

R. A. Rashwan

A COMMON FIXED POINT THEOREM  
FOR COMPATIBLE MAPPINGS

1. Introduction

In [1], the concept of compatible mappings was introduced as a generalization of commuting mappings. The utility of compatibility in the context of fixed point theory was demonstrated by extending a theorem of Park and Bae [9]. Popa [8] proved a common fixed point for four self-mappings of a complete metric space using the concept of weak commutativity of Sessa [10]. His result improves and extends the recent results of Xieping Ding [12]. In this paper we extend the result of Popa [8] by employing compatible mappings in lieu of weakly commuting mappings.

The following definition is given in [1]:

DEFINITION 1.1. Let  $f, g$  be mappings from a metric space  $(X, d)$  into itself. Then  $f$  and  $g$  are said to be *compatible* if  $\lim_{n \rightarrow \infty} d(fgx_n, gfx_n) = 0$  whenever  $\{x_n\}$  is a sequence in  $X$  such that

$$\lim_{n \rightarrow \infty} fx_n = \lim_{n \rightarrow \infty} gx_n = z \text{ for some } z \text{ in } X.$$

Thus, if  $d(fgx_n, gfx_n) \rightarrow 0$  as  $d(fx_n, gx_n) \rightarrow 0$ , then  $f$  and  $g$  are compatible.

S. Sessa [10] generalized commuting mappings by calling mappings  $A$  and  $B$  from a metric space  $(X, d)$  into itself a *weakly commuting pair* if  $d(ABx, BAx) \leq d(Ax, Bx)$  for all  $x \in X$ .

Clearly *commuting mappings* are *weakly commuting* and *weakly commuting pairs* are *compatible*, examples in [1], [10] show that neither converse is

---

AMS, Subject classification (1980) Code. 54H25.

Keywords. Common fixed points, weakly commuting mappings and compatible mappings.

true. Several articles already in print, demonstrate that results can be generalized by using compatibility in lieu of commutativity or weak commutativity (see for example [1]–[5] and [11]).

For our main theorem we need the following Lemma 1.1, which was proved by G.Jungck [1].

LEMMA 1.1. *Let  $S$  and  $T$  be compatible mappings from a metric space  $(X, d)$  into itself. Suppose that*

$$\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t$$

for some  $t \in X$ . Then  $\lim_{n \rightarrow \infty} TSx_n = St$  if  $S$  is continuous.

Throughout this paper, the function  $\phi : [0, \infty)^5 \rightarrow [0, \infty)$  satisfies the following conditions:

(i)  $\phi$  is nondecreasing and upper semicontinuous in each coordinate variables,

(ii) For each  $t > 0$

$$\Psi(t) = \max\{\phi(t, 0, 0, t, t), \phi(t, t, t, 2t, 0), \phi(t, t, t, 0, 2t)\} < t.$$

LEMMA 1.2 [7]. *Suppose  $\Psi : [0, \infty) \rightarrow [0, \infty)$  is nondecreasing and upper semicontinuous from the right. If  $\Psi(t) < t$  for every  $t > 0$ , then  $\lim_{n \rightarrow \infty} \Psi^n(t) = 0$ , where  $\Psi^n(t)$  denotes the composition of  $\Psi(t)$  with  $n$ -times.*

Now, let  $S, T, I$  and  $J$  be mappings from a metric space  $(X, d)$  into itself satisfying the following conditions

$$(1.1) \quad SX \supset JX \quad \text{and} \quad TX \supset IX,$$

$$(1.2) \quad d(Sx, Ty) \leq \phi(d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)),$$

for all  $x, y \in X$ , with  $\phi$  satisfying (i)-(iii). Then for an arbitrary point  $x_0 \in X$ , by the assumption (1.1), we may choose a point  $x_1 \in X$  such that  $y_1 = Tx_1 = Ix_0$ . For this point  $x_1$  there exists an  $x_2 \in X$  such that  $y_2 = Sx_2 = Jx_1$ . Continuing in this manner we get sequences  $\{x_n\}$  and  $\{y_n\}$  such that

$$(1.3) \quad y_{2n} = Sx_{2n} = Jx_{2n-1}; \quad y_{2n+1} = Tx_{2n+1} = Ix_{2n}.$$

