DEMONSTRATIO MATHEMATICA
Vol. XXX No 2 1997

R. A. Rashwan

A COMMON FIXED POINT THEOREM
FOR COMPATIBLE MAPPINGS

1. Introduction

In [1], the concept of compatible mappings was introduced as a general-
ization of commuting mappings. The utility of compatiblity in the context
of fixed point theory was demonstrated by extending a theorem of Park and
Bae [9]. Popa [8] proved a common fixed point for four self-mappings of a
complete metric space using the concept of weak commutativity of Sessa
[10]. His result improves and extends the recent results of Xieping Ding [12].
In this paper we extend the result of Popa [8] by employing compatible
mappings in lieu of weakly commuting mappings.

The following definition is given in {1):

DEFINITION 1.1. Let f,g be mappings from a metric space (X, d) into
itself. Then f and g are said to be compatible if lim,_.oc d(fgzn,9fz,) =0
whenever {z,} is a sequence in X such that

lim fz, = lim gz, =2 forsome 2z in X.
n—00 n-—oo

Thus, if d(fgzn,9fz,) — 0 as d(fz,,g92,) — 0, then f and g are com-
patible.

S. Sessa [10] generalized commuting mappings by calling mappings A
and B from a metric space (X,d) into itself a weakly commuting pair if
d(ABz,BAz) < d(Az, Bz) for all z € X.

Clearly commuting mappings are weakly commuting and weakly commut-
ing pairs are compatible, examples in (1], [10] show that neither converse is
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true. Several articles already in print, demonstrate that results can be gener-
alized by using compatiblity in lieu of commutativity or weak commutativity
(see for example [1]-[5] and [11]).

For our main theorem we need the following Lemma 1.1, which was
proved by G.Jungck 1] .

LeMMA 1.1. Let S and T be compatible mappings from a metric space
(X, d) into itself. Suppose that

lim Sz, = lim Tz, =t

n— o0 n—oo

for somet € X. Thenlim, .o, TSz, = St if S is continuous.

Throughout this paper, the function ¢ : [0, 00)° — [0, 00) satisfies the
following conditions:

(i) ¢ is nondecreasing and upper semicontinuous in each coordinate vari-
ables,

(ii) For each t > 0

W(t) = max{e(t,0,0,t,1), d(t,t,t,2t,0),é(t,¢,¢,0,2t)} < t.

LEMMA 1.2 [7]. Suppose ¥ : [0,00) — [0,00) is nondecreasing and
upper semicontinuous from the right. If ¥(t) < t for every t > 0, then
lim, o ¥*(t) = 0, where ¥"(t) denotes the composition of ¥(t) with n-
times.

Now, let §,T,I and J be mappings from a metric space (X, d) into itself
satisfying the following conditions

(1.1) SXD>JX and TX DIX,
(1.2) d(Sz,Ty) < ¢p(d(Iz,Jy),d(Iz,Sz),d(Jy,Ty),d(Iz,Ty),d(Jy, Sz)),

for all 2,y € X, with ¢ satisfying (i)-(iii). Then for an arbitrary point
o € X, by the assumption (1.1}, we may choose a point z; € X such
that yy = Tx; = Iz¢. For this point z; there exists an z, € X such that
y2 = Szz = Jz;. Continuing in this manner we get sequences {z,} and
{yn} such that

(1.3) Yon = STan = JZTn_1;  Yongt = TTong1 = [225.

LeEMMA 1.3. Let S, T, I and J be mappings from a metric space (X,d)
into itself satisfying the conditions (1.1) and (1.2). Then {y.} defined by
(1.8) is a Cauchy sequence in X.
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Proof. By (1.2) and (1.3), we have
d(Y2n+15 Y2n+2) = (T T2n41, ST2n42)
< ¢(d(Izan42,IT2n41), d(IT2042, ST2n42), A(J 2041, TZ2041),
d(Iz2n42,TT2n41),d(J 22041, ST2n+2))
< &(d(Y2n, Y2n+1), A(Y2n, Y2n+2), d(Y2n, Y2n+1),
d(Y2n+15Y2n+1), A(Y2n, Y2n+2))
< d(d(Y2ns Y2n+1)s QY2041 Y2n+2) A(Y2n, Y2n+1)s

