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Ion Armeanu

SOME REMARKS ON 2-ELEMENTS
AND 2-SUBGROUPS OF FINITE GROUPS

The notations and terminology are standard (see for example [1}). All
groups will be finite.

DEFINITION. i) A rational group is a group all whose irreducible charac-

ters are rational valued.
ii) An ambivalent group is a group all whose irreducible characters are

real valued.
ili) A 2-ambivalent group is a group all whose irreducible characters are

real valued on the 2-elements.
PROPOSITION 1 (see [5]). A group G is rational iff
Aut(K) ~ Ng(K)/Ca(K)
for all cyclic subgroups K of G.
THEOREM 2. Let G be a rational group such that
Aut(K) ~ Ng(K)/Cs(K)

for all 2-subgroups K of G. Then: G ~ G'2, where G' is a 3-group and 2,
inverts all elements of G'.

P roof. We shall prove first that the Sylow 2-subgroups of G are isomor-
phic to 2;. Suppose G has a 2-subgroup K of order 2", n > 2. By Gaschutz’s
theorem (see [2]) Out(K’) has an element of order 2. Let A = L/Cg(K') be a
Sylow 2-subgroup of Ng(K)/Cc(K') . The order of A is less than the order
of No(K)/Cs(K'), hence L contains a 2-subgroup of order strictly greather
than the order of K. So, by induction we can construct 2-subgroups of G of
arbitrarily large order. This is a contradiction.

Now, by Walter’s theorem (7] G has a normal subgroup N > O2/(G) such
that G/N has odd order and N/O2:(G) ~ §x P where S is a 2-group and P is
a direct product of simple groups of the form Ly(k),k > 3,k = 3,5(mod 8)
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or k = 2P, or the Janko simple group J(11), or is of Ree type. Since G
is a rational group, N = G and hence G/0O2(G) ~ § x P. The simple
groups listed before are not rational, hence G/02(G) ~ S. Therefore G
is 2-nilpotent and S € Syl,(G). For every rational group G, O»(G) C G’
therefore G' = 02/ (G).

We shall prove now by induction on |G| that G’ is a 3-group. Let L be a
minimal normal subgroup of G. Then L is an elementary abelian p-group.
Suppose p = 2. Then L ~ § € Syl,(G) is normalin G, therefore L = M = G.

Suppose now p # 2. Then L # G', (G/L)' is a 3-group by induction
and |G| = 2.3%.p%. Let 2 € G of order p and X =< z >. Then Ng(X) >
S € Syl2(G) and Ng(X) < Cg(z) < Cg(z)S < Ng(X). Since Cg(z)S
is selfnormalizing in G it follows that Cg(z)S = Ng(X). Then Aut(X) ~
Ng(X)/Cq(z) ~ S/(S5N Cg(z)) ~ 2, and thus p = 3.

COROLLARY 3. Let G be a group such that Aut(K) ~ Ng(K)/Cs(K)
for all subgroups of G. Then G ~ §,,52 or S;.

Proof. Clearly G is a rational group by Prop. 1. Analogously in view
of the first part of the proof of Theorem 2, the Sylow 3-groups of G must
have order 3.

PROPOSITION 4. A group G is 2-ambivalent iff for every 2 elementz € G
there is an element z € G such that z* = z7!.

Proof. Analogous to the proof of the similar proposition for ambivalent
groups (see [2]).
It is easy to prove the following:

ProrosITION 5. Factor groups of 2-ambivalent groups are 2-ambivalent
groups.

DEFINITION. Let (H,Y) be a permutation group on the set y and z € H.
The cyclic group (z) acts on Y and one obtains a decomposition of Y into
tranzitive constituents, the orbit of Y. Denote O(z,y) the orbit of y € Y.
We say that (H,Y) is 2-ambivalent transversal iff for every 2-element z € H
there is some element z € H such that 22 =z~ ! and z0,z,y=0 < z,y >
forevery y €Y.

