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1. Introduction 
Throughout this note R denotes a ring. We assume that R contains the 

unit element 1, although some results may hold without this assumption. 
Following Laradji and Thaheem [10], an element a G R is said to be a de-
pendent element of a mapping a of R into itself if a(x)a = ax for all x G R. 
Obviously, 0 is a dependent element of a . If a is an inner automorphism 
of R induced by an element a G R (i.e. a(x) = axa~x for all x G R), 
then a is a dependent element of a. If 0 is the only dependent element of 
a then a is said to be freely acting on R. Dependent elements were first 
introduced by Choda, Kasahara and Nakamoto [8] for automorphisms of 
C*-algebras in the process of generalization of the notion of free action of 
automorphisms of von Neumann algebras (due to von Neumann and Mur-
ray [15, 16], see also Kallman [9]) to C-algebras. Several other authors 
have also studied dependent elements in operator algebras (see e.g. [5, 7]). 
Dependent elements have also been discussed in the book of Stratila [13]. 
Laradji and Thaheem [10] have further generalized this notion to rings and 
have proved some basic results on dependent elements in rings analogous to 
those in [8]. In this paper we consider automorphisms on prime rings with 
involution rather than general mappings on arbitrary rings. Thus following 
[10], if a is a dependent element of a, then a(a) = a. In case R has invo-
lution (*) and a is a '-automorphism, then a*a = aa* G Z(R), the center 
of R, and a* is the dependent element of a - 1 . That is, a - 1 (x)a* = a*x 
for all x G R• Our main results include showing (Theorem 3.1) that any 
centralizing "-automorphism a that is not freely acting on a prime ring 
with involution satisfies the functional equation a + a - 1 = 2. We also show 
(Proposition 3.2) that if R is not of characteristic 2 then such an automor-
phism is the identity automorphism. Thus combining the two results we 
obtain 
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THEOREM A . Let R be a prime ring with involution such that the charac-
teristic of R is not equal to 2. Then any centralizing * -automorphism which 
is not freely acting on R is the identity automorphism. 

We remark that the functional equation a + a - 1 = 2 is a particular case 
of widely studied functional equation a + a - 1 = + for automorphisms 
a, (3 on C-algebras and prime and semiprime rings (see e.g. [2, 3, 6, 14]). 
Theorem A offers a new proof of a result of [10, Remark following Propo-
sition 3] and also generalizes a result of Miers [12, Remark 2, p. 63] which 
states that any centralizing inner automorphism of an operator algebra is 
the identity automorphism. We may further remark that Luh [11] proved 
that any commuting automorphism on a prime ring is the identity auto-
morphism. Since any commuting automorphism is centralizing, therefore 
Theorem A provides an alternate proof of Luh's result for automorphisms 
that are not freely acting. These and other results are contained in section 3 
while section 2 contains some technical preliminaries required for our results. 
We remark that our results in this note are purely algebraic. The concepts 
like von Neumann algebras and C*-algebras appear only in the historical 
perspective of the problem. 

2. Preliminaries 
Let R be a ring. Then R is said to be prime if axb = 0 for all x G R 

implies a — 0 or 6 = 0. A von Neumann algebra is prime if and only if it is 
a factor (i.e. its center consists of the scalar multiples of the identity). R is 
said to be semiprime if axa = 0 for all x 6 R implies a = 0. A prime ring 
is semiprime and also any C'-algebra is also semiprime. An automorphism 
a of a ring R with involution is a '-automorphism if a(x') = a(x)' for 
all x 6 R. A mapping a of a ring R into itself is said to be centralizing if 
[a ( i ) ,x ] (E Z(R) for all x € R. In the special case when [a ( i ) ,x ] = 0 for all 
x 6 R, then a is said to be commuting, where [z, y] = xy — yx. 

3. Results 
Let a be an automorphism of a prime ring R and a be a nonzero de-

pendent element of a. Then a is neither a right zero divisor nor a left zero 
divisor. Indeed, if a is a right zero divisor then there is b ji 0 such that 
ba = 0. Then 0 = bax = ba(x)a for all x in R. Since a is onto and R is 
prime we get a = 0 or ¿> = 0, a contradiction. Thus a is not a right zero 
divisor. Similarly a is not a left zero divisor. 

THEOREM 3 . 1 . Let a be a centralizing * -automorphism of a prime ring 
R with involution. Assume that a is not freely acting on R. Then 

(a) a satisfies the equation a + a - 1 = 2. 
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(b) If in addition the characteristic of R is not equal to 2, then a = id 
(the identity automorphism). 

