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OSCILLATORY BEHAVIOUR OF FIRST ORDER LINEAR 
NEUTRAL DIFFERENTIAL EQUATIONS 

WITH DISTRIBUTED DELAYS 

In this paper, the oscillatory and nonoscillatory behavior of solutions of a class of the 
first order neutral differential equations with distributed delays is discussed, and the oscil-
latory and nonoscillatory criteria are obtained. Furthermore, the sufficient and necessary 
conditions for oscillation are given. In the end we also obtained a comparison theorem. 

1. Introduction 
In our paper, we consider the oscillatory behavior of a class of first order 

neutral differential eqations with distributed delays of the form 

d " 
(1.1) -[x(t)-px(t-T)]+ J x(t-s)dg(t,s) = 0 

0 
and 

d " 
(1.2) ~[x(t) - px(t - r)] + f x(t-s)d9i(t,s) = 0, 

i= l o 

where p £ [0,1], r , a and Oi are positive constants, i = 1 ,2 , ••• ,« ; g(t,s), 
gi(t,s) are functions of bounded variation in s € [0,<x] or s € [0,(7*], i = 
1,2, • • •, n, and they are continuous with respect to argument t £ [io, oo) for 
every fixed s. 

Let us denote by r = m a x { r , a } (or r = max{r,<7i,<T2,• •-,<Tn}) and 
L = {r, a} (or L = {r, ¿rj, • • •, <rn})- By a solution of Eq. (1.1) (or Eq. 
(1.2)), we mean that x € C{[tQ — r,oo),R) for some <o € R, such that 
x(t) — px(t — T) is continuously differentiate for t > to and such that Eq. 
(1.1) (or Eq. (1.2)) is satisfied for all t > t0. 

As it is customary, a solution x(t) is called to be oscillatory if it has 
arbitrarily large zeros; otherwise it is called to be nonoscillatory. Eq. (1.1) 
(or Eq. (1.2)) is said to be oscillatory if all of its solutions are oscillatory. 
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Recently many authors have considered the oscillation characteristics 
of the first neutral differential equations [1 -15] and give necessary and suf-
ficient conditions for oscillation. Although they obtained many strong re-
sultes, most of them have concentrated their attention on the equations 
with discrete delays, and only a few authors (see [7-12]) concentrated on 
the equations with distributed delays. In [1-6] the authors discussed the 
equations of the following form 

d n 

( 1 . 3 ) -[x(t)-px(t-T)} + ^ . ( O ^ i - a , ) = 0 
1=1 

with p £ [0,1] and with distinct conditions for qi(t), i = 1,2, Espe-
cially L.H.Erbe and Q.Kong [1] substantially improved the results of [2-6] 
and obtained good and sharp results for Eq. ( 1 . 3 ) . In our paper, we solved 
more generalized neutral differential equations with distributed delays Eq. 
( 1 . 1 ) and Eq. ( 1 . 2 ) . The results we obtained included [1]. It is well-known 
that equations with discrete delays are the special case of the one with dis-
tributed delays. Thus, here we have successfully extended the results of [1] 
to the equations with distributed delays. Hence, we have further discovered 
the general characters and common rules between the special case and his 
general form. 

First we cite the following Lemma from [1]: 

LEMMA 1 .1 . Let a > 0 , 6 > 0 and f(t) > 0 be a locally integrable function 
on [0,oo). Assume that both the limits 

exist and are finite. Then I\ — I2. 

2. Oscillation criteria 
Let us now consider the equation 

d a 

(2.1) —[x(0 - px(t - r)] + J x(t-s)dg(t,s) = 0 
0 

where p £ [0,1], r , a £ R+,g(t,s) is a function of bounded variation on 
s £ [0,cr], g(t,s) > 0 and continuous in t £ [<o>°o] for every fixed s £ [0,a] 
and satisfies 
(2.2) dg(t - r , s ) < dg{t, a), 5 £ [0, tr], t>t0 + r. 

Denote by L = {r, a} and assume that 

V(t, 0) = Vf=0 g(t, s) > v > 0, for any t £ [<0,00), 

where v is a positive costant. First we give the following lemma: 
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LEMMA 2.1. Let x(t) be an eventually positive solution of Eq. (2 .1) and 
let z(T) = x(t) - px(t - T). 

