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ON AUTOMORPHISMS OF PRIME RINGS
WITH INVOLUTION

1. Introduction

Throughout this note R denotes a ring. We assume that R contains the
unit element 1, although some results may hold without this assumption.
Following Laradji and Thaheem [10], an element a € R is said to be a de-
pendent element of a mapping « of R into itself if a(z)a = az for all z € R.
Obviously, 0 is a dependent element of . If @ is an inner automorphism
of R induced by an element a € R (i.e. a(z) = aza™! for all z € R),
then a is a dependent element of a. If 0 is the only dependent element of
o then a is said to be freely acting on R. Dependent elements were first
introduced by Choda, Kasahara and Nakamoto [8] for automorphisms of
C*-algebras in the process of generalization of the notion of free action of
automorphisms of von Neumann algebras (due to von Neumann and Mur-
ray [15, 16], see also Kallman [9]) to C*-algebras. Several other authors
have also studied dependent elements in operator algebras (see e.g. [5, 7]).
Dependent elements have also been discussed in the book of Stratila [13].
Laradji and Thaheem [10] have further generalized this notion to rings and
have proved some basic results on dependent elements in rings analogous to
those in [8]. In this paper we consider automorphisms on prime rings with
involution rather than general mappings on arbitrary rings. Thus following
[10], if a is a dependent element of a, then a(a) = a. In case R has invo-
lution (*) and « is a *—automorphism, then a*a = aa* € Z(R), the center
of R, and a* is the dependent element of a~'. That is, @~ 1(z)a* = a*z
for all z € R. Our main results include showing (Theorem 3.1) that any
centralizing *-automorphism a that is not freely acting on a prime ring
with involution satisfies the functional equation a + a™! = 2. We also show
(Proposition 3.2) that if R is not of characteristic 2 then such an automor-
phism is the identity automorphism. Thus combining the two results we
obtain
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THEOREM A. Let R be a prime ring with involution such that the charac-
teristic of R s not equal to 2. Then any centralizing * -automorphism which
is not freely acting on R is the identity automorphism.

We remark that the functional equation a +a~! = 2 is a particular case
of widely studied functional equation a+a~! = 8+ 37! for automorphisms
a, on C*-algebras and prime and semiprime rings (see e.g. [2, 3, 6, 14]).
Theorem A offers a new proof of a result of {10, Remark following Propo-
sition 3] and also generalizes a result of Miers [12, Remark 2, p. 63] which
states that any centralizing inner automorphism of an operator algebra is
the identity automorphism. We may further remark that Luh [11] proved
that any commuting automorphism on a prime ring is the identity auto-
morphism. Since any commuting automorphism is centralizing, therefore
Theorem A provides an alternate proof of Luh’s result for automorphisms
that are not freely acting. These and other results are contained in section 3
while section 2 contains some technical preliminaries required for our results.
We remark that our results in this note are purely algebraic. The concepts
like von Neumann algebras and C*-algebras appear only in the historical
perspective of the problem.

2. Preliminaries

Let R be a ring. Then R is said to be prime if azb = 0 for all z € R
implies @ = 0 or b = 0. A von Neumann algebra is prime if and only if it is
a factor (i.e. its center consists of the scalar multiples of the identity). R is
said to be semiprime if aza = 0 for all z € R implies a = 0. A prime ring
is semiprime and also any C*-algebra is also semiprime. An automorphism
a of a ring R with involution is a *-automorphism if a(z*) = a(z)" for
all z € R. A mapping a of a ring R into itself is said to be centralizing if
[a(z),z] € Z(R) for all z € R. In the special case when [a(z),z] = 0 for all
r € R, then « is said to be commuting, where [z,y] = zy — yz.

3. Results

Let o be an automorphism of a prime ring R and a be a nonzero de-
pendent element of a. Then a is neither a right zero divisor nor a left zero
divisor. Indeed, if a is a right zero divisor then there is b # 0 such that
ba = 0. Then 0 = baxr = ba(z)a for all z in R. Since « is onto and R is
prime we get a = 0 or b = 0, a contradiction. Thus a is not a right zero
divisor. Similarly a is not a left zero divisor.

