*, Lecture Notes in Math., Springer, 1984.
- [6] M. Suzuki, *Group Theory*, vol. 2, Springer, 1986.
- [7] J. H. Walter, *The characterisation of finite groups with abelian Sylow 2-groups*, Ann. of Math. 89 (1969), 405-514.

UNIVERSITY OF BUCHAREST
PHYSICS FACULTY
MATHEMATICS DEPT.
P.O.Box MG-11
BUCHAREST- MAGURELE, ROMANIA

Received January 18, 1996.