P r o o f . By [1, Lemma 2], a is commuting and a linearization of [ a ( i ) , z ] 
= 0 implies [a(a:),y] = [x,a(y)] for all x, y 6 R. Since a is not freely acting, 
therefore we assume that a nonzero element a is a depending element of a . 
Substituting a for y and using a(a) = a, we get 

(1) [a(x),a] = [z,a(a)] = [ i ,a] for all i € R. 

That is, 

(2) a(x)a - aa(x) - xa + ax = 0 for all x € R. 

Since a(x)a = ax, we get from (2) 

(3) a(x - a(x)) + ax - xa = 0 for all x 6 R. 

Multiplying (3) by a* on the left, we get 

(4) a*a(x — a(x)) -f a'ax — a'xa = 0 for all x € R. 

Since a - 1 (a : )a* = a*x, we get from (4) 

(5) a*a(x - a(x)) + a'ax - a~1(x)a*a = 0 for all x £ R. 

Since a*a G Z(R), we get from (5) that a*a(x - a(x) + x - a - 1 (a:)) = 0 
for all x G R- But a is not a zero divisor implies a*a is not a zero divisor 
and hence a(x) + a - 1 ( i ) - 2x = 0 for all x € R- That is, a + a - 1 = 2. 
This completes the proof of (a). The proof of (b) follows from (a) and the 
Proposition 3.3 below. • 

The equation a + a - 1 = 2 is a particular case of the more general 
equation a + a - 1 = (3 + (5~l for automorphisms a,f3 on prime rings (see 
e.g. [2]). The proposition below follows from Bresar's result [3, Corollary 3] 
whose proof depends on several technical lemmas. In this particular case we 
give a direct and simple proof. 

PROPOSITION 3 .2 . Let a be an automorphism of a prime ring R of char-
acteristic not equal to 2 such that a + a - 1 = 2. Then a is the identity 
automorphism. 

P r o o f . Put d = (a — 1). Then d is an additive mapping of R into R 
and satisfies d(xy) = a(x)d(y) + d(x)y for all x,y 6 R. That is, d is an 
a-derivation. Also, 

d2{x) = (a - l ) (a - 1)® = (a2 - 2a + l ) i = 0 for all x € R. 
d2{xy) = d(d(xy)) = d(a(x)d(y) + d(x)(y)) = d(a(x)d(y)) + d(d(x)y) 

= a2(x)d2(y) + d(a(x))d(y) + a(d(x))d(y) + d2(x)y. 



310 L. A. Khan, A. B. T h a h e e m 

Since d2(xy) = d2{x) = d2(y) = 0 and a commutes with d, therefore 
2 d ( a ( x ) ) d ( y ) = 0 for all x,y £ R. Since characteristic of R is not equal 
to 2, therefore d(a(x))d(y) = 0 for all x,y £ R. Replacing y by zx, we 
get 0 = d(a(x))d(zx) = d(a(x))(a(z)d(x) + d(z)x) = d(a(x))a(z)d(x) 
+ d(a(x))d(z)x for all x,z 6 R. Since d(a(x))d(z)x = 0, therefore 
d(a(x))a(z)d(x) = 0 for all x, z 6 R. ot is onto implies d(a(x))Rd(x) = 0 
and R being prime implies d(a(x)) = 0 or d(x) = 0. In any case d = 0 
because a is onto. Thus we obtain that a = 1. a 

We conclude the note with the following characterization of the identity 
automorphism. This generalizes a result of [4] for C*-algebras. 

PROPOSITION 3 . 3 . Suppose that a is an inner automorphism of a prime 
ring R with involution. Then a is the identity automorphism if and only if 
(6) (<*(*'))" = "(<*(*)) for all z € R. 

P r o o f . Assume that (6) holds. If a is a "-automorphism (not necessarily 
inner) then a(x) = a(a(x)) . This implies (a — l)a(x) = 0 for all x £ R and 
a being onto gives a — 1 = 0 or a = 1. 

Now assume that a(x) = a x a - 1 for all x € R, a 6 R. Then by assump-
tion, a2xa~2 = a* xa* for all x £ R. This implies that a*a2x = xa*a2 or 
a'aax — xa'a a = 0 for all x € R. Since a*a € Z(R), therefore rewriting 
the preceding equation we get ama(ax — xa) = 0 for all x 6 R. Since a"a is 
not a zero divisor, therefore ax = xa for all x 6 R and hence a is a central 
element. This proves that a = 1. The converse is simple. This completes the 
proof. • 
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