DEMONSTRATIO MATHEMATICA
Vol. XXX No 2 1997

Bao Jundong

OSCILLATORY BEHAVIOUR OF FIRST ORDER LINEAR
NEUTRAL DIFFERENTIAL EQUATIONS
WITH DISTRIBUTED DELAYS

In this paper, the oscillatory and nonoscillatory behavior of solutions of a class of the
first order neutral differential equations with distributed delays is discussed, and the oscil-
latory and nonoscillatory criteria are obtained. Furthermore, the sufficient and necessary
conditions for oscillation are given. In the end we also obtained a comparison theorem.

1. Introduction
In our paper, we consider the oscillatory behavior of a class of first order
neutral differential eqations with distributed delays of the form

(1.1) gt-[a:(t) —pz(t—T1)]+ f z(t — s8)dg(t,s) =0

and ° _

12) e -pet-+Y [ e(t-da(ts) =0,
=1 0

where p € [0,1], 7, o and o; are positive constants, ¢ = 1,2,---,n; g(t, s),
gi(t,s) are functions of bounded variation in s € [0,0] or s € [0,0}], 1 =
1,2,---,n, and they are continuous with respect to argument t € (o, 00) for
every fixed s.

Let us denote by r = max{r,o} (or r = max{r,0y,02, --,0,}) and
L ={r,0} (or L = {r,01,02,---,0,}). By a solution of Eq. (1.1) (or Eq.
(1.2)), we mean that z € C([tg — r,00), R) for some t; € R, such that
z(t) — pz(t — 1) is continuously differentiable for t > #y and such that Eq.
(1.1) (or Eq. (1.2)) is satisfied for all ¢ > ¢.

As it is customary, a solution x(t) is called to be oscillatory if it has
arbitrarily large zeros; otherwise it is called to be nonoscillatory. Eq. (1.1)
(or Eq. (1.2)) is said to be oscillatory if all of its solutions are oscillatory.



280 B. Jundong

Recently many authors have considered the oscillation characteristics
of the first neutral differential equations {1-15] and give necessary and suf-
ficient conditions for oscillation. Although they obtained many strong re-
sultes, most of them have concentrated their attention on the equations
with discrete delays, and only a few authors (see [7-12]) concentrated on
the equations with distributed delays. In [1-6] the authors discussed the
equations of the following form

(13) a0 = pr(t= 1)+ Y a(t)at o) = 0

with p € [0,1] and with distinct conditions for ¢;(t), ¢ = 1,2,---,n. Espe-
cially L.H.Erbe and Q.Kong [1] substantially improved the results of [2-6]
and obtained good and sharp results for Eq. (1.3). In our paper, we solved
more generallized neutral differential equations with distributed delays Eq.
(1.1) and Eq. (1.2). The results we obtained included [1]. It is well-known
that equations with discrete delays are the special case of the one with dis-
tributed delays. Thus, here we have successfully extended the resuits of [1]
to the equations with distributed delays. Hence, we have further discovered
the general characters and common rules between the special case and his
general form.
First we cite the following Lemma from [1]:

LEMMA 1.1. Leta > 0,b > 0 and f(t) > 0 be a locally integrable function
on [0,00). Assume that both the limits
t+a t4b

L= lim ~ f f(s)ds and I = Jim - f f(s)ds

erist and are finite. Then I =1,

2. Oscillation criteria

Let us now consider the equation
[

d
(2.1) E[z(t) —pz(t—T1))+ (‘)f z(t — s)dg(t,s) =0
where p € [0,1], 7,0 € R4,g(t,s) is a function of bounded variation on
s € [0,0], g(t,s) > 0 and continuous in t € [to, 0c] for every fixed s € [0,0]
and satisfies

(22) dg(t - T,S) < dg(ta S)s s € [0,0], t2t+T.
Denote by L = {7,0} and assume that
V(t,o) =V, g(t,s)>v >0, foranyt€ [ty,0),

where v is a positive costant. First we give the following lemma:
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LEMMA 2.1. Let z(t) be an eventually positive solution of Eq. (2.1) and

