DEMONSTRATIO MATHEMATICA
Vol. XXX No 2 1997

Teresa Biegaiiska

THE LATTICE OF ROUGH SUBSETS OF A ROUGH SET.
THE CATEGORY OF ROUGH SETS

Introduction

The notions of a rough set and of a Heyting algebra valued set have
originated from attempts to describe complex phenomena or loosely defined
concepts which are intractable to the methods of conventional mathematics.

The notion of a rough set was introduced by Pawlak [6] in 1981. The
theory of these sets stemed from his reflection on information systems. Gen-
erally speaking, rough sets are mathematical models of approximate classi-
fication. Classification concerns objects which are describable by means of
a list of attributes, i.e., certain features of objects.

In turn, the theory of non-classical logics has provided a motivation for
the notion of a Heyting algebra valued set. The latter notion was introduced
by Scott in 1972 in his work on the intuitionistic set theory.

Investigations into the relationship between the theory of rough sets and
the theory of Heyting algebra valued sets were initiated by A. Obtulowicz [5].
He discovered a representation of Pawlak’s rough sets by means of Heyting
algebra valued sets which are four-element chains. The above result provided
the inspiration for examining some properties of the set of all rough subsets
of a rough set. This paper presents some results of a research in this area.
The main results are two theorems placed in Chapter 3 of this paper: the
first theorem says that the lattice of all rough subsets of a rough set is a
complete Heyting algebra while the second theorem provides a necessary
and sufficient condition for the above lattice to be a Boolean algebra.

The relationship between rough sets and Heyting algebra valued sets can
be also conveniently analysed in terms of category theory. This problem is
discussed in Chapters 4 and 5. We mention here a noticeable result which
states that an object which is isomorphic with a rough set need not be a
rough set itself.
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1. Preliminary notions

The relations of a partial order on a set are denoted by the symbol
<. Let (L,<) be a partially ordered set and X be a non-empty subset
of L. The least upper bound of X in L and the greatest lower bound of
X in L are denoted by VX and AX, respectively. If X is a two-element
set, X = {a,b}, the respective bounds are denoted by a vV b and a A b.
A lattice is a partially ordered set (L,<) with the property that for ev-
ery pair a,b of elements of L, the supremum a V b and the infimum a A b
exist. A lattice £ = (L, <) is called complete, if for each non-empty set
X C L, the least upper bound \/ X and the greatest lower bound A X
exist.

Let a and b be elements of a lattice (L,<). An element z € L is called
the pseudocomplement of a relative to b, if z is the largest element of L with
the property that a A ¢ < b. This element is denoted by a — b.

If the lattice £ possesses the least element (which is denoted by 0), then
the element a — 0 is called the pseudocomplement of a and is denoted
by -a.

Any lattice with the least element O such that the operation of rela-
tive pseudocomplementation — is defined for every pair a,b, i.e., a — b
exists for all a,b, is called a Heyting algebra. (Instead of “Heyting alge-
bra” the term “pseudo-Boolean algebra” is also often used in the litera-
ture.)

If a lattice with the above properties is complete, it is called a complete
Heyting algebra.

It is a well-known fact (see e.g. [9]) that a complete lattice £ is a Heyting
algebra if and only if, for every indexed subset {a;}.cr of this lattice and
for every a € L, the following equality holds in the lattice

aA \/a,: V(a/\a,).

teT teT

(The condition is referred to as infinite distributivity). It follows from this
result that not every complete and distributive lattice is a Heyting algebra.
For example, in the lattice of all closed subsets of a stright line there does
not exists the pseudocomplement of the element p relative to the empty set
@, where p is any point of the line.