Let (f,z) € GwrH. Define z* : G¥ — GY by z* f(y) = fo(v).. form1(y)
where s = |O(z, y)|. This product is called the cycleproduct (see [4] pp. 40).

THEOREM 6. If GwrH is a 2-ambivalent group then both G and H are
2-ambivalent groups.

Proof. His a factor group of Gwr H , hence by Prop. 5 H is 2-ambivalent.
Let g € G be a 2 element. Define f : Y — G setting f(y) = g for every
y € Y. Then 1*(f)(y) = f(y) = g for every y, therefore 1*(f) = f. Hence
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[(f;1)] = |g|- Since GwrH is an 2-ambivalent group, there is an element
(h;2) € GwrH such that (h;2)(f;1)(h;2)™! = f(y)~! = ¢g7! hence G is
2-ambivalent.

Remark. Hence to construct new 2-ambivalent groups by wreathing it
is to consider only 2-ambivalent groups. In general, it is not true that the
wreath product of two 2-ambivalent groups is an 2-ambivalent group.

THEOREM 7. Let G be a 2-ambivalent group and < H,Y > a 2 ambivalent
transversal group. Then Gwr(H,Y) is 2-ambivalent.

Proof. Let (f;z) € GwrH be a 2-element. We have to show that
(f;2)~! ~ (f; z). By the definition of the wreath product z is a 2-element.
Clearly (f;z)™! = (f~1,-1,; ). Since H is 2 ambivalent transversal, there
is an element z € H such that 22 = z~! and 20(z,y) = O(z,y) for every
y € Y. Then

(L2)(fi2) W (L52) 7 = (f 71 o5 2)

Denote f~!__, by g. We shall prove now that (g.;z) ~ (f; ).

It is straithforward to prove that z*(g,)(y) = (z*(f)(2~1(y)))~! for ev-
ery y € Y. Since 20(z,y) = O(z;y), then z71(y) € O(z;y) and therefore

(z* (/)N ()~ > z*(f)(y)- Hence z*(g.)(y) = (z*(f)(v))~". Since G is
2-ambivalent group and z*(f)(y) € G is a 2-element then (z*(f)(y))™! =~
z*(f)(y). Therefore z*(g.)(y) =~ z*(f)(y).

We shall construct now a w : ¥ — G such that (w;1)(g;)(w;1)7! =
(f;z).

Let Y = O(z,y1)U...lUO(z,y,) be the orbit decomposition of the ac-
tion of (z) on Y with pairwise disjoint factors. Then

O(IE, 3/:) = {yi, z_l(yi), vy z_("-l)(yi)}-
Let w(y;) be an element of G such that w(y;)z*(g.)(¥:)w(y:)™! = z*(f)(v:)
for i = 1,...,q. By the previous such an element exists.
For1 <k <s;—1,set

w(z ™ (3:) = {f (@) folwi) - - - forr ()} (i) {9:(wi) - . - 9:2( (¥:)}

so w is defined on all Y. It remains to verify that (w;1)(g,;z)(w;1)™!
= (f;z). This follows if we prove that wg,w;! = f or equivalently
w(y)g:(y)w(z~}(y))~! = f(y) for every y € Y.

For y € y; it is easy to see that w(z™!(y)) = f(v:) 'w(yi)g.(y:). In
general, we write y = 7%(y;) and the statement follows immediately.

= (k-1)

Remark. Since the symetric group S, and the alternating groups A4,
are 2-ambivalent transversal groups on Y = {1,...,n} then GwrS, and
GwrA, are 2-ambivalent groups iff G is a 2-ambivalent group.
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DEFINITION. Let G be a finite group. A subgroup H of G is said to be
strongly embedded in G if the following conditions are satisfied:

(1) H is a proper subgroup of even order.
(2) For any element z € G — H, the order H () H* is odd (see [6] p. 391).

THEOREM 8 (see [6] p. 391). Let G be a group having a strongly embedded
subgroup H. Then, we have of the following alternatives:

(1) Every Sylow 2-subgroup of G contains exactly one element of order
2. Thus a Sylow 2-subgroup of G is either a cyclic group or generalized
quaternion group.