Then we have z(t) > 0, z\t) < 0 and 
a 

(2.3) z'(t)-pz'(t-T)+ J z(t - s)dg(t,s) < 0. 
o 

P r o o f . From (2.1) it is easy to see that z(t) > 0, z'(t) < 0. Because of 
(2.2) we have 

a a 

z'(t) - pz\t - T) = - f x(t- s)dg(t,s) + p f x(t- R - s)dg(t - r,s) 
o o a o 

< - f [x{t - s) - px(t — t — s)]dg(t, s) = - J z(t - s)dg(t, s). 
0 0 

So (2.3) is true. 
Our main results are as follows: 

THEOREM 2 .1 . If for all p. > 0 and I e L 

t+l a 

(2.4) liminf 
1 v 

pe^ + j - f f efiSdg(0,s)d& 
t—oo 

t 0 
> 1, lp 

then Eq. (2.1) is oscillatory. 

P r o o f . Suppose that (2.1) has an eventually positive solution x(t) > 0, 
t > t\, ti is large enough. By Lemma (2.1), z(t) > 0, z'(t) < 0, and (2.3) 
holds for t > h. Let w(t) = > h. Then w(t) > 0 and from (2.3) we 
have 

t 
(2.5) w(t) > pw(t - T) exp( J w(s)ds^) 

t-T 
a t 

-I- f exp ( J w(9)d0^dg(t,s), for t > i j + r. 

( 2 . 6 ) 

0 t-3 

Let {«;*;(<)} be a sequence of functions, for t > {/x^} defined by 

wi = 0, t > t\ 
t 

wk+i(t) = pwk{t - r ) e x p ( J wk( s)ds) 
t-T 

a t 
+ f exp ( f wk(0)d0^dg(t,s), k = 1,2, • • • t > ti + kr 

t - 3 
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and consider a sequence { / i * } given by 

{Mi = 0 

1 'V r 
f i k + 1 = inf min{Ptike^ T + 7 f J e * " d g ( 0 , s ) d 0 } , k = 1 , 2 , • • • l€L t o 

Now we claim that the following statements are true for { w k } and {nk} 
given by (2.6) and (2.7) i) 0 = n\ < fi2 < •• and limjt-ooM* = ii) w k ( t ) < w(t) for t > t i + ( k - 1 )r and it = 1,2,-

iii) j J t t + l w k ( s ) d s > nk for t > + (Jb + l ) r , A; = 1,2, • • • , / € L . 
To see i), observe that for A? = 1 and k = 2, we have 

i t+f o , t+l 
H 2 = inf m i n { p / i 1 e i ' l T + 7 f f e ^ ' d g ( 0 , s ) d 0 } = - f V ( 0 , a ) d 0 > 0 = ^ . t>ti ieL i j J i J < o t 
If we assume that > /¿/t_i, then 

, t+l a 
Mfc+i = inf m m { p f i k e ^ T + - f f e » * s d g ( 0 , s ) d 0 } t>ti /£L I  u  t 0 

j < + / a 
> mf m m { p f i k . 1 e ^ - l T + j f f e " ' - l 3 d g ( 0 , s ) d 0 } = nk 

~ 1 ¿ 0 
i.e. f i k+\ > p k . So by the induction argument, fik is an increasing sequence. 
By (2.4) and (2.7) one can easily see that = +oo. 

ii) Since 0 = w \ ( t ) < w ( t ) , for t > t\ then 
t a t 

s)ds) + J e x p ( J wi 
t-T 0 1 - 3 

= V { l , a ) > 0 = u>i(i), for t > h + r . 
If we assume that w k - \ ( t ) < w(t) for t > ti + (k — 2)r, then t a t 

( O ) d 0 ) d g ( t , s ) 
t-T 0 t~S 

t a t 
< pw(t - r ) e x p ( f w(s)ds*) + J e x p ( J w ( 0 ) d 0 ^ d g ( t , s ) 

t-T 0 t-S 
< w(t), for t > t i + ( k - l )r . | 
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So by the induction argument for any k = 1,2, • • •, we have wk(t) < w(t), 
for t > t i + { k - l ) r . 

iii) It is clear that iii) is true for k = 1. Now let us assume that iii) is 
true for some k. Then from (2.6) and (2.7) we conclude that 