Clearly, every finite distributive lattice is a Heyting algebra. Also ev-
ery Boolean algebra is a Heyting algebra. It is also known (cf. [9]) that
a Heyting algebra is a Boolean algebra iff, for every element a of this al-
gebra, a V —~a = 1, where 1 stands for the greatest element of the lat-
tice.
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2. A representation of rough sets by Heyting algebra valued

sets
We begin with recalling some basic facts contained in the papers [4],

(], (6]-

Let R be an equivalence relation on a set U. A subset T of U is called
R-open, if the following condition is satisfied
Vz,ye Uz €T & zRy=> y € T].
Given an element z € U, we let [z]g denote the set {y € U : zRy}. Then,
for every Y C U, the sets
Ap(X):={z €U :[z]r C X},
ZR(X) :={z eU:[z]gn X # 0},
FTR(X) = ZR(X) - AR(X)
are called, respectively, the lower approzimation, the upper approzimation,
and the boundary of the set X in U.
The equivalence relation R on U determines the equivalence relations §
on the set P(U) of all subsets of U:
XSY & [Ar(X) = Ap(Y) & Ar(X) = AR(Y)),
or equivalently,
XSY & [Ar(X) = Ag(Y) & Frr(X) = Frgr(Y)].
In the paper [6] a rough set is understood to be the equivalence class [X]s
(in the power set P(U)) of any set X C U modulo S, i.e., the set
[X]s={Y CU:XSY}, for XCU.

The objects of the form [X]s are interchangeably referred to as rough sets
in the sense of Pawlak or abstract rough sets. As opposed to the above by
a rough set we will mean any quadruple of the form (U, R, I) such that U
is a set, R is an equivalence relation on U, and I, B are subsets of U which
satisfy the following conditions:

(3.1) INB = @,
(az) I and B are R-open sets,
(ag) Vr € B. 3y € B. [z # y & = Ry).

It is a known fact (cf. [5]) that if R is an equivalence relation on a set
U, then the assignement

[X]s — (Ag(X), Fra(X))

is a bijection from the quotient set P(U)/S onto the set of all ordered pairs
(I, B) of subsets of the set U satisfying the conditions (a;)-(az). Thus there
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exists a one-to-one correspondence between abstract rough sets and rough
sets in the above sense.

Let A be a complete Heyting algebra. By a set valued by the algebra
A, shortly: an A-set (cf. [4]), we will mean any pair (U, ) such that U is
asetand 6 : U x U — A is a mapping satisfying the following condi-
tions:

(i) Vz,y € U. §(z,y) = 8(y, z),
(i) Vz,y,z2 € U. 8(z,y) A 6(y, z) < é(z, 2).

The intuitive sense of the definition of an A-set is this: for any two
given elements z,y of the set U, the element é(z,y) of the Heyting al-
gebra A define the extent with respect to which the element z is equal
to y.

Let us denote by L4 the chain with the underlying set £4 = {0,1,2,3}.
We admit the following definition:

DEFINITION 2.1. An RL4-set is any L4-set U = (U, ¥6) satisfying the
following conditions:

(Ry) VzeU.1<¥(z,z),

(R2) Vz,yeU. [2<8z,y)=z =1y

(R3) Vz,y €U [§(z,y) = 1 = é(z,z) = §(y,9)],
(Ry) VzeU. [b(z,z)=2=>3yeU. §z,y)=1].

According to the presented above intuitions connected with the func-
tion 6, the conditions (R;)-(R4) can be formulated in a less formal way as
follows:

(R;) every element z is equal to itself to a degree at least 1,

(Rz) any two elements whose degree of equality is not less than 2 are
identical,

(R3) if z is equal to itself to the degree 2, then there exists an element
y which is equal to z to the degree 1.

The following two theorems of Obtulowicz determine a representation of
rough sets by means of RLy-sets.

THEOREM 2.2. For an arbitrary RL4-set U = (U, 6) define the relation
Ry on U and the sets Iy, By as follows:

gRyy & 1 < §(z,y),
Iy ={z€U:6(z,2)=3}, By={relU:éz,z)=2}.
Then the quadruple Zy = (U, Ry, Iy, By) is a rough set.
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THEOREM 2.3. If Z = (U,R,1,B) is a rough set, then the pair U, =
(U,82), where 6z is the mapping defined as follows: -
3 fe=y&zel,
ifr=y&z€B,
if(zRy&z#y)or(z=y&zeU-(IUB),
0 if it is not the case that z Ry,

6&(3, y) =

— N

is an RL4-set.