LEMMA 1.3. *Let  $S, T, I$  and  $J$  be mappings from a metric space  $(X, d)$  into itself satisfying the conditions (1.1) and (1.2). Then  $\{y_n\}$  defined by (1.3) is a Cauchy sequence in  $X$ .*

**Proof.** By (1.2) and (1.3), we have

$$\begin{aligned}
 & d(y_{2n+1}, y_{2n+2}) = d(Tx_{2n+1}, Sx_{2n+2}) \\
 & \leq \phi(d(Ix_{2n+2}, Jx_{2n+1}), d(Ix_{2n+2}, Sx_{2n+2}), d(Jx_{2n+1}, Tx_{2n+1}), \\
 & \quad d(Ix_{2n+2}, Tx_{2n+1}), d(Jx_{2n+1}, Sx_{2n+2})) \\
 & \leq \phi(d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+2}), d(y_{2n}, y_{2n+1}), \\
 & \quad d(y_{2n+1}, y_{2n+1}), d(y_{2n}, y_{2n+2})) \\
 & \leq \phi(d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1}), \\
 & \quad 0, d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2})).
 \end{aligned}$$

If in the above inequality would be  $d(y_{2n+1}, y_{2n+2}) > d(y_{2n}, y_{2n+1})$ , then we would have

$$\begin{aligned}
 & d(y_{2n+1}, y_{2n+2}) \\
 & \leq \phi(d(y_{2n+1}, y_{2n+2}), d(y_{2n+1}, y_{2n+2}), d(y_{2n+1}, y_{2n+2}), 0, 2d(y_{2n+1}, y_{2n+2})) \\
 & \leq \Psi(d(y_{2n+1}, y_{2n+2})) < d(y_{2n+1}, y_{2n+2})
 \end{aligned}$$

which is a contradiction. Thus,

$$\begin{aligned}
 (1.4) \quad & d(y_{2n+1}, y_{2n+2}) \\
 & \leq \phi(d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+1}), 0, 2d(y_{2n}, y_{2n+1})) \\
 & \leq \Psi(d(y_{2n}, y_{2n+1})).
 \end{aligned}$$

Similarly, we have

$$(1.5) \quad d(y_{2n+2}, y_{2n+3}) \leq \Psi(d(y_{2n+1}, y_{2n+2})).$$

From (1.4) and (1.5) it follows that

$$(1.6) \quad d_n = d(y_n, y_{n+1}) \leq \Psi(d(y_{n-1}, y_n)) \leq \dots \leq \Psi^{n-1}(d(y_1, y_2)).$$

By (1.6) and Lemma 1.2 we obtain

$$(1.7) \quad \lim_{n \rightarrow \infty} d_n = 0.$$

In order to show that  $\{y_n\}$  is a Cauchy sequence, it is sufficient to show that  $\{y_{2n}\}$  has this property. Suppose that  $\{y_{2n}\}$  is not a Cauchy sequence. Then there is an  $\epsilon > 0$  such that, for each even integer  $2k$ , there exist even integers  $2m(k)$  and  $2n(k)$  such that

$$(1.8) \quad d(y_{2m(k)}, y_{2n(k)}) > \epsilon$$

for  $2m(k) > 2n(k) \geq 2k$ . For each even integer  $2k$ , let  $2m(k)$  be the least even integer exceeding  $2n(k)$  satisfying (1.8), that is

$$(1.9) \quad d(y_{2n(k)}, y_{2m(k)-2}) < \epsilon \quad \text{and} \quad d(y_{2n(k)}, y_{2m(k)}) > \epsilon.$$

Then for each even integer  $2k$ ,

$$\epsilon < d(y_{2n(k)}, y_{2m(k)}) \leq d(y_{2n(k)}, y_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}.$$

It follows from (1.7) and (1.8) that

$$(1.10) \quad \lim_{n \rightarrow \infty} d(y_{2n(k)}, y_{2m(k)}) = \epsilon.$$

By the triangle inequality,

$$|d(y_{2n(k)}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2m(k)-1},$$

and

$$|d(y_{2n(k)+1}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2m(k)-1} + d_{2n(k)}.$$

From (1.2) and (1.3), we have

$$\begin{aligned} d(y_{2n(k)}, y_{2m(k)}) &\leq d_{2n(k)} + d(y_{2n(k)+1}, y_{2m(k)}) \\ &\leq d_{2n(k)} + d(Sx_{2n(k)}, Tx_{2m(k)-1}) \\ &\leq d_{2n(k)} + \phi(d(y_{2n(k)}, y_{2m(k)-1}), d_{2n(k)}, d_{2m(k)-1}, \\ &\quad d(y_{2n(k)}, y_{2m(k)-1}), d(y_{2n(k)-1}, y_{2m(k)+1})). \end{aligned}$$

Since  $\phi$  is upper semicontinuous, then

$$\epsilon \leq \phi(\epsilon, 0, 0, \epsilon, \epsilon) < \epsilon \quad \text{as } k \rightarrow \infty,$$

which is a contradiction. Hence  $\{y_n\}$  is a Cauchy sequence.