1 t + l 

j f wk+1(s)ds 
t 

t+l , s . t+l a V ' \ I f ' 
= ? f wk(s)exp( / wk(9)d0)ds + - f J e x p ( J wk(6)d6)dg(s,0)ds 

t S-T t 0 3-8 

, t+l <T 
> PI*ke»tT + j f f e»»dg(0,s)d0 

t o 
J « + / <T 

> inf min{p/i f ccw r + j f f e""dg(0, s)d0} = fik+1. 
t o 

Hence iii) holds. 
Now from i), ii) and iii) we deduce that 

t+a 
l im J w(s)ds = oo. 

t 

Integrating w(t) = from t to t + f , we get 

e. 
z(t) Zl I I p 

R i T f ) = exp / w{s)ds 

and thus 

z(t) <+* 
(2.8) limsup — — = lim sup exp / w(s)ds = 00. 

t—00 Z(t + y) i_oo J
t 

Now let us observe that 
a a 

z'(t) = - J x(t-s)dg(t,s)< - f z(t-s)dg(t,s)< -V{t,a)z{t - a) 
0 0 

< —vz(t — a). 

Integrating both sides from t + | to t + <7, we find that 

Hence < which contradicts (2.8). This completes the proof. 
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C o r o l l a r y 2 . 1 . Assume that I e L 
oo . t+l a 1 l - f l O 1 

(2.9) l i m i n f V - r f f pk(kr + s)dg(9,s)d0 > -. t—>oo ' l J J e 

fc=o t o 
Then Eq. (2.1) is oscillatory. 

P r o o f . By Theorem 2.1, it is enough to show that (2.4) is true. 
It is true if for all fi > 0, peMT > 1. So we may assume that peMT < 1. 

But 
1 t+l a 1 00 t + l " 

- f J e " ' ( l - p e » T ) - l d g ( 0 , s ) d 9 = - Y , J f Pke^kT+3)dg(9, s)d0 
" t 0 " k=0 t 0 

oo 1 t+l a 

> E j f f Pke(kT + s)dg(0,s)d0. 
k=0 t 0 

Thus from (2.9) we obtain 

, t+ l <7 

l iminf— f [e'»(l-pe*rr1dg(0,s)M>l 
t—»oo ul J J 

r t 0 

i.e. 
t+l o 

lim inf 
t-> oo 

1 1 
pe"T + - / J e^dg(0,s)d0\ > 1. 

^ t o 
So (2.4) is true for all /z > 0. This completes the proof. 

In the following theorem we will give a criterion for the existence of 
nonoscillatory solution. 

T h e o r e m 2 . 2 . Assume that there exist /x* > 0 and 11 > to for I 6 L such 
that 

1 t + l
 " 

(2.10) sup[pe"'T + —J J f e»'sdg(s,9)ds] < 1. 
t>ti f1

 t o 

Then Eq. (2.1) has at least one positive solution on [<i + r, oo). 

P r o o f . First let us observe that the integral equation 
t a t 

(2.11) u(t) = pu(t - r ) e x p ( J u( s)ds) + J exp ( f u(e)d0)dg(t,s) 
t-T 0 t - S 

possesses a positive solution on [<i + r, oo). To see this, let us make up a 
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sequence {u;t(i)}. Setting 

' ui (0 = 0, t > t i 

( 2 . 1 2 ) 
uk+i(t) = 

t 
puk(t-r)exp( J uk(s)dsj 

t-T 

<J t 
+ J e x p ( J uk(0)d0)dg(t,s), t > h + 

t-s 

I / W O , 
where {/?*(£)} is given sequence satisfying 

i) 0k € C2([h,h + r) ,[0,oo)) with 0ki(t) > 0 and &//(*) > 0, 

ii) 0k(t) = 0, i € [ < i , i i + r - T),0k(tx + r) = uk{h + r) and 0k(t) are 
increasing in k for t € [ii + r - r , t j + r), k = 1 ,2, • • 

iii) for / G L,k = 1,2, • • • 
ti + r «i+r+J 

f Pk(s)ds < J uk(s)ds, t e [ t 1 + r - l , t i + r). 
t t+i 

It is clear that ui( i ) < U2(t) < • • •• We claim that for k = 1,2, • • •, and 
/ € L 

t+i 
(2.13) 

1 
- f uk(s)ds < fi*, t > t i . 

In fact, (2.13) is true for k = l . Assume (2.13) is true for some k. Then 
from (2.10) and (2.12), we have 

1 t + l 

(2.14) j J uk+1(s)ds 

t"T* 9 j t + / O 9 
= f f uk(s-r)exp( f u k ( f f ) d f f J + j J f e x p ( J uk(6)d6)dg(s,0)ds 

t S-T t 0 3-6 

, t+l a 
< p f i ' e ^ + j J f e»~'dg(s, 9)ds <p*, t > h + r. 

t o 

For t G [<i + r — /, ti + r ) , / G L, from (2.14) and condition iii) we have 

1 t + l l r t l + r t + l 

- J Ufc+i(s)d5 = y[ J 0k+1 (s)ds+ J uk+i(s)ds 
t t U+r 
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j <l+r+< t+l jti+r+Z 
<y[ J uk+1(s)ds+ f Ufc+1(s)iisj = J f uk+i(s)ds < 

t+l <1 + T ti + r 
From the monotonic property of flk+i(0 with respect to t we can see 

that (2.13) also holds for t € [*i, h + r - I), I G L. 
Now let u(i) = lim/t-oo «*(<)• Then u(t) = 0,< G + r - T), u(t) is 

increasing on [<i +' r - r , t\ + r) and for t > t \ and I £ L 

t+i 1 T - J u(s)ds < n'. 

Let k oo on both sides of (2.12). By the Lebesgue monotone conver-
gence theorem, we see that u(t) satisfies (2.11) for t > t j + r. It is also easy 
to see that u(t) is well-defined on [ti,oo). In fact, by condition ii) of {/3k} 

t l + r 
«(ii + r)= / exp( f u(0)d0jdg(ti + r,s) 

0 t,+r-3 
a 

< f e""'dg(ti + r, s) < eu'"V(ti + r, a) < oo 

and hence u(t) is bounded for t G [*i ,f i+r] . If u(t*) = oo for some t* > ¿ i+ r , 
then choose an integer m such that t* — m r G [tj + r - r , i j + r). By (2.11) 
we have u(t' — mr) = oo, this is imposible. Furthermore, from i) we get 
that u(t) is continuous on [<i,<i -f r], so in view of (2.11) we see that u(t) is 
continuous on [ij, oo). Thus u(t) is a positive solution of (2.11) on [<j + r , oo). 
Set 

t 
x(t) = exp^- J u(s)dsSj. 

ij + r 

We can verify that x(t) is a positive solution of (2.1). In fact, notice that 
u(t) is a solution of (2.11), we have 

d * • 
— [ x ( i ) - i ( < - r ) ] = - u ( * ) e x p ^ - j u(s)ds^+pu(t-r)exp^- J u(s)dsj = 

ii + r ti + r 
t a t t 

- [ p « ( i - r ) e x p ( j u(s)dsj+ f exp( J e x p ( - J u(0)d0 
t-r 0 t-» ii+r 

—pu(t — r ) e x p ^ - J u(s)dsj 
<l+r 
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a t—s a 
= - f exp(- J u(e)d0)dg(t,s) = - J x(t - s)dg(t,s). 

0 tj+r 0 
This completes the proof. 

T H E O R E M 2.3. Assume that 
t+/ a 
f J e>l9dg(s,9)ds 
t o 

is a nondecreasing function in t for I G L. Then Eq. (2.1) is oscillatory if 
and only if for all fi > 0 and I G L 

<+/ <T 
lim t—*oo 

1 'T' v 
pe"T + r J J e»edg(s,6)ds 

^ t o 
> 1. 

P r o o f . Denote 
1 t+l <r 

f(t,tiJ) = pe»T + r J J e»9dg{s,0)ds. 
P t o 

Since f*+l ett6dg(s,9)ds is nondecreasing, so we conclude that 
lim<-^oo 0 exists for / G L. By Lemma 1.1 we have 

lim f(t,n,r) = lim f(t,n,<j) t—• oo t—• oo 
and for any I G L 

lim f ( t , n, I) = lim inf f(t, n, I) = sup / ( t , /x, /). i—OO t —OO l><] 

Then Theorems 2.1 and 2.3 immediately complete the proof. 
Now we give out a corollary as a special case of Theorem 2.4. 

COROLLARY 2.2. If there exists c > 0 such that r = moc, a = mjc , mo, 
mi are integers, and 

g{t,s) = Vl{t,s) + V2{t,s), 
where V*(t,s) (i=l, 2) are also functions of bounded variation in s G [0, o], 
and Vi(i,s) is c-periodic function with respect to t, and j J*+l deV\(0,s) = 
Vi(s), V2(t, 5) satisfies limpet, V2(i,s) = ^(s) is a bounded variation func-
tion and also 

a a 
lim f e>"dV2{t,s) = f e " W 2 ( s ) , 
t—'OO J J 

0 0 

then Eq. (2.1) is oscillatory if and only if for all fi > 0 

pe"r + - f e^diV^s) + V2(5)) > 1. ^ n 
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In the following let's consider the equation 
n <7, 

(2.15) -[x{t)-px{t-r)] + Y^ J x(t-s)dg,{t,s) = 0 
¿=i o 

where p,r,Oi,gi(t,s),(i = 1,2, • • • ,n) satisfy the same condition as p, r , 
<7, g(t,s) which we mentioned above. Here we only need to redefine r = 
max{r,<Ti,<72, • • • ><7n} and L = {t,0\,02, - • • ,<Jn}- Since the proof of the 
following Theorems are similar to those which we proved above, we will 
only give the theorems without proofs. 

L E M M A 2 .1*. Let x(t) be an eventually positive solution of Eq. ( 2 . 1 5 ) , 
and let z(t) = x(t) — px(t — r). Then we have z(t) > 0, z'(t) < 0 and 

n a, 
(2.3)* z'{t) - pz'(t - r ) + £ J z(t- s)dgi(t, 5) < 0. 

>=1 0 

T H E O R E M 2 . 1 * . I f for all n > 0 , and I G L 

t+l n ai 
( 2 . 4 ) ' lim inf t—>00 

1 i-r* f i 
+ r S T , J ^9i(9,s)de 

^ t «=1 0 
> 1. 

Then Eq. (2.15) is oscillatory. 

C O R O L L A R Y 2 . 1 * . If for all I E L 

n 00 .. i+i a, 
(2.9)* U M i n f Y Y - f f pk(kr + s)dg,{6, s)d9 > - , 

t—fOO ' ' [ J J g 1 = 1 k=0 t 0 
then Eq. (2.15) is oscillatory. 

T H E O R E M 2 .2*. Assume that there exists n* > 0 and ti > to for I 6 L 
such that 

sup < 1. 
1 t+l n <7. 

I E f e»'"dg,(s,0)ds 
^ t i= 10 

Then Eq. (2.15) has at least one positive solution on [<1 + r, 00). 

T H E O R E M 2.3*. Assume that J f + l e»9dgt(s,0)ds is a nonde-
creasing function in t for I G L. Then Eq. (2.15) is oscillatory if and only 
if for all fi > 0 and I € L 

lim t—>oo 

. i+i Ti a, 
pe»T + r J Y , S ^d9i(s,e)d3 

^ t ¿=1 0 
> 1. 
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C O R O L L A R Y 2.2*. If there exists c > 0 such that r — tuqc, Oi — miC, mo, 
m.i, (i = 1 , 2 , • • • , « ) are integers, and 

9i(t,s) = Vil(t,s) + Vi2(t,s) 

where V , j ( i , s ) , ( i = l , 2 , - - - , n , j = 1,2) are also functions of bounded vari-
ation and V,'i(i, s), (i = l,n) are c-periodic functions with respect to t, 
and } Jt deVn(6,s) = Vii(-s), Vi2(t, s) satisfy ]imt-.00Vt2(t, s) - V,2(s) are 
bounded variation functions and also 

a, a, 
lim f e»°dVi2(t,s) = f e^dViAs). 
t—*oo J J 

0 0 
Then Eq. (2.15) is oscillatory if and only if 

p e + " E / + Vi2(s)) > 1. 
^ i=l o 

3. Comparison theorem 
Consider the following pair of equations 

d 
(3.1) -[x(t)-p1x(t-Tl)]+ J x(t-s)dgi{t,s) = 0 

0 
and 

d 
(3.2) ~[x(t) -P2x(t-r2)]+ f x(t-s)dg2(t,s) = 0, 

0 
p, € [0, l],ry, Cj G R+,gi(t,s) satisfy the same conditions as g(t,s) men-
tioned in Section 2, i = l , 2. We also assume that the conditions in Corollary 
2.2 hold for g\{t,s). Then we have the following comparison theorem 

T H E O R E M 3.1. i) Suppose that Eq. ( 3 . 1 ) is oscillatory, p2 > pi,r2 > T\ 
and for all p. > 0, / = {r2,cr2} 

, i+J <72 (Tl 
(3.3) lim inf-r f f e" 'dg 2 (0 , s)d9 > f e^'diV^s) + V2(s)). 

t—too I J J J 
t 0 0 

Then Eq. (3.2) is oscillatory. 
ii) Suppose that Eq. (3.2) is oscillatory, p2 < p\,r2 < r i , and for all 

p. > 0,1 = {r2,cr2}, there exists T > to such that 

(3.4) sup - f f e^dg2(0,s)de< f e^d^s) + V2(s)). 
1 t o o 

Then Eq. (3.1) is oscillatory. 



'290 B. J u n d o n g 

iii) Suppose that Eq. (3.2) is nonoscillatory, P2 > P i , r 2 > t j , and /or a// 
(i > 0,1 = {7-2,(72} (3.3) holds. Then Eq. (3.1) has at least one nonoscillatory 
solution. 

iv) Suppose that Eq. (3.1) is nonoscillatory, p? < p\,r2 < T\, and there 
exists T > t0 such that for all /x > 0,1 = {r2,cr2} {3.4) holds. Then Eq. 
{3.2) has at least one nonoscillatory solution. 

P r o o f , i) Since Eq. (3.1) is oscillatory, by Corollary 2.2, we have for all 
H > 0 

1 
Pie"Tl + - f e ^ d ^ s ) + V2(a)) > 1 

* 0 
and from (3.3) we obtain that 

[1 t+i 01 -1 

Pie^ + j- f f e'iadg2{0,s)d0\ > 1. 
" t 0 

By Theorem 2.1, (3.5) implies that Eq. (3.2) is oscillatory. 
ii) If Eq. (3.1) is nonoscillatory, then by Corollary 2.2, there must exist 

y.* > 0 such that 
pe" 'T l + \ f e"*4d(V,(5) + V2(*)) < 1. 

u. J 

^ 0 

Hence from (3.4) 

(3.6) lim inf t—00 + y f J e^'adg2{0,s)d0 I t 0 
< 1. 

Thus, by Theorem 2.2, (3.6) implies that Eq. (3.2) has nonoscillatory solu-
tion, it contradicts assumption. 

iii) and iv) are the converses of i) and ii). This completes the proof. 

For the following pair of equations 

d n <7il 

(3.7) [ a . ( i ) _ J > i a : ( i _ T l ) ] + £ j x{t-s)dgil{t,s) = 0 
¿=1 0 

and 

(3.8) —[*(«) - p2x{t - r2)] + £ f x(f ~ ^)dfi2{t,s) = 0 
1=1 0 

where pj,Tj,(Ji j , are constants satisfing the corresponding conditions in The-
orem 2.3*, gn{t,s),{i = l , 2 , - - - , n ; j = 1,2) also satisfy the condition as 
g2{t,s) in Theorem 3.1. Then we can give out the comparison theorem be-
tween Eq. (3.7) and Eq. (3.8) without proof. 
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THEOREM 3 .2 . i) Suppose that Eq. ( 3 . 7 ) is oscillatory, p 2 > p i , r 2 > 
and for all fi > 0, I = { r 2 , <r12, tr2 2 , • • •, <^»2} 

1 t+J n ffij " a,1 
( 3 . 9 ) k i n / - / £ / / d (Vi i (5 ) + V « ( i ) ) . 

- K X > t 1=1 0 «=1 0 

Then Eq. ( 3 .8 ) is oscillatory. 
ii) Suppose that Eq. (3.8) is oscillatory, P2 < Pi, r 2 < Tj and for all 

/t > 0 , / = { r 2 , ( 7 1 2 , ct22, • • • , < ^ 2 } , there exists T > tQ such that 

. t+l n <ri3 n <rn 

( 3 . 1 0 ) sup y / £ / e"3dgi2(0,s)d0< £ / e " * d ( V n ( s ) + V,-2(s)). 
t i = i 0 »=1 0 

Then Eq. ( 3 .7 ) is oscillatory. 
iii) Suppose that ( 3 . 8 ) is nonoscillatory, p 2 > p i , r 2 > r 1 ? a n d / o r all 

H > 0 , / = { t 2 , <7x2, <r22, • • • j f n 2 } ( 5 . 5 ) holds. Then Eq. ( 3 . 7 ) has at least 
one nonoscillatory solution. 

i v ) Suppose that Eq. ( 3 . 7 ) is nonoscillatory, p 2 < p i , r 2 < r j , a n d there 
exists T > t0 such that for all fi > 0,1 = {r2,cr12,£T22, • • -,crn2} (3.10) holds. 
Then Eq. ( 3 .8 ) /ias a nonoscillatory solution. 
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