2(t) = z(t) — pz(t — ).
Then we have z(t) > 0, 2'(t) < 0 and

(2.3) Z(t) - p2'(t-1)+ [ 2(t-s)dg(t,s) < 0.
0
Proof. From (2.1) it is easy to see that z(t) > 0, 2'(t) < 0. Because of
(2.2) we have

let

o

Z(t)-pt-1)=- f z(t — s)dg(t,s)+p f r(t— 17— s)dg(t—r,s)
0

0
a

< — [la(t-s)—pa(t— 7 - s)ldg(t,s) = = [ 2(t - s)dg(t,s).
0 0

So (2.3) is true.

Our main results are as follows:

THEOREM 2.1. If for all u > 0 andl € L

1 t+!l o
. . uT - us

(2.4) lim inf [pe i :f of e dg(o,s)do] > 1,
then Eq. (2.1) is oscillatory.

Proof. Suppose that (2.1) has an eventually positive solution z(t) > 0,
t > t1, t is large enough. By Lemma (2.1), 2(t) > 0, 2'(¢) < 0, and (2.3)
holds for t > ¢t;. Let w(t) = —% :) ,t > t;. Then w(t) > 0 and from (2.3) we
have

(2.5) w(t) > pw(t — 7)exp ( w(s)ds)

+ jexp( fw(G)dB)dg(t,s), for t>t +.
0

t—s

Lo~

Let {wg(t)} be a sequence of functions, for ¢t > t;, {ux} defined by

( w = 0, t> 4
t
wis1(t) = puk(t - ) exp( [ wa(s)ds)
(26) < t—71
o t
+ [ exo( [ wu(6)d8)dg(t, ), k=1,2,t>t +kr
V]

t—s
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and consider a sequence {ux} given by

1 =0

t+1

(2.7) 1 r
—_ % H BT - B =
Herr = of min{ppeett” + 5 f ofe dg(6,s)d6}, k = 1,2,

Now we claim that the following statements are true for {wx} and {ux}
given by (2.6) and (2.7)

1) 0=p3 < pp <---and limg_ o g = +00;

i) we(t) < w(t)fort >t +(k—1)rand k=1,2,--,
ii1) %ftt+lwk(s)ds >pupfort>ty+(k+ 1), k=1,2,.--,l € L.
To see i), observe that for k =1 and k = 2, we have

t+l o t4+!
p2 = inf mm{p;zle“” + - f f e*1°dg(8, s)d8} = f V(8,0)d0 > 0=y,.

2

If we assume that pp > pi-1, then

1 t+l o
= 1 1 BeT =y B s
teer = inf min{puee*” + g ! of e***dg(9, s)d0}
1 t+! o
i H Be—1T - Brk=19 -
> tlng, rlr‘lilg{puk_le + 7 ;f Je dg(6,s)d8} = px

i.e. g4y > pk. So by the induction argument, u, is an increasing sequence.
By (2.4) and (2.7) one can easily see that limx_ o, ux = +00.

ii) Since 0 = wy(t) < w(t), for t > t; then

wg(t)=pw1(t—r)exp( fwl(s)ds) + f exp( fw1(0)d0)dg(t,s)

t—r 0 t—s

=V(t,o)>0=w(t),fort >t +r

If we assume that wx_q1(t) < w(t) for t > t; + (k — 2)r, then

w(®) = pwra(t)exp( [ wecs(s)ds) + exp( J we-1(8)d8) dg(t, )
0

< pw(t - T)exp( ft )+ j exp( f 0)d0)dg(t s)
0

t-r t—s

<w(t),fort >t +(k—1)r.
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So by the induction argument for any k = 1,2, - - -, we have wi(t) < w(t),
fort >t + (k- 1)r.