0,d(Y2n, Y2nt+1) + d(Y2n+1, Y2n+2))-

If in the above inequality would be d(y2n+1,Y2n+2) > 4(Y2n, Y2n+1), then we
would have

d(Y2n+1, Y2n+2)
< H(d(yan+1> Yane2)s AY2ns1, Y2nt2), A(Y2n41, Y2n42), 0, 2d(Y2n 41, Y2ns2))
< U(d(y2n+1, Y2n+2)) < A(Y2n+1, Y2ns2)
which is a contradiction. Thus,
(1.4)  d(y2n+1,Y2n+2)
< d(d(y2n, Y2n+1), A(Y2ns Y2r+1), A(Y2n, Y20+1)5 0, 2d(Y20, Y2n41))
< ¥(d(y2n, Y2n+1)-
Similarly, we have
(1.5) d(Y2n+2,¥2n+3) < Y(d(Y2n+1, Y2n+2)-
From (1.4) and (1.5) it follows that
(1.6)  dn=d(yn,Yn+1) < V(d(Yn-1,¥n)) < ... < "7 (d(y1,92))-
By (1.6) and Lemma 1.2 we obtain
(1.7) lim d, = 0.

n—oo

In order to show that {y,} is a Cauchy sequence, it is sufficient to show
that {y>,} has this property. Suppose that {y.,,} is not a Cauchy sequence.
Then there is an ¢ > 0 such that, for each even integer 2k, there exist even
integers 2m(k) and 2n(k) such that

(1.8) d(Y2m(ky, Yan(k)) > €
for 2m(k) > 2n(k) > 2k. For each even integer 2k, let 2m(k) be the least
even integer exceeding 2n(k) satisfying (1.8), that is

(1.9) d(Y2n(k) Y2m(k)-2) < € and  d(Yan(k), Y2m(k)) > €
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Then for each even integer 2k,
€ < d(Yan(k)s Yam(k)) < d(Yan(k) Yam(k)-2) + dam(k)—2 + d2m(k)-1-
It follows from (1.7) and (1.8) that
(1.10) Lim_d(y2n(x), y2m(k)) = €
By the triangle inequality,
|d(y2n(k)1 y‘lm(lc)—l) - d(yZn(k)a y2m(k))| < d2m(k)—1 ’
and
|d(Y2n(k)+1> Y2m(k)-1) — A Y2n(k)> V2m(k))| € d2m(k)-1 + dan(r)-
From (1.2) and (1.3), we have
d(Yan(x)> Yam(k)) < Don(k) + A Y2n(k)+15 Y2m(k))
< dangky + d(SZan(k)s TTo2m(k)-1)
< daynery + H(d(Yan(k)> Yam(k)—1)> D2n(k)s D2m(k) =1,
d(Yan(k)> Y2m(k)-1)s A Y2n(k)=1> Y2m(k)+1))-
Since ¢ is upper semicontinuous, then
€ < #€,0,0,e,6)< € as k — oo,

which is a contradiction. Hence {y,} is a Cauchy sequence.

2. A fixed point theorem
In a recent paper [8], the following theorem is proved:

THEOREM 2.1. Let S, T, I and J be four self-mappings of X such that
TX =I1IX and SX=JX,
d(Sz,Ty) < ¢(d(Iz,Jy),d(Iz,Sz),d(Jy,Ty),d(Iz,Ty),d(Jy, Sz)).
forallz,y€ X.

If one of §, T, I and J is continuous and S and T weakly commute
respectively with I and J, then S, T, I, J have a common fixed point 2.
Furthermore z is the unique common fixed point of S and I and of T and J.

Now, we prove a common fixed point theorem which improves and ex-
tends Theorem 2.1 for compatible mappings. Also our theorem improves
Theorem 2.2 from [4].

THEOREM 2.2. Let S, T, I and J be four self-mappings of X satisfying
the conditions (1.1) and (1.2). If one of S, T, I and J is continuous and
(5,1),(T,J) are compatible pairs of X, then S, T, I and J have a common
fized point 2. Furthermore z is the unique common fized point of S and I and
of T and J.
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Proof. By Lemma 1.3, {y,} defined by (1.3) is a Cauchy sequence and
so it converges to a point z in X. Consequently, the subseqences

{Sz2n}, {Jzana1}, {TZ2n41}, and {[z3,}

converge to z.
Let us first of all suppose that I is continuous. Since (5, I) is compatible