## 2. A fixed point theorem

In a recent paper [8], the following theorem is proved:

**THEOREM 2.1.** *Let  $S$ ,  $T$ ,  $I$  and  $J$  be four self-mappings of  $X$  such that*

$$TX = IX \quad \text{and} \quad SX = JX,$$

$$d(Sx, Ty) \leq \phi(d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)).$$

for all  $x, y \in X$ .

If one of  $S$ ,  $T$ ,  $I$  and  $J$  is continuous and  $S$  and  $T$  weakly commute respectively with  $I$  and  $J$ , then  $S$ ,  $T$ ,  $I$ ,  $J$  have a common fixed point  $z$ . Furthermore  $z$  is the unique common fixed point of  $S$  and  $I$  and of  $T$  and  $J$ .

Now, we prove a common fixed point theorem which improves and extends Theorem 2.1 for compatible mappings. Also our theorem improves Theorem 2.2 from [4].

**THEOREM 2.2.** *Let  $S$ ,  $T$ ,  $I$  and  $J$  be four self-mappings of  $X$  satisfying the conditions (1.1) and (1.2). If one of  $S$ ,  $T$ ,  $I$  and  $J$  is continuous and  $(S, I)$ ,  $(T, J)$  are compatible pairs of  $X$ , then  $S$ ,  $T$ ,  $I$  and  $J$  have a common fixed point  $z$ . Furthermore  $z$  is the unique common fixed point of  $S$  and  $I$  and of  $T$  and  $J$ .*

**Proof.** By Lemma 1.3,  $\{y_n\}$  defined by (1.3) is a Cauchy sequence and so it converges to a point  $z$  in  $X$ . Consequently, the subsequences

$$\{Sx_{2n}\}, \quad \{Jx_{2n+1}\}, \quad \{Tx_{2n+1}\}, \quad \text{and} \quad \{Ix_{2n}\}$$

converge to  $z$ .

Let us first of all suppose that  $I$  is continuous. Since  $(S, I)$  is compatible on  $X$ , then Lemma 1.1 gives

$$I^2x_{2n} \rightarrow Iz \quad \text{and} \quad SIx_{2n} \rightarrow Iz \quad \text{as} \quad n \rightarrow \infty.$$

By (1.2), we obtain

$$\begin{aligned} d(SIx_{2n}, Tx_{2n+1}) &\leq \phi(d(I^2x_{2n}, Jx_{2n+1}), d(I^2x_{2n}, SIx_{2n}), \\ &\quad d(Jx_{2n+1}, Tx_{2n+1}), d(I^2x_{2n}, Tx_{2n+1}), d(Jx_{2n+1}, SIx_{2n})). \end{aligned}$$

Letting  $n \rightarrow \infty$ , we have

$$d(Iz, z) \leq \phi(d(Iz, z), 0, 0, d(Iz, z), d(Iz, z)),$$

so that  $Iz = z$ .

By (1.2), we also have

$$\begin{aligned} d(Sz, Tx_{2n+1}) &\leq \phi(d(Iz, Jx_{2n+1}), d(Iz, Sz), \\ &\quad d(Jx_{2n+1}, Tx_{2n+1}), d(Iz, Tx_{2n+1}), d(Jx_{2n+1}, Sz)). \end{aligned}$$