iii) It is clear that iii) is true for £ = 1. Now let us assume that iii) is
true for some k. Then from (2.6) and (2.7) we conclude that

t+1
f wi1(8)ds
t4! s t+l o s
_P 1
=1 :f wk(s)exp(’ _fr wk(0)d0)ds+ 7. of exp( _fo wi(8)d6) dg(s, 6)ds
1 t+l o
> I Has
> pure™” + 7 :f ofe dg(8, s)df
1 t+l -2
> inf min{ppre**” + 7 f e °dg(8,s)d0} = piq-

t>ty leL

Hence iii) holds.
Now from i), ii) and iii) we deduce that
t+o
lim f w(s)ds = o0

t—o0
t

Integrating w(t) = —é(%l fromt tot + §, we get

t+%

z(2)
———— = ex w(s)ds
T+ D P ;f (s)
and thus
2(t) s
(2.8) liiri'sogp Wt D = li?lsogpexp }f w(s)ds = oo

Now let us observe that
(-4

2'(t) = - i z(t — s)dg(t,s) < — f z(t — s)dg(t,s) < =V (t,0)2(t — o)
0 0
< —v2(t - o).

Integrating both sides from t + £ to t + o, we find that
0<z(t+a) < 2(t+ %) - "2—"2(:).

Hence ;?% < 2, which contradicts (2.8). This completes the proof.
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COROLLARY 2.1. Assume thatl € L

o o] 1 t4+! o
(2.9) hgg}f;of ! of p* (kT + 8)dg(6, s)d0> =

Then Eq. (2.1) is oscillatory.

Proof. By Theorem 2.1, it is enough to show that (2.4) is true.
It is true if for all 4 > 0, pe#”™ > 1. So we may assume that pe*” < 1.
But
1
ul

i l

Bl ¥
"3

-4 1 [= ]
s Ty\-1
ofe“ (1— pe*T)~ dgﬂs)dﬂ_—lz

f pke“("”")dg 8,s)do
K k=0 0

t4i

> Z% ;f Ofp"e(kr + s)dg(6, s)dé.

k=0
Thus from (2.9) we obtain
t+! o
hmmf— f f e**(1 - pe*™)"1dg(,s)dd > 1
0

t—oo p

i.e.
hm 1nf [pe‘” + = f]‘tl j e**dg(0, s)dO] > 1.

So (2.4) is true for all 4 > 0. This completes the proof.

In the following theorem we will give a criterion for the existence of
nonoscillatory solution.

THEOREM 2.2. Assume that there exist u* > 0 and ty > ty for ! € L such
that

t+l o
2.10 sup | pe* T + PLY s, 0)ds
(2.10) sup p '1 f f g(s,8)ds| <1

Then Eq. (2.1) has at least one positive solution on [t; + r,00).

Proof. First let us observe that the integral equation

(2.11) u(t):pu(t—r)exp( fu(s)ds)+ f exp( fu(ﬁ)dO)dg(t,s)

t—71 t—s

posse3ses a positive solution on [t; + 7,00). To see this, let us make up a
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sequence {ug(t)}. Setting
[(u(1) =0, t>1t

( t

puk(t — ‘r)exp( f uk(s)ds)

t—1

(2.12) ¢ e | .
urps1(t) = + f ex (fuk(O)do)dg(t,s), t>2ti +r
0

t—s

{  Bes1(t), 1 <t <ty +r,

where {8k(t)} is given sequence satisfying
i) B € cz([zl,tl + r),[O,oo)) with By/(t) > 0 and Ben(t) > 0,
tefti,th+1), k=12,
ii) Be(t) = 0,t € [, ts +7=7),Bk(t1 +7) = (11 + 7) and k() are
1,2,-

increasing in k for t € [t1 +r—nti+r) k=
iii) forl € L,k =1,2,.
ti+r ty+r4d
f Bi(s)ds < f uk(s)ds,t €ty +r— 1,8+ 7).
t t+1

It is clear that u;(t) < uy(t) < ---. We claim that for £k = 1,2, ., and
lelL
1 t4+1
(2.13) - f up(s)ds < u*, t2>1t.
Ly
In fact, (2.13) is true for k=1. Assume (2.13) is true for some k. Then
from (2.10) and (2.12), we have
t+1