THEOREM 3.1. Let a be a centralizing *-automorphism of a prime ring
R with involution. Assume that o is not freely acting on R. Then
(a) a satisfies the equation a + a~! = 2.
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(b) If in addition the characteristic of R is not equal to 2, then a = id
(the identity automorphism).

Proof. By [1, Lemma 2], a is commuting and a linearization of [a(z), z]
= 0 implies {a(z),y] = [z, a(y)] for all z,y € R. Since a is not freely acting,
therefore we assume that a nonzero element a is a depending element of a.
Substituting a for y and using a(a) = a, we get

(1) [a(z),a] = [z,a(a)] = [z,a] for all z € R.
That is,
(2) a(z)a — aa(z) —za +az =0 forall z € R.

Since a(z)a = az, we get from (2)

(3) a(z —a(z))+az—za=0forall z € R.

Multiplying (3) by a* on the left, we get

(4) a*a(z ~ a(z))+a"az — a*za = 0 for all z € R.

Since a~!(z)a* = a*z, we get from (4)

(5) a*a(z — a(z)) + a*az — a~(z)a"a = 0 for all z € R.

Since a*a € Z(R), we get from (5) that a*a(z — a(z) + z — a”1(z)) = 0
for all z € R. But a is not a zero divisor implies a*a is not a zero divisor
and hence a(z) + a™!(z) — 2z = 0 for all z € R. That is, a + a™! = 2,

This completes the proof of (a). The proof of (b) follows from (a) and the
Proposition 3.3 below. o

The equation o + o~! = 2 is a particular case of the more general
equation @ + a~! = 8 4 37! for automorphisms «,3 on prime rings (see
e.g. [2]). The proposition below follows from Bresar’s result [3, Corollary 3]
whose proof depends on several technical lemmas. In this particular case we
give a direct and simple proof.

PROPOSITION 3.2. Let a be an automorphism of a prime ring R of char-
acteristic not equal to 2 such that o + a™! = 2. Then a is the identity

automorphism.

Proof. Put d = (a — 1). Then d is an additive mapping of R into R
and satisfies d(zy) = a(z)d(y) + d(z)y for all z,y € R. That is, d is an
a—derjvation. Also,

d(z)=(a-1)a-1)z=(a®-2a+1)z=0forall z € R.
d*(zy) = d(d(zy)) = d(a(z)d(y) + d(z)(y)) = d(a(z)d(y)) + d(d(z)y)
= o?(2)d’(y) + d(a(z))d(y) + a(d(z))d(y) + d*(z)y.
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Since d*(zy) = d*(z) = d*(y) = 0 and a commutes with d, therefore
2d(a(z))d(y) = 0 for all z,y € R. Since characteristic of R is not equal
to 2, therefore d(a(z))d(y) = 0 for all z,y € R. Replacing y by 2z, we
get 0 = d(a(2))d(zz) = d(a(z))(a(2)d(z) + d(2)z) = d(a(z))a(z)d(z)
+ d(a(z))d(z)z for all z,z € R. Since d(a(z))d(z)r = 0, therefore
d(a(z))a(z)d(z) = 0 for all z,z € R. a is onto implies d(a(z))Rd(z) = 0
and R being prime implies d(a(z)) = 0 or d(z) = 0. In any case d = 0
because « is onto. Thus we obtain that a = 1. O

We conclude the note with the following characterization of the identity
automorphism. This generalizes a result of (4] for C*-algebras.

PRroPOSITION 3.3. Suppose that a is an tnner automorphism of a prime
ring R with involution. Then « is the identity automorphism if and only if

(6) (a(z*))" = a(a(z)) for all z € R.

Proof. Assume that (6) holds. If a is a *~automorphism (not necessarily
inner) then a(z) = a(a(z)). This implies (¢ — 1)a(z) = 0 for all z € R and
a being onto gives a — 1 =0 or a = 1.

Now assume that a(z) = aza™! for all z € R, a € R. Then by assump-
tion, a?za~? = a*”'za* for all z € R. This implies that a*a’z = za"a? or
a*aaz — za*a a = 0 for all z € R. Since a*a € Z(R), therefore rewriting
the preceding equation we get a*a(az — za) = 0 for all z € R. Since a*a is
not a zero divisor, therefore az = za for all 2 € R and hence a is a central
element. This proves that @ = 1. The converse is simple. This completes the

proof.O
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