Letting  $n \rightarrow \infty$ , we have

$$d(Sz, z) \leq \phi(0, d(Sz, z), 0, 0, d(z, Sz)),$$

so that  $Sz = z$ . Since  $SX = JX$ ,  $z \in JX$  and hence there exists a point  $u$  in  $X$  such that  $z = Sz = Ju$ ,

$$\begin{aligned} d(z, Tu) &= d(Sz, Tu) \\ &\leq \phi(d(Iz, Ju), d(Iz, Sz), d(Ju, Tu), d(Iz, Tu), d(Ju, Sz)) \\ &\leq \phi(0, 0, d(z, Tu), d(z, Tu), 0). \end{aligned}$$

which implies that  $Tu = z$ . Since  $(T, J)$  is compatible on  $X$  and  $Tu = Ju = z$ , then  $d(JTu, TJu) = 0$  and hence

$$Tz = TJu = JTz = Jz.$$

Moreover, by (1.2), we obtain

$$d(z, Tz) = d(Sz, Tz) \leq \phi(d(z, Tz), 0, 0, d(z, Tz), d(z, Tz)),$$

so that  $Tz = z$ . Therefore  $z$  is a common fixed point of  $S$ ,  $T$ ,  $J$  and  $I$ . Similarly we can complete the proof when  $J$  is continuous.

Next, suppose that  $S$  is continuous. Since  $(S, I)$  is continuous on  $X$ , it follows from Lemma 1.1 that

$$S^2x_{2n} \rightarrow Sz, \quad ISx_{2n} \rightarrow Sz \quad \text{as} \quad n \rightarrow \infty.$$

By (1.2), we have

$$\begin{aligned} d(S^2x_{2n}, Tx_{2n+1}) &\leq \phi(d(ISx_{2n}, Jx_{2n+1}), d(ISx_{2n}, S^2x_{2n}), \\ &\quad d(Jx_{2n+1}, Tx_{2n+1}), d(ISx_{2n}, Tx_{2n+1}), d(Jx_{2n+1}, S^2x_{2n})). \end{aligned}$$

Letting  $n \rightarrow \infty$ , we have

$$d(Sz, z) \leq \phi(d(Sz, z), 0, 0, d(Sz, z), d(Sz, z)),$$

so that  $Sz = z$ . Hence there exists a point  $v$  in  $X$  such that  $z = Sz = Jv$ .

$$\begin{aligned} d(S^2x_{2n}, Tv) &\leq \phi(d(ISx_{2n}, Jv), d(ISx_{2n}, S^2x_{2n}), d(Jv, Tv), \\ &\quad d(ISx_{2n}, Tv), d(Jv, S^2x_{2n})). \end{aligned}$$

By letting  $n \rightarrow \infty$ , we have

$$d(z, Tv) \leq \phi(0, 0, d(z, Tv), d(z, Tv), 0),$$

so that  $Tv = z$ . Since  $(T, J)$  is compatible on  $X$  and

$$Tv = Jv = z, \quad d(JTv, TJv) = 0$$

and hence

$$\begin{aligned} Tz &= TJv = JTv = Jz, \\ d(Sx_{2n}, Tz) &\leq \phi(d(Ix_{2n}, Jz), d(Ix_{2n}, Sx_{2n}), d(Jz, Tz), \\ &\quad d(Ix_{2n}, Tz), d(Jz, Sx_{2n})). \end{aligned}$$

By letting  $n \rightarrow \infty$ , we have

$$d(z, Tz) \leq \phi(d(z, Tz), 0, 0, d(z, Tz), d(z, Tz)),$$

so that  $Tz = z$ . Since  $TX = IX$ , there exists a point  $w$  in  $X$  such that  $z = Tz = Iw$ .

By (1.2), we have

$$d(Sw, z) = d(Sw, Tz) \leq \phi(0, d(Sw, z), 0, 0, d(Sw, z)),$$

so that  $Iw = Sw$ ,  $d(ISw, SIw) = 0$  and hence

$$Iz = ISw = SIw = Sz.$$

Therefore  $z$  is a common fixed point of  $S$ ,  $T$ ,  $I$  and  $J$ . Similarly we can complete the proof when  $T$  is continuous.

Finally we prove the uniqueness of  $z$ . Indeed let  $z$  and  $w$ , are common fixed points of  $S$ ,  $T$ ,  $I$  and  $J$ . Therefore

$$d(z, w) = d(Sz, Tw) \leq \phi(d(z, w), 0, 0, d(z, w), d(z, w)),$$

which implies that  $z = w$ .

In conclusion, we wish to present an example which shows that our Theorem 2.2 is indeed a generalization of Theorem 2.1.