(2.14) f uky1(8)ds

t+1 t+!l o s
=2 [uss-ryexp ( f w(@d8) + 7 [ [ exp( [ us(8)d6)dg(s,0)ds
t s— t 0 s—6

T

1 +

< pue’’ + 7 f “odg30)ds<p , t>t +r.
t

°%q

For t € [tl +r—-1,ty +r),l € L, from (2.14) and condition iii) we have
t+1 ti4r t+1

f"k+1(3)d3— [f Brs1(s)ds + f“k+1(8)d3]

t]+7‘
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1 ty+r+d t41 1‘1+"+l
s 7[ f Uksr(s)ds + f “k+1(3)d"] =7 f Utk (8)ds < p’.
i titr ti+r

From the monotonic property of Bi41(t) with respect to t we can see
that (2.13) also holds for ¢t € [ty,t; +r —1),l € L.

Now let u(t) = limi_ oo ux(t). Then u(t) = 0,t € [t1,t; + 7 — 7), u(t) is
increasing on [t; ¥r—7,ty +r)and fort > ¢t; and l€ L

Lt
7 f u(s)ds < u*.

¢

Let kK — oo on both sides of (2.12). By the Lebesgue monotone conver-
gence theorem, we see that u(t) satisfies (2.11) for t > t; + r. It is also easy
to see that u(t) is well-defined on [t;,00). In fact, by condition ii) of {8}

4 ti+r
u(ty +r)= f exp( f u(0)d0)dg(t1 +7,8)
0 ty+r—s

< f e* *dg(ty + 1,3) < e* °V(t, + 1,0) < o0
0

and hence u(t) is bounded for t € [t;,,+7]. If u(t*) = oo for some t* > t;+r,
then choose an integer m such that t* —mr € [t; + r — 7,t; + 7). By (2.11)
we have u(t* — mr) = oo, this is imposible. Furthermore, from i) we get
that u(t) is continuous on [tj,?; + 7], so in view of (2.11) we see that u(t) is
continuous on [t;,00). Thus u(t) is a positive solution of (2.11) on (t; +r, 00).

Set
t

z(t) = exp(— f u(s)ds).

t1+1‘

We can verify that z(t) is a positive solution of (2.1). In fact, notice that
u(t) is a solution of (2.11), we have

%[z(t)—z(t—‘r)] = —u(t)exp(— ju(s)ds)+pu(t—‘r)exp(— tjru(s)ds)z
ty+r ti+r
—[pu(t——r)exp( j u(s)ds) + f exp( j u(0)d0)dg(t,s)] exp(- f u(8)dd
t—71 0 t—s t1+r
t—71

—pu(t - r)exp(— f u(s)ds)

ti+r
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t—

=~ [ exp(~ [ u(6)d6)dg(t,s) =~ [ a(t - s)dg(t,s).
0 ‘1+T 0
This completes the proof.

THEOREM 2.3. Assume that
t+l o

f fe“adg(s,O)ds
t 0

is a nondecreasing function in t for | € L. Then Eq. (2.1) is oscillatory if
and only if forally >0 andl € L

i % p
tlirgo [pe + I ! !e dg(a,ﬂ)ds] > 1.

Proof. Denote
t+l o

1
t,u,l)=pe*” + — e*®dg(s, 0)ds.
ftml)=p ’/‘tf of 9(s,9)

Since fttH foa e*®dg(s,8)ds is nondecreasing, so we conclude that
lim;—o f(t, p,1) exists for | € L. By Lemma 1.1 we have
Jim f(t,p,7) = lim f(t,p,0)
and forany l € L
lim f(t,p,1) = liminf f(t, p,1) = sup f(¢, p,1).
t—oo t—oo 21,

Then Theorems 2.1 and 2.3 immediately complete the proof.
Now we give out a corollary as a special case of Theorem 2.4.

COROLLARY 2.2. If there ezists ¢ > 0 such that T = mgc, 0 = myc, my,
m, are integers, and
g(t,S) = Vl(t’ ‘9) + V2(t1 8)3
where Vi(t,s) (i=1, 2) are also functions of bounded variation in s € [0, 0],
and V;(t, 8) is c-periodic function with respect to t, and %f:“dng(O,s) =
Vi(s), Va(t, 8) satisfies lim;_, o, V2(t,8) = V2(8) is a bounded variation func-

tion and also
(-4 (-4

lim [ edvy(t,s)= [ e**dVa(s),
0 0

then Eq. (2.1) is oscillatory if and only if for all u > 0

1 4
pet” + ; [ e#2d(Vi(s) + Va(s)) > 1.
0
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In the following let’s consider the equation

(2.15) :—t[I(t) -pz(t-T1)+ Z f z(t — s)dgi(t,s)=0

i=1 0

where p,7,0,9i(t,s),(t = 1,2,---,n) satisfy the same condition as p, 7
o, g(t,s) which we mentioned above. Here we only need to redefine r =
max{r,01,02,---,0,} and L = {r,01,02,---,0,}. Since the proof of the
following Theorems are similar to those which we proved above, we will
only give the theorems without proofs.

LEMMA 2.1%. Let z(t) be an eventually positive solution of Eq. (2.15),
and let 2(t) = z(t) — pz(t — 7). Then we have 2(t) > 0,2'(t) < 0 and

(2.3)" Z(t)-p(t-1)+ Z f 2(t — s)dgi(t,s) < 0.
i=1 0
THEOREM 2.1*. Ifforall 4 > 0, andl € L
t+i n o
(2.4)* hm mf[pe‘” + — f Z f e**dg;(0, s)d0] 1.

t 1=1 0
Then Eq. (2.15) is oscillatory.

COROLLARY 2.1". If for alll € L

{ o,
(2.9) Jim zani tf f pH(kT + 5)dgi(8, 5)d8 > -
1=1 k= 0 t

then Eq. (2.15) ts oscillatory.

THEOREM 2.2*. Assume that there exists u* > 0 and t, > ty forl € L
such that

I n o,
sup [pe“ T Py 7 Z f e* %dg(s,0 ds] <
t

t2t i=1 0

Then Eq. (2.15) has at least one positive solution on [t) + r,00).

THEOREM 2.3*. Assume that ft“ Sy €#%dgi(s,0)ds is a nonde-
creasing function in t for | € L. Then Eq. (2.15) is oscillatory if and only
ifforally>0andle L

1 t+1l n g
. BT - ué .
tlirgo [pe + ™ f Z f e dg‘(s,O)ds] >1

t i=1 0
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COROLLARY 2.2*. If there ezists ¢ > 0 such that T = mqgc, 0; = m;c, mg,

m;. (1 =1,2,---,n) are integers, and
g,‘(t,S) = ‘/il(t’s) + ‘/ﬂ(ta‘s)
where V;;(t,s), (i = 1,2,- LY 1,2) are also functions of bounded vari-
ation and Vji(t,s),(i = 1,n) are c-periodic functions with respect to t,
! P ,

and %ftH dgVin(8,s) = Vii(s), Via(t, s) satisfy lim;_.o Via(t,s) = Vip(s) are
bounded variation functions and also

:1220 e**dViy(t,s) = f e**dViy(s).
0 0

Then Eq. (2.15) is oscillatory if and only if

pe*” 4+ — Z fe“’d )+ Via(s)) >

110

3. Comparison theorem

Consider the following pair of equations
o)

(3.1) %[m(t) -pz(t—7)] + f z(t — s)dgy(t,s) =0
0

and

(32 e -pe-ml+ [ ot dets) =0,
0

pi € [0,1},7i,0; € Ry,gi(t,s) satisfy the same conditions as g(t,s) men-
tioned in Section 2,i=1, 2. We also assume that the conditions in Corollary
2.2 hold for g;(t, s). Then we have the following comparison theorem

THEOREM 3.1. i) Suppose that Eq. (3.1) is oscillatory, pp > p1, 72 > 11
and for all p > 0,1 = {m;, 02}

t+! o2
(3.3) llm mf1 f f e*°dg,(8,s)df > f e"*d(Vi(s) + Va(s)).