To each complete Heyting algebra A the category of all A-sets is as-
signed (cf. [4]). We will speak of these categories in Chapter 4. Follow-
ing the familiar category-theoretic terminology, instead of the term “A-set”
we will also use the word “object” in this and in further parts of the pa-
per.

DEFINITION 2.4. Let A be a complete Heyting algebra and let U = (U, §)

be an A-set. By a description of the subobject of the object U we shall
understand aby mapping o : U — A satisfying the following conditions:

(01) Vz € U. o(z) £ §(z, ),

(02) V:D,y evl. a(:c) A 6(13, y) < a(y)

Let U be any A-set. We let P(U,§) denote the set of all subobjects of
U. We then define the subset S(U, ) of P(U,$8) in the following way:

(1) S(U,8)={a€ P(U,6):(Vz,y € U)a(z) A a(y) < §(z,y)}.

The elements of the set S(U,§) are called singletons. For each A-set U =
(U,6), we define the mapping I's : S(U,6) x S(U,é) — A according to the
formula:

(2) I's(a,B) = \[{a(z) A B(z) : 2 € U}.

Then the pair (S(U,6), I's) is also an A-set.

Let us also notice that for each z € U, the mapping a, given by the

formula:
az(y) = 6(z,y), forevery y€ U,
is an element of the set S(U,4).

Let U = (U,é) be an RL4-set. Then for every element z of U, the
function «, defined as above “describes” one of the equivalence classes of
the relation Ry (cf. Theorem 2.2), viz. the equivalence class of the ele-
ment z.

The set P(U,6) of all descriptions of the subobjects of the object U =
(U, 6) is known to be partially ordered by the relation < defined as follows
(cf. [4]):

a<pBevVrel. a(z) < f(z).
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Furthermore P(U) := (P(U, $), <) is a lattice isomorphic with the lattice of
all subobjects of the object U.

DErINITION 2.5. Let U = (U,6) be an RL4-set. An r-description of the
subobject of the object U is any mapping a : U — L4 which satisfies the
following conditions:

(rl) Vz e U. [a(:c) < 6(2’1)]v

(r2) VzeU. (1< a(z),

(13) Vz,y€U. [§(z,y) = 1= a(z) = a(y)),

(rg) VzeU |a(z)=2=(3yel.)éz,y)=1].

The conditions (71),(r2),(r3) above and the condition (R;) of Defini-
tion 2.1 imply that if U = (U, §) is an RL4-set, then any r-description of a
subobject of the object U is at the same time a description of this subob-
ject.

If (U,é) is a non-trivial RL4-set, i.e., §(z,y) = 0 for some z,y € U,
then the set of all r-descriptions of the subobjects of the object (U,¥§) is
disjoint with the set S(U, §) of all singletons of (U, §). Indeed, if z and y are
elements of U such that é(z,y) = 0, then for every a € S(U,¥8) we would
have that a(z) = 0 or a(y) = 0. This would contradict the condition (r;) of
Definition 2.5.

It is easy to notice that if U = (U,68) is an Ly4-set, a : U — Ly is a
description of a subobject of the object U, and the pair U' = (U, é,) with
6, defined as follows:

(3) ba(z,y) = b(z,y)Aa(z) forall z,ye U,

is an RCL-set, then « is an r-description of a subobject of U. In turn, if
U = (U,6)is an RLy-set, a : U — L4 is an r-description of a subobject
of the object U, then the pair U’ = (U, §,) with 6, defined as in (3), is an
RL4-set.

3. Rough subsets of a rough set
We admit the following definition:

DEeFrINITION 3.1. Let Z = (U, R, I, B) be a rough set. A rough subset
of Z is any rough set Z' = (U,R',I', B') such that R’ = R,I' C I and
B'CIUB.

Let Z' = (U, R',I', B') be a rough subset of a rough set Z = (U, R, I, B).
Let U' = (U, 6z') and U = (U,6z) be the RLy-sets resulting from Z' and
Z, respectively, by applying to them the assignement described in Theorem
2.3. Then, for every pair z,y € U:

1<bz(z,y) ff 1<6z(z,y).
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Furthermore, 6z (z,z) < 6z(z,z) for every z € U. On the basis of this
one easily proves that the mapping o : U — L4, defined by the formula:
a(z) = 6z:/(z,z), is an r-description of a subobject of the object U.