EXAMPLE. Let  $X = [1, \infty)$  with the Euclidean metric  $d$ . Define  $S, T, I$  and  $J : X \rightarrow X$  by

$$\begin{aligned} Sx &= x^2, & Tx &= x^4 \\ Ix &= 2x^4 - 1, & Jx &= 2x^8 - 1, x \geq 1. \end{aligned}$$

Now

$$SX = TX = IX = JX = X$$

and  $S, T, I$  and  $J$  are continuous. Moreover, since

$$\begin{aligned} d(Sx_n, Ix_n) &= |x_n^2 - 2x_n^4 + 1| \rightarrow 0 \quad \text{iff} \quad x_n \rightarrow 1, \\ d(SIx_n, ISx_n) &= |(2x_n^4 - 1)^2 - 2(2x_n^4 - 1)^4 + 1| \rightarrow 0 \quad \text{as} \quad x_n \rightarrow 1. \end{aligned}$$

Thus  $S$  and  $I$  are compatible on  $X$ . Likewise

$$\begin{aligned} d(Tx_n, Jx_n) &= |x_n^4 - 2x_n^8 + 1| \rightarrow 0 \quad \text{iff} \quad x_n \rightarrow 1. \\ d(TJx_n, JTx_n) &= |(2x_n^8 - 1)^4 - 2(x_n^4)^8 + 1| \rightarrow 0 \quad \text{as} \quad x_n \rightarrow 1 \end{aligned}$$

and so  $T$  and  $J$  are compatible on  $X$ .

Take

$$\phi(t_1, t_2, t_3, t_4, t_5) = \frac{t_1}{2}$$

for every  $t_i \in R^5$ ,  $i=1,2,3,4,5$ .

For any  $x, y \in X$  we have

$$\begin{aligned} d(Sx, Ty) &= |x^2 - y^4| \leq |x^2 - y^4| |x^2 + y^4| \\ &= |x^4 - y^8| = 2 \frac{|x^4 - y^8|}{2} \\ &\leq \phi(d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)). \end{aligned}$$

Since  $\phi$  obviously satisfies the conditions (i) and (ii) then all the assumptions of Theorem 2.2 are verified and 1 is the unique common fixed point of  $S, T, I$  and  $J$ .

Note Theorem 2.1 is not applicable even if  $S = T$  and  $I = J$  because  $S$  and  $I$  are not weakly commuting mappings at  $x = 2$ .

### References

- [1] G. Jungck, *Compatible mappings and common fixed points*, Internat. J. Math. & Math. Sci. 9, (1986), 771-779.
- [2] G. Jungck, *Compatible mappings and common fixed points (2)*, Internat. J. Math. & Math. Sci. 11, (1986), 285-288.
- [3] G. Jungck, *Common fixed points for commuting and compatible maps on compacta*, Proc. Amer. Math. Soc. 3, (1988), 977-983.

- [4] M. S. Kang, Y. J. Cho and G. Jungck, *Common fixed points of compatible mappings*, *Internat. J. Math. & Math. Sci.* 13, (1990), 61-66.
- [5] M. S. Kang and J. W. Rye, *A common fixed point theorem for compatible mappings*, *Math. Japonica* 35, (1990), 153-157.
- [6] M. S. Kang and Y. P. Kim, *Common fixed point theorems*, *Math. Japonica* 37, (6), (1992), 1031-1039.
- [7] J. Matkowski, *Fixed point theorems for mappings with contractive iterate at a point*, *Proc. Amer. Math. Soc.* 62, (1977), 344-348.
- [8] V. Popa, *A common fixed point theorem of weakly commuting mappings*, *Inst. Math. (Beograd) (N.S.)* 47 (61), (1990), 132-136.
- [9] S. Park and J. S. Bae, *Extension of common fixed point theorem of Meir and Keeler*, *Arch. Math.* 19, (1984), 223-228.
- [10] S. Sessa, *On a weak commutativity condition of mappings in fixed point considerations*, *Publ. Inst. Math. (Beograd)* 32 (46), (1982), 149-153.
- [11] S. Sessa, B. E. Rhoades and M. S. Khan, *On common fixed points of compatible mappings*, *Internat. J. Math. & Math. Sci.* 11, (1988), 375-392.
- [12] Xieping Ding, *Fixed point theorems of commuting mappings*, *Math. Seminar Notes* 11, (1983), 301-305.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

ASSIUT UNIVERSITY

ASSIUT, EGYPT

*Received June 27, 1995; revised version January 9, 1996.*