Then Eq. (3.2) is osczllatory.
ii) Suppose that Eq. (3.2) is oscillatory, p; < p1,72 < 11, and for all
p> 0,0 ={r,0,}, there ezists T > ty such that

t+l o2
(3.4) sup; f f e#2dgy (6, 5)d6 < f e d(Vi(s) + Va(s))-

Then Eq. (3.1) is osczllatory.
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iil) Suppose that Eq. (3.2) is nonoscillatory, p, > p1, 72 > 11, and for all
u>0,1={r,0,}(3.3) holds. Then Eq. (3.1) has at least one nonoscillatory
solution.

iv) Suppose that Eq. (3.1) is nonoscillatory, p» < p1,72 < 71, and there
ezists T > to such that for all p > 0,1 = {r2,0,} (3.4) holds. Then Eq.
(8.2) has at least one nonoscillatory solution.

Proof. i) Since Eq. (3.1) is oscillatory, by Corollary 2.2, we have for all
u>0

1 7
pet + z f e**d(V1(s) + Va(s)) > 1
0

and from (3.3) we obtain that
1 t+l o2
(3.5) ¢li.I§o inf [pge‘”’ + m }f 6fe‘“dgg(ﬂ,.s;)dO] > 1.
By Theorem 2.1, (3.5) implies that Eq. (3.2) is oscillatory.
ii) If Eq. (3.1) is nonoscillatory, then by Corollary 2.2, there must exist
p* > 0 such that
- )
pet T 4 o [ e d(Vi(s) + Va(s)) < 1.
0
Hence from (3.4)
. 1 t+‘ o3 R
(3.6) i inf[pe e 3 [ J e “dga(6, 5)48) < 1.

Thus, by Theorem 2.2, (3.6) implies that Eq. (3.2) has nonoscillatory solu-
tion, it contradicts assumption.
ili) and iv) are the converses of i) and ii). This completes the proof.

For the following pair of equations

(3.7) %[z(t) -pz(t—7)]+ Z jlz(t — 8)dgi(t,8) =0
i=1 0

and

(38)  Sfet)-palt-r)+ Y [ (- s)dgaltis) =0
i=1 0

where p;, 7, 0;;, are constants satisfing the corresponding conditions in The-
orem 2.3%, ¢ga(t,s),(i = 1,2,---,n;j = 1,2) also satisfy the condition as
g2(t,s) in Theorem 3.1. Then we can give out the comparison theorem be-
tween Eq. (3.7) and Eq. (3.8) without proof.
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THEOREM 3.2. i) Suppose that Eq. (3.7) is oscillatory, p, > p1, 2 2 1
and for all p > 0, | = {r3,012,022," ", On2}

t+l n o5 no o
(39) Jiminf [ 3 [ e**dga(6,5)d6 > Z [ d(Via(s) + Via(s)).
t =1 0 i=1l 0

Then Eq. (3.8) is oscillatory.
ii) Suppose that Eq. (3.8) is oscillatory, p; < p1,72 < 1 and for all
> 0,0={r,012,022, - ,0n2}, there ezists T > to such that

t+l n 0,2 n g1
(3.10) sup— I3 [ e dgn(8,5)d0 <Y [ e#*d(Vaa(s) + Via(s))-
t i=1 0 i=1 0

Then Eq. (3.7) is oscillatory.

iii) Suppose that (3.8) is nonoscillatory, p; > p1,72 > 11, and for all
p > 0,1 = {r,012,022,++,0n2} (3.9) holds. Then Eq. (3.7) has at least
one nonoscillatory solution.

iv) Suppose that Eq. (3.7) is nonoscillatory, p; < p1,72 < 71, and there
exists T > to such that for all p > 0,1 = {7y, 012,022, -+, 0n2} (3.10) holds.
Then Eq. (3.8) has a nonoscillatory solution.
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