Now, let U = (U,6) be an RLs-set and o an r-description of a sub-
object of the object U. Let furthermore U' = (U,§,) be the RL4-set with
a given by the formula (1). Then the rough set Z' = (U, Ry, Iy, By),
which results from U’ by applying to it the assignement described in The-
orem 2.2, is a rough subset of the rough set Z = (U, Ry, Iy, By). Accord-
ing to this interpretation, r-descriptions of subobjects of the object U can
be regarded as the characteristic functions of rough subsets of the rough
set U.

The function «, occurring in Definition 2.4, can be interpreted in the
following way: for each element z of U, the element a(z) of the Heyting
algebra L4 defines the extent with respect to which the element z belongs
to the rough subset Z'.

The conditions (r;)-(r4) thus say that

— an element z belongs to a subset at most to the degree to which z is
equal to itself],

— an element belongs to a set at most to the degree 1,

— if z is equal to y at the degree 1, then the degrees of membership of
each of these two elements to a set are the same,

— if z belongs to a rough set at the degree 2, then there exists an element
y which is equal to z at the degree 1.

Let U = (U,6) be an RLy-set and let P.(U,8) denote the set of all
r-descriptions of subobjects of the object U. It is easy to notice that the
relation < defined as follows:

alpBevVrel. alz) < [(z),

for all a,8 € P,(U,$), is a partial order on P,(U,é). Moreover, for every
pair a, 8 € P,(U,$), the functions a V 8 and a A 3 defined by:

(aVB)(z) = a(z) v B(z),
(e A B)(z) = a(z) A B(2),

for all x € U, are also elements of the set P.(U,6). They define the supre-
mum and the infimum of the elements @ and f, respectively, in the par-
tially ordered set P.(U) = (P,(U,$),<). P.(U) is therefore a lattice U is
a sublattice of the lattice P(U) of all descriptions of subobjects of the ob-
ject U.

There also holds the following theorem:
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THEOREM 3.2. If U = (U, é) is an RL4-set, then the lattice P.(U) of all
r-descriptions of subobjects of the object of the object U is distributive and
complete.

Proof. The distributivity of the lattice P.(U) = (P(U,$§), <) follows
from the distributivity of the lattice £4. For each non-empty set X C
P.(U,5) denote V X = v and AX = o. Then clearly 7(z) = V{a(z) :
a € X} and o(z) = A{a(z): a € X}. It is not difficult to see that 4 and ¢
are r-descriptions. This means that P.(U) is a complete lattice. »

Let us notice that for each RLy4-set U = (U, $8), the mappings 0 and 1
defined as follows:

0(z)=1, 1(z)=4é(z,z) forallzeU,
are r-descriptions of subobjects of the object U. On the strength of the con-
ditions (r2) and (r1),0 is the smallest element and 1 is the largest element
of the lattice P,(U), respectively.

Let a and 3 be arbitrary elements of the lattice P.(U). The set X =
{7 :a Ay < B} possesses the greatest element ymax, namely

(z) = 1(z) if a(z) < B(z),

Tmax Bz) if fz) < o(z) & B(z) # o(z).

This means that in the lattice P.(U) for every pair a,f of elements there
exists the pseudocomplement a — f of a relative to 3 (this is the element
Ymax)- This remark and Theorem 3.2 yield

THEOREM 3.3. For every RLy-set U = (U,6) the lattice P.(U) of r-
descriptions of subobjects of the object U is a complete Heyting algebra. w

On account of the considerations carried out thus far, the operations
V and A can be interpreted as the join and the meet of rough subsets of
the RL4-set U. Therefore P, (U) can be called the algebra of rough subsets
of U.

THEOREM 3.4. Let U = (U,6) be an RL4-set. The lattice P.(U) of all
r-descriptions of subobjects of the object U is a Boolean algebra iff U satisfies
the following condition:

(4) Ve, y € U. [6(z,2)=6(y,y)=3& é(z,y)=1=>z =y].

Proof. Suppose U = (U, 8) is an RL4-set which satisfies the condition
(4). Letting P.(U,8) be the set of all r-descriptions of the object U, we
notice that for any a € P.(U, §) there hold the conditions:

_ 6(1,) f ()=1’
(ma)(z) = { 1 ’ ;f z(;) =2ora(z)=3
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and
_Jb(z,2) fa(z)=1o0ra(z)=23,
(aV=a)(z) = { 2 if a(z) = 2.
The above conditions readily imply that a V ~a = 1 for every a € P.(U, ).
Thus P,(U) is a Boolean algebra.

To prove the reverse implication, suppose U = (U,4) is an RL4-set
which does not satisfy the condition (4). Consequently, there exist elements
zo,y0 € U such that 8(zo,%0) = 6(yo,%) = 3,6(z0,%) = 1 and z9 # yo-
Let us consider the mapping a : U — L4 defined by means of the for-
mula:

_J2 ifz€[zo]ry,
a(z) = { 1 otherwise,
where Ry is the relation defined as in Theorem 2.2. a is r-description of
a subobject of the object U. Moreover (a V ~a)(zg) = 2 # 6(zo,z0), i.e.,
a V -a # 1. This shows that P,(U) is not a Boolean algebra. »

The condition (4) says that the restriction of the relation Ry to the
interior Iy, (i.e., the set Ry N (fy x Iy)), is the identity relation.

4. Morphisms of A-sets. The category of RL,-sets

Our nearest goal is to present a thorough explanation of our understand-
ing of a mapping of one rough set to another. Instead of the word “mapping”
we will use in this context the term “morphism”. The definitions of a mor-
phism of rough sets and of the category of rough sets will be presented in
Chapter 5. In this chapter we will focus our attention on the notion of a
morphism of A-sets (cf. Higgs [4]). We shall also discuss some properties of
the category of RL4-sets.

Let A be a complete Heyting algebra and let U = (U, é) and W = (W, o)
be arbitrary A-sets. A morphism from U to W is any triple of the form
(U, f,W), where f is a function from U x W to A (A is the underlying set
of the algebra A) which satisfies the following conditions:

(my) Vz,2' € U. Yy € W. f(z,y) A b(z,2') < f(2',y),
(my) Vz € U.Vy,y' € W. f(z,y) A a(y,y") < f(2,¥"),
(m3) Vz € U. Vy,y' € W. f(z,y) A f(z,¥") < o(y,¥"),
(my)Vz € U. V{f(z,y):y € W} = é(z,2).

Any such a function f is called an A-function.

Each A-function f : U x W — A can be treated as a “characteristic
function” of a “subset” of the set U x W. For each pair (z,y) belonging to
U x W, f(z,y) is interpreted as the element of the algebra A which defines
the degree of relatedeness of the element y to  through f.
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EXAMPLE 4.1. Let U = (U, $) be an arbitrary A-set. According to con-
siderations presented in Chapter 2, the pair (S(U,4), I's) is also an A-set.
We remind that S(U, ) is the set of all singletons (cf. (1)) and I's is defined
as in (2). The A-set (S(U,4), Is) is denoted by Cs. We define the function
f:U x §(U,6) = A in the following way:

(5) f(I,,B)=6(I,:l:)/\F6(a,,ﬂ),

for all z € U and B € S(U, §), where a,(y) = é(z,y) forall y e U.

From the properties of the supremum and the infimum in Heyting alge-
bras and from the conditions (0;) and (o;) of Definition 2.3 and the condi-
tions (i)-(it) of Chapter 2 it follows that the function f defined by means
of (5) satisfies the conditions (m;)-(my4). Hence the triple (U, f,Cs) is a
morphism from U to Cs.

