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T H E LATTICE OF R O U G H SUBSETS OF A R O U G H SET. 
T H E CATEGORY OF R O U G H SETS 

Introduction 
The notions of a rough set and of a Heyting algebra valued set have 

originated from attempts to describe complex phenomena or loosely defined 
concepts which are intractable to the methods of conventional mathematics. 

The notion of a rough set was introduced by Pawlak [6] in 1981. The 
theory of these sets stemed from his reflection on information systems. Gen-
erally speaking, rough sets are mathematical models of approximate classi-
fication. Classification concerns objects which are describable by means of 
a list of attributes, i.e., certain features of objects. 

In turn, the theory of non-classical logics has provided a motivation for 
the notion of a Heyting algebra valued set. The latter notion was introduced 
by Scott in 1972 in his work on the intuitionistic set theory. 

Investigations into the relationship between the theory of rough sets and 
the theory of Heyting algebra valued sets were initiated by A. Obtulowicz [5]. 
He discovered a representation of Pawlak's rough sets by means of Heyting 
algebra valued sets which are four-element chains. The above result provided 
the inspiration for examining some properties of the set of all rough subsets 
of a rough set. This paper presents some results of a research in this area. 
The main results are two theorems placed in Chapter 3 of this paper: the 
first theorem says that the lattice of all rough subsets of a rough set is a 
complete Heyting algebra while the second theorem provides a necessary 
and sufficient condition for the above lattice to be a Boolean algebra. 

The relationship between rough sets and Heyting algebra valued sets can 
be also conveniently analysed in terms of category theory. This problem is 
discussed in Chapters 4 and 5. We mention here a noticeable result which 
states that an object which is isomorphic with a rough set need not be a 
rough set itself. 
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1. Prel iminary notions 
The relations of a partial order on a set are denoted by the symbol 

< . Let ( L , < ) be a partially ordered set and X be a non-empty subset 
of L. The least upper bound of X in L and the greatest lower bound of 
X in L are denoted by \/X and AX, respectively. If X is a two-element 
set, X = {a,6}, the respective bounds are denoted by a V 6 and a A b. 
A lattice is a partially ordered set (L,<) with the property that for ev-
ery pair a, b of elements of L, the supremum a V b and the infimum a A b 
exist. A lattice C = (L,<) is called complete, if for each non-empty set 
X C L, the least upper bound \j X and the greatest lower bound f\ X 
exist. 

Let a and b be elements of a lattice (L , <) . An element x G L is called 
the pseudocomplement of a relative to b, if x is the largest element of L with 
the property that a A x < b. This element is denoted by a —• b. 

If the lattice C possesses the least element (which is denoted by 0), then 
the element a —* 0 is called the pseudocomplement of a and is denoted 
by ->a. 

Any lattice with the least element 0 such that the operation of rela-
tive pseudocomplementation —> is defined for every pair a, b, i.e., a —*• b 
exists for all a, b, is called a Heyting algebra. (Instead of "Heyting alge-
bra" the term "pseudo-Boolean algebra" is also often used in the litera-
ture.) 

If a lattice with the above properties is complete, it is called a complