

L. A. Khan, A. B. Thaheem

**ON AUTOMORPHISMS OF PRIME RINGS
WITH INVOLUTION**

1. Introduction

Throughout this note R denotes a ring. We assume that R contains the unit element 1, although some results may hold without this assumption. Following Laradji and Thaheem [10], an element $a \in R$ is said to be a dependent element of a mapping α of R into itself if $\alpha(x)a = ax$ for all $x \in R$. Obviously, 0 is a dependent element of α . If α is an inner automorphism of R induced by an element $a \in R$ (i.e. $\alpha(x) = axa^{-1}$ for all $x \in R$), then a is a dependent element of α . If 0 is the only dependent element of α then α is said to be freely acting on R . Dependent elements were first introduced by Choda, Kasahara and Nakamoto [8] for automorphisms of C^* -algebras in the process of generalization of the notion of free action of automorphisms of von Neumann algebras (due to von Neumann and Murray [15, 16], see also Kallman [9]) to C^* -algebras. Several other authors have also studied dependent elements in operator algebras (see e.g. [5, 7]). Dependent elements have also been discussed in the book of Strătilă [13]. Laradji and Thaheem [10] have further generalized this notion to rings and have proved some basic results on dependent elements in rings analogous to those in [8]. In this paper we consider automorphisms on prime rings with involution rather than general mappings on arbitrary rings. Thus following [10], if α is a dependent element of α , then $\alpha(a) = a$. In case R has involution $(*)$ and α is a $*$ -automorphism, then $a^*a = aa^* \in Z(R)$, the center of R , and a^* is the dependent element of α^{-1} . That is, $\alpha^{-1}(x)a^* = a^*x$ for all $x \in R$. Our main results include showing (Theorem 3.1) that any centralizing $*$ -automorphism α that is not freely acting on a prime ring with involution satisfies the functional equation $\alpha + \alpha^{-1} = 2$. We also show (Proposition 3.2) that if R is not of characteristic 2 then such an automorphism is the identity automorphism. Thus combining the two results we obtain

THEOREM A. *Let R be a prime ring with involution such that the characteristic of R is not equal to 2. Then any centralizing $*$ -automorphism which is not freely acting on R is the identity automorphism.*

We remark that the functional equation $\alpha + \alpha^{-1} = 2$ is a particular case of widely studied functional equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ for automorphisms α, β on C^* -algebras and prime and semiprime rings (see e.g. [2, 3, 6, 14]). Theorem A offers a new proof of a result of [10, Remark following Proposition 3] and also generalizes a result of Miers [12, Remark 2, p. 63] which states that any centralizing inner automorphism of an operator algebra is the identity automorphism. We may further remark that Luh [11] proved that any commuting automorphism on a prime ring is the identity automorphism. Since any commuting automorphism is centralizing, therefore Theorem A provides an alternate proof of Luh's result for automorphisms that are not freely acting. These and other results are contained in section 3 while section 2 contains some technical preliminaries required for our results. We remark that our results in this note are purely algebraic. The concepts like von Neumann algebras and C^* -algebras appear only in the historical perspective of the problem.

2. Preliminaries

Let R be a ring. Then R is said to be prime if $axb = 0$ for all $x \in R$ implies $a = 0$ or $b = 0$. A von Neumann algebra is prime if and only if it is a factor (i.e. its center consists of the scalar multiples of the identity). R is said to be semiprime if $axa = 0$ for all $x \in R$ implies $a = 0$. A prime ring is semiprime and also any C^* -algebra is also semiprime. An automorphism α of a ring R with involution is a $*$ -automorphism if $\alpha(x^*) = \alpha(x)^*$ for all $x \in R$. A mapping α of a ring R into itself is said to be centralizing if $[\alpha(x), x] \in Z(R)$ for all $x \in R$. In the special case when $[\alpha(x), x] = 0$ for all $x \in R$, then α is said to be commuting, where $[x, y] = xy - yx$.

3. Results

Let α be an automorphism of a prime ring R and a be a nonzero dependent element of α . Then a is neither a right zero divisor nor a left zero divisor. Indeed, if a is a right zero divisor then there is $b \neq 0$ such that $ba = 0$. Then $0 = bax = b\alpha(x)a$ for all x in R . Since α is onto and R is prime we get $a = 0$ or $b = 0$, a contradiction. Thus a is not a right zero divisor. Similarly a is not a left zero divisor.

THEOREM 3.1. *Let α be a centralizing $*$ -automorphism of a prime ring R with involution. Assume that α is not freely acting on R . Then*

- (a) α satisfies the equation $\alpha + \alpha^{-1} = 2$.

(b) If in addition the characteristic of R is not equal to 2, then $\alpha = \text{id}$ (the identity automorphism).

Proof. By [1, Lemma 2], α is commuting and a linearization of $[\alpha(x), x] = 0$ implies $[\alpha(x), y] = [x, \alpha(y)]$ for all $x, y \in R$. Since α is not freely acting, therefore we assume that a nonzero element a is a depending element of α . Substituting a for y and using $\alpha(a) = a$, we get

$$(1) \quad [\alpha(x), a] = [x, \alpha(a)] = [x, a] \text{ for all } x \in R.$$

That is,

$$(2) \quad \alpha(x)a - a\alpha(x) - xa + ax = 0 \text{ for all } x \in R.$$

Since $\alpha(x)a = ax$, we get from (2)

$$(3) \quad a(x - \alpha(x)) + ax - xa = 0 \text{ for all } x \in R.$$

Multiplying (3) by a^* on the left, we get

$$(4) \quad a^*a(x - \alpha(x)) + a^*ax - a^*xa = 0 \text{ for all } x \in R.$$

Since $\alpha^{-1}(x)a^* = a^*x$, we get from (4)

$$(5) \quad a^*a(x - \alpha(x)) + a^*ax - \alpha^{-1}(x)a^*a = 0 \text{ for all } x \in R.$$

Since $a^*a \in Z(R)$, we get from (5) that $a^*a(x - \alpha(x) + x - \alpha^{-1}(x)) = 0$ for all $x \in R$. But a is not a zero divisor implies a^*a is not a zero divisor and hence $\alpha(x) + \alpha^{-1}(x) - 2x = 0$ for all $x \in R$. That is, $\alpha + \alpha^{-1} = 2$. This completes the proof of (a). The proof of (b) follows from (a) and the Proposition 3.3 below. \square

The equation $\alpha + \alpha^{-1} = 2$ is a particular case of the more general equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ for automorphisms α, β on prime rings (see e.g. [2]). The proposition below follows from Brešar's result [3, Corollary 3] whose proof depends on several technical lemmas. In this particular case we give a direct and simple proof.

PROPOSITION 3.2. *Let α be an automorphism of a prime ring R of characteristic not equal to 2 such that $\alpha + \alpha^{-1} = 2$. Then α is the identity automorphism.*

Proof. Put $d = (\alpha - 1)$. Then d is an additive mapping of R into R and satisfies $d(xy) = \alpha(x)d(y) + d(x)y$ for all $x, y \in R$. That is, d is an α -derivation. Also,

$$\begin{aligned} d^2(x) &= (\alpha - 1)(\alpha - 1)x = (\alpha^2 - 2\alpha + 1)x = 0 \text{ for all } x \in R. \\ d^2(xy) &= d(d(xy)) = d(\alpha(x)d(y) + d(x)y) = d(\alpha(x)d(y)) + d(d(x)y) \\ &= \alpha^2(x)d^2(y) + d(\alpha(x))d(y) + \alpha(d(x))d(y) + d^2(x)y. \end{aligned}$$

Since $d^2(xy) = d^2(x) = d^2(y) = 0$ and α commutes with d , therefore $2d(\alpha(x))d(y) = 0$ for all $x, y \in R$. Since characteristic of R is not equal to 2, therefore $d(\alpha(x))d(y) = 0$ for all $x, y \in R$. Replacing y by zx , we get $0 = d(\alpha(x))d(zx) = d(\alpha(x))(\alpha(z)d(x) + d(z)x) = d(\alpha(x))\alpha(z)d(x) + d(\alpha(x))d(z)x$ for all $x, z \in R$. Since $d(\alpha(x))d(z)x = 0$, therefore $d(\alpha(x))\alpha(z)d(x) = 0$ for all $x, z \in R$. α is onto implies $d(\alpha(x))Rd(x) = 0$ and R being prime implies $d(\alpha(x)) = 0$ or $d(x) = 0$. In any case $d = 0$ because α is onto. Thus we obtain that $\alpha = 1$. \square

We conclude the note with the following characterization of the identity automorphism. This generalizes a result of [4] for C^* -algebras.

PROPOSITION 3.3. *Suppose that α is an inner automorphism of a prime ring R with involution. Then α is the identity automorphism if and only if*

$$(6) \quad (\alpha(x^*))^* = \alpha(\alpha(x)) \text{ for all } x \in R.$$

P r o o f. Assume that (6) holds. If α is a $*$ -automorphism (not necessarily inner) then $\alpha(x) = \alpha(\alpha(x))$. This implies $(\alpha - 1)\alpha(x) = 0$ for all $x \in R$ and α being onto gives $\alpha - 1 = 0$ or $\alpha = 1$.

Now assume that $\alpha(x) = axa^{-1}$ for all $x \in R$, $a \in R$. Then by assumption, $a^2xa^{-2} = a^{*-1}xa^*$ for all $x \in R$. This implies that $a^*a^2x = xa^*a^2$ or $a^*a ax - xa^*a a = 0$ for all $x \in R$. Since $a^*a \in Z(R)$, therefore rewriting the preceding equation we get $a^*a(ax - xa) = 0$ for all $x \in R$. Since a^*a is not a zero divisor, therefore $ax = xa$ for all $x \in R$ and hence a is a central element. This proves that $\alpha = 1$. The converse is simple. This completes the proof. \square

Acknowledgements. The authors wish to thank the referee for valuable suggestions which helped to improve the paper. One of the authors (A.B. Thaheem) gratefully acknowledges the support provided by King Fahd University of Petroleum and Minerals during this research.

References

- [1] H. E. Bell, W. S. Martindale, *Centralizing mappings of semiprime rings*, Canad. Math. Bull. 30(1987), 92–101.
- [2] M. Brešar, *On certain pairs of automorphism of rings*, J. Austral. Math. Soc. (Series A), 54(1993), 29–38.
- [3] M. Brešar, *On the composition of (α, β) -derivations of rings and applications to von Neumann algebras*, Acta Sci. Math. 56(1992), 369–375.
- [4] F. S. Cater, A. B. Thaheem, *On automorphisms of C^* -algebras*, (to appear in Ren. Sem. Mat. Univ. Padova).
- [5] H. Choda, *On freely acting automorphisms of operator algebras*, Kodai Math. Sem. Rep. 26(1974), 1–21.

- [6] M. A. Chaudhry, A. B. Thaheem, *A note on automorphisms of prime rings*, Demonstratio Math., Vol. 29 (1996), 813-816.
- [7] H. Choda, Y. Watatani, *Subfinitely acting automorphisms of operator algebras*, Math. Japonica 2(1981), 223-232.
- [8] M. Choda, I. Kasahara, R. Nakamoto, *Dependent elements of an automorphism of a C^* -algebra*, Proc. Japan Acad. 48(1972), 561-565.
- [9] R. R. Kallman, *A generalization of free action*, Duke Math. J. 36(1969), 781-789.
- [10] A. Laradji, A. B. Thaheem, *On dependent elements in semiprime rings*, (to appear in Math. Japonica).
- [11] J. Luh, *A note on commuting automorphisms of rings*, Amer. Math. Monthly 77(1970), 61-62.
- [12] C. R. Miers, *Centralizing mappings of operator algebras*, J. Algebra 59(1979), 65-76.
- [13] S. Strătilă, *Modular Theory of Operator Algebras*, Abacus Press, Kent, 1981.
- [14] A. B. Thaheem, *On a functional equation on C^* -algebras*, Funkcial. Ekvac., 31 (1988), 411-413.
- [15] F. J. Murray, J. von Neumann, *On rings of operators*, Ann. Math. 37(1936), 116-229.
- [16] J. von Neumann, *On rings of operators III*, Ann. Math. 41(1940), 94-161.

L.A. Khan
DEPARTMENT OF MATHEMATICS
QUAID-I-AZAM UNIVERSITY
ISLAMABAD-45320, PAKISTAN;

A. B. Thaheem
DEPARTMENT OF MATHEMATICAL SCIENCES
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

Received December 28, 1995.