In turn, if (U, f,W) and (W, f',V) are morphisms from U = (U, 4) to
W = (W,() and from W to V = (V,7), respectively, then the composition
of these morphisms is the triple (U, f' o f,V), where

(6) (f'o )z, 2) = \[{f(z,¥) A f'(v,2) 1 y € W},

for all (z,2) e U x V.
The identity morphism is any triple of the form (U, 4,U), where U =
(U, 6) is any A-set. The identity morphism is denoted by the symbol iy .
Let A= L4 and let U = (U,6),W = (W,0) be RL4-sets. Let (U, f,W)
be any morphism from U to W. The function f is then an L4-function.
The equality f(z,y) = a, where a € L4, can be then interpreted as fol-
lows:

“y is not an f-image of z” in case when a = 0.
“y is an f-image of z” when 1 < a.

If 1 < f(z,y) and the knowledge of the exact value of f(z,y) is irrelevant
for us, we will shortly say that y is an f-image of z.

In order to interpret the conditions (m;)-(m2) in the case when A = L4,
we will say that elements z,,z; of an arbitrary RL4-set (U, o) are entirely
different if 6(z,,22) = 0.

It follows from the conditions (m,;)-(m;) that:

if y is an f-image of z at the degree a; and z is equal to z' at the degree
a2, then y is an f-image of z’ at the degree at least min{a,,a,}.

The condition (m;) expresses a certain kind of the injectivity property
of the morphism f:

if both y and ¢’ are f-images of z, then the elements y and y’ cannot be
entirely different.
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The condition (my4) says that each element z of U has an f-image y
which belongs to W at the same degree at which z is equal to itself.

The axiom (m3)—(my) imply that
(7) f(z,y) < b6(z,z) Ao(y,y),
i.e., the element y is an f-image of z at the degree not greater than that

at which z is equal to itself and not greater than the degree at which y is
equal to itself.

We infer from the conditions (m;)-(m3) that if elements z,,z, are not
entirely different, then their f-images y;,y; are not entirely different ei-

ther.
A-Set denotes the category whose objects are all A-sets and the mor-

phisms from one object U = (U, §) to another W = (W, o) are all the triples
(U, f,W) in which f is an A-function.
The following theorems are true for the category A-set:

4.2. A morphism (U, f,W) from an object U = (U,§) to an object
W = (W, o) is a monomorphism iff

f(z,9) A f(e',y) < 8(z,2"),
forall z,z' € U and ye W.
4.3. A morphism (U, f,W) is an epimorphism iff

Vif(z,9):z € U} = a(y,y),

for every y € W.

44.If (U, f,W) is both a monomorphism and an epimorphism, then it
is an isomorphism.

The proofs of these results can be found in Higgs [4].

The following corollary readily follows from Theorem 4.2-4.4 and Exam-
ple 4.1:

COROLLARY 4.5. For every A-set U = (U, 6), the triple (U, f,Cs), where
Cs = (S§(U,8),Is5) and f : U x S(U,6) — A is defined as in (5), is an
1somorphism in the category A-Set.

Let RL4-Set denote the category whose objects are all RL4-sets and the
morphisms from an object U to an object W are all triples of the form
(U, f,W), where f is an L4-function. The composition of morphisms is de-
fined according to the equality (6). The identity morphism in the category
RL4-Set is any triple of the form (U,6,U), where U = (U, ¥§) is any RL,-
set.

The category RL4-Set is a full subcategory of the category £4-Set; more-
over this category has products and a terminal object. The product U x W
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of two objects U = (U,6),W = (W,0) is defined as U x W = (U x W, ¢§),

where
(8) £((z,y), (2", 4") = é(z,2") A o(y, '),

for all z,2' € U and all y,y' € W.

A terminal object T in the category RL,-Set is any pair (U, 7) such that
U is a one-element set, i.e., U = {y} and r(y,y) = 3.

A certain fact connected with the notion of isomorphic closedness of a
subcategory relative to its supercategory deserves attention while investigat-
ing the category RL,-Set as a subcategory of £4-Set. This fact is expressed
in Theorem 4.6. But first we shall recall the definition of isomorphic closed-
ness of a subcategory.

A subcategory B of a category C is isomorphically closed (cf. [2]) if
any C-object (i.e., an object of the category C) which is isomorphic with a
B-object is actually a B-object.

THEOREM 4.6. The category RL4-Set is not an isomorphically closed
subcategory of the category L4-Set.