(2) The group G posseses a normal series G > L > M > {1} such that
both G/ L and m are groups of odd order, and such that the factor group L/M
is isomorphic to one of the simple groups PSL(2,q), Sz(q), or PSU(3,q),
where ¢ is a power of 2.

In the first case (1), let t be any element of order two. Then, Cg(t) is
a proper subgroup of G and any proper subgroup of G containing Cs(t) is
strongly embedded in G. In the second case (2), every strongly embedded
subgroup H of G is of the form H = Ng(S5)0,;, (G) for some 2-Sylow
subgroup S of G.

THEOREM 9 (see [3] p. 393). Let H be a strongly embedded subgroup of
a group G. Let u be an element of [[H) = {z € H | 2> = 1, = # 1}. Then,
the folowing proposition hold.

(1) The set I(G) = {z € G | z* = 1,z # 1} is a conjugacy class of G.
In other words, all involutions of G are conjugate.

(2) The set I(H) is a conjugacy class of H. Futhermore, if b = a* for
A,B€ I(H) and z € G, then we have z € H.

THEOREM 10. Suppose the assumptions of Theorem 8(2). Then a Sylow
2-subgroup of G is either homocyclic or a Suzuki 2-group and G/0,,(G) is
a 2-normal group.

Proof. It is clear that we can suppose that Oy/(G) is trivial. Let H
be a strongly embedded subgroup of G. Because H () H* is odd for any
t € G- H,SNT = {1} for any distinct S, T Sylow 2-subgroups of G. Let
S be a Sylow 2-subgroup of G such that § < H. Then, by Theorem 8(2)
H = Ng(S) and by Theorem 9 I(H) is a conjugacy class of H. On the
other hand, since S is a normal, nilpotent subgroup of H and H/S has odd
order, H is solvable. By Thompson Theorem (see [2], p. 511), S is either
homocyclic or a Suzuki 2-Group.
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If S is homocyclic then S = Z(S) and H = Ng(Z(S)) = Ng(S) so that
G/02,(G) is 2-normal.

If §is a Suzuki 2-group, then (see [3], p. 313) §' = Z(S) = I(H)U 1.
Evidently, Ng(5) < Ng(Z(S)). Let z € Ng(Z(S). Since S5 > Z(S5) it
follows that Ng(S) = Ng(Z(S5)) and G/O2,(G) is 2-normal.

THEOREM 11. Let G be a solvable rational group having a strongly embed-
ded subgroup. Then a Sylow 2-subgroup of G is isomorphic with the quater-
nion group of order 8 Qs.

Proof. We can suppose that O(G) is trivial. Let A = (I(G)). Then A
is a normal subgroup of G and since G is solvable it contains an abelian min-
imal normal subgroup of G. Since O,(G) is trivial it follows that 4 = I(G)
and A is abelian. Let H be a strongly embedded subgroup of G such that
A < H. Then G has only one 2-Sylow subgroup S. Then G/S is also a ratio-
nal group so that G=S and S contain only one involution. By Theorem 10,
then S is cyclic or quaternion group. Since S is also a rational group it follows
that S is isomorphic to Z; or to @s.

THEOREM 12. Let G be a solvable rational group having a strongly em-
bedded subgroup. Then G is isomorphic to E3Z; where F5 is an elementary
abelian 3-group and Z; inverts all elements of E5. G is involutory.

Proof. By Theorem 11, a Sylow 2-subgroup S of G is Z; or Qg. By
Corollary 36 of [4], if S is Z; we have the asserts. If S is Qg then (see [6])
Z(G) contains an involution, therefore G cannot have a strongly embedded
subgroup.

COROLLARY 13. The only groups G having a strongly embedded subgroup
which can be embedded without fusion in a symmetric group S, are the
groups G = E3Z, of Theorem 12.

Proof. By [1] a group G can be embedded without fusion in a symmetric
group if G is a Q-group.
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