on X, then Lemma 1.1 gives
I’z,, — Iz and SIz;, — Iz as n — oo.
By (1.2), we obtain
d(SIz2n, Tx2n41) < (d(I*22n, JTons1), d(IP 20, STx2n),
d(Jz2n41, TT2n+1), (1220, TT2n41), d(JT2nt1, STT2,)).
Letting n — oo, we have
d(I2,z) < $(d(12z,2),0,0,d(12,z2),d(Iz,2)),
so that Iz = z.
By (1.2), we also have
d(52,Tzop41) < (d(I2,J29041),d(12,52),
d(Jzan41, T22041),d(12,TZ3p41),d(IT20 41, 52)).
Letting n — o0, we have
d(Sz,z) < $0,d(S5z,2),0,0,d(2,5z)),
so that §z = 2. Since SX = JX, 2 € JX and hence there exists a point u
in X such that z = §z = Ju,
d(z,Tu) = d(Sz,Tu)
< #d(Iz,Ju),d(I2,5z2),d(Ju,Tu),d(Iz,Tu),d(Ju, Sz))
< ¢(0,0,d(2,Tu),d(z,Tu),0).
which implies that Tu = z. Since (T, J) is compatible on X and Tu = Ju =
z, then d(JTu,TJu) = 0 and hence
Tz=TJu=JTu=Jz.
Moreover, by (1.2), we obtain
d(2,Tz) =d(S2,Tz) < ¥/d(z,Tz2),0,0,d(z,Tz),d(z,Tz)),
so that Tz = 2. Therefore z is a common fixed point of §, T, J and I.
Similarly we can complete the proof when J is continuous.

Next, suppose that S is continuous. Since (S, ) is continuous on X, it
follows from Lemma 1.1 that

S§’29, — Sz, ISz3y — Sz as n — oo.
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By (1.2), we have
d(S%zon, TTons1) < HA(ISZ20, JZons1), d(15Z2n, §%22,),
d(JZ2n41, TT2n41), 8(IST2n, TZan41), d(JT2ns1, S7220)).
Letting n — oo, we have
d(Sz,z) < ¢(d(Sz2,2),0,0,d(Sz, z),d(Sz, z)),
so that Sz = z. Hence there exists a point v in X such that 2 = Sz = Jv.
d(S%z2,,Tv) < §(d(I1S225,Jv),d(IST25, §%22,),d(Jv, Tv),
d(I5z34,Tv),d(Jv, 5%22,)).
By letting n — o0, we have
d(z,Tv) < ¢(0,0,d(z,Tv),d(2,Tv),0),
so that Tv = z. Since (T, J) is compatible on X and
Tv=Jv=2z d(JTv,TJv)=0
and hence
Tz=TJv=JTv=Jz,
d(Sz2,,T2) < $(d(Iz2n,J2),d(I22,, ST2n),d(J2,T2),
d(Iz9,,Tz),d(Jz,S5z24)).
By letting n — oo, we have
d(z,Tz) < $(d(2,T=),0,0,d(z,Tz),d(z,Tz)),
so that Tz = 2. Since TX = IX, there exists a point w in X such that
z=Tz=Iw.
By (1.2), we have
d(Sw,z) =d(Sw,Tz) < ¢0,d(Sw, 2),0,0,d(Sw, z)),
so that Jw = Sw, d(/Sw, STw) = 0 and hence
Iz=1Sw=SIw=S2.

Therefore z is a common fixed point of S, T, I and J. Similarly we can
complete the proof when T is continuous.

Finally we prove the uniqueness of z. Indeed let z and w, are common
fixed points of §, T', I and J. Therefore

d(z,w)=d(Sz,Tw) < ¢(d(z,w),0,0,d(z,w),d(z, w)),

which implies that z = w.
In conclusion, we wish to present an example which shows that our The-
orem 2.2 is indeed a generalization of Theorem 2.1.
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EXAMPLE. Let X = [1,00) with the Euclidean metric d. Define S, T, I
and J : X — X by

Sz=z! Tz=1z

Iz=22'-1, Jz=2:8-1,z>1.

4

Now
SX=TX=1X=JX=X
and S,T,I and J are continuous. Moreover, since
d(Szp,Iz,) =22 - 224 +1| — 0 if z,— 1,
d(SIz,,I[Sz,)=]|(2z8 - 1) - 2228 - 1)*+1]—0 as =z, — 1.
Thus S and I are compatible on X. Likewise
d(Tzn,Jz,) = |zh 228 + 1) — 0 iff z, — 1.
d(TJzn, JTz,) =](228 = 1)* - 2(z4)®¥+1 —0 as z,—1
and so T and J are compatible on X.
Take
(1,12, 13,4, t5) = %

for every t; € R®,i=1,2,3,4,5.
For any z,y € X we have
d(Sz,Ty) = |e* - y*| < |2? - y*|]=® + ¢
4_,8
:|z4_y8|=2lz 2y|
< ¢(d(Iz,Jy),d(Iz,Sz),d(Jy,Ty),d(Iz,Ty),d(Jy, Sz)).

Since ¢ obviously satisfies the conditions (i) and (ii) then all the assumptions
of Theorem 2.2 are verified and 1 is the unique common fixed point of S, T,
I and J.

Note Theorem 2.1 is not applicable even if § = T and I = J because §
and I are not weakly commuting mappings at z = 2.
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