Proof. Let U = (U,6) be an RL4-set such that §(zg,z9) = 3 for some
zg € U. Let S(U, &) be the set of all singletons for U. We define the functions
azo i U — Ly,B0: U — L4 in the following way:

(11-0(1') = 6(3:0,1),
_ 2 ]f I = Iy,
Bzo(z) = { 0(zp,z) otherwise.

Clearly both a. and 359 belong to the set S(U,§). On account of Corollary
4.5, the RL4-set U, which is clearly also an L4-set, is isomorphic (in the
category L4-Set) with the L4-set Cs = (S(U,¥6), I's), where I is given by
the formula (2). However I's(azo,8z0) = 2 and oz, # Bz,, so the function
I's does not satisfy the condition (R;) of Definition 2.1. This means that C;
is not an RLg4-set.

The proof of the theorem is complete. =

5. The category of rough sets

The representation of rough sets through RL4-sets enables us to expect
that the notion of a morphism of rough sets is strictly related to the notion
of a morphism in the sense of Higgs. The relationship between the two no-
tions is expressed in the theorem formulated below. This theorem concludes
our considerations.

We admit the following definition:
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DEFINITION 5.1. Let Z = (U,R,I,B) and Z' = (U',R',I', B') be arbi-
trary rough sets. A morphism from Z to Z' is any quadruple (Z, F, ¢, Z')
such that

(s1) F is a function defined on the quotient set U/R with values in the
set U'/R',

(s2) ¢ is a function defined on U B with values in I' U B’,

(s3) Vz,z' € IU B. [zRz' = ¢(z)R'p(z')],

(sa) z€l=>p(c) el

(ss) Vz € TU B. [p(z) € F([z]Rr)-

The category RS of rough sets is defined to be the category whose
objects are all rough sets and morphisms are all quadruples (Z, F, ¢, Z)
defined as above. The composition of morphisms in the category RS is
defined in the natural way by means of the compositions of functions.
An identity morphism is any quadruple of the form (Z, Id,id, Z), where
Z = (U, R, I, B) is a rough set, Id is the identity relation on U/R and id is
the identity on JU B. A terminal object in the category RS is any quadruple
Z = (U, R, I, B) such that U is a one-element set, i.e., U = {a} for some a,
and R = {(a,a)},I={a},B=0.

The facts and lemmas we will present are easy consequences of the con-
siderations carried out thus far. They will be employed in the proof of a
theorem which establishes the relationship between the categories RS and
R£4-Set.

For any two rough sets Z = (U, R,I,B),Z' = (U',R',I', B') and a mor-
phism (Z, F, p, Z') between them we define the function f~:U x U' — L,

in the following way:
3 fzel&y=p(z),
~ _ )2 ifze B&y=y(z),
) FEN=11 ity e Faln) &y # o),
0 if y € F([z]Rr).

(The symbol y # ¢(z) in the above formula means that either z does not
belong to the domain of ¢ or the element ¢(z) is different from y.)

LEMMA 5.2. Suppose (Z,F,,Z') is a morphism of the category RS
from a rough set Z = (U,R,I,B) to a rough set Z' = (U',R',I',B'). Let
Uz = (U,62),Ug = (U,bz) (cf. 2.3) and let f~ : U x U' — L be the
Junction defined as in (9). Then the triple (U ,, f~,U ) is a morphism of
the category RL4-Set. - -

53. Let U = (U,6é) and W = (W, 0) be any RL-sets. Let furthermore
Ry, Rw be the relations and Iy, By, Iw, Bw the sets defined as in Theorem
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2.2. Then (U, f,W) is a morphism from U to W 1in the category RL4-
Set.

We define two functions Fy and @;. Fy is the function from U/Ry to
W/Rw defined as follows: Fy assigns to any equivalence class [z]RU belong-
ing to U/Ry the equivalence class {y]r,, in W/Rw, where y is any element
which satisfies the condition 1 < f(z,v). (In virtue of (m,) and (R;) such
an element y exists.) In turn, the function ¢; : Iy U By — Iw U Bw
is defined according to the followmg rule: to each element z belongmg to
Iy U By is assigned an element y such that f(z,y) = é(z,z). (Such an
element y exists on account of (m4); moreover y belongs to Iw U Bw by
(7).)

Both the functions Fy and ¢, are well-defined — for F's this fact is a con-
sequence of the condition (mj3) while for ¢ this follows from the conditions
(m3) and (Rz)

LEMMA 5.4. Suppose (U, f,W) is a morphism from an object U = (U, $)
to an object W = (W, 0) in the category RL4-Set. Let 2y, = (U, Ry, Iy, By),
Zw = (W, Rw,Iw, Bw) (cf. 2.2) and let the functions Fy and ¢; be de-
fined as in 5.8. Then the quadruple (Zy, Fy, 01, Zw) is a morphism of the
category RS.

THEOREM 5.5. The category RS of rough sets is isomorphic with the
category RL4-Set.

P roof. We shall prove that there exist covariant functors ¢, ¥ such that
®: RS — RL4-Set, ¥ : RL4-Set — RS and

(10) OV = Ips,¥P = Ipc, —set,

where Iy stands for the identity function in the category K.

We define the functor #. To each object Z = (U, R,I,B) of the cat-
egory RS is assigned the object #(Z) = (U,éz) (cf. 2.3) of the category
RL4-Set. In turn, to each morphism h = (Z, F, ¢, Z') of the category RS
is assigned the morphism ®(h) = (Uy, f,Uz/) in RL4-Set, defined as in
Lemma 5.2. Let us notice that if h is a morphism from an object as in
Lemma 5.2. Let us notice that if h is a morphism from an object Z to an
object Z' in RS, then &(h) is a morphism from #(Z) to #(Z') in RL,-
Set.

We see that if Z is an arbitrary object of the category RS, then & assigns
to the identity ¢z a certain identity ¢y in the category RL4-Set.

It is not difficult to show that @ preserves compositions, i.e., if h; =
(2,F,¢1,2') and hy = (2!, F2,¢2,2") are morphisms in RS, then

(11) ¢(h2 Ohl) = ¢(h2)0¢(h1)
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For we have: &(h1) = (Ug, f",Uz), ®(h2) = (Ug:, f5,Ugn) and &(ha) o
®(h1) = (Ug, f7 o ST JUgn), where f;* o f* is defined according to (6). In

turn, #(hs o hy) = (Uz,9~,Uzn), where g~ : U x U" — L4 is defined as

follows: o h

3 ifzel&(prop)(z) =72,

2 ifz€B&(pr0p)z)=2,

1 if z € (Fy 0 F1)([z]r) & (92 0 91)(2) # 2,

0 if z ¢ (F;0 Fy)([z]R)-

(11) then follows from the equality (f;" o fi")(z,2) = ¢~ (z, z), for all
zrelU,zeU".

This proves that & is a covariant functor from the category RS to the
category RL4-Set.

We now define the functor ¥. Each object U = (U, §) of the category
RL,4-Set is assigned the object Zy; = (U, Ry, Iy, By) (cf. 2.2) of the cate-
gory RS. Any morphism (U, f, W) from an object U = (U, §) to an object
W = (U,0) of RL4-Set is assigned the morphism (Zy, Fy,¢s,Zy ) in RS
(cf. Lemma 5.4). - o

We then notice that for any identity morphism ty of the category
RL4-Set its image ¥(ty) is an identity morphism in RS. Furthermore, if
(U, 1, W) and (W, f,;,V) are arbitrary morphisms in RL4-Set, then Fyp o
Fyy = Fya0f1) and g2 0 91 = ©(r2051)- This ultimately proves that ¥ is
covariant functor from the category RL4-Set to the category RS.

We also see that the functors &, ¥ satisfy the equations (10). The func-
tor @ is thus a covariant bijector from RS to RL3-Set (and V¥ is a covariant
bijector from RL4-Set to RS). So the category RS is isomorphic with the
category RL4-Set. w

g~(:1:, z) =

In the light of the above result, Theorem 4.6 can be formulated as follows:
an L4-set which is isomorphic with a rough set need not be a rough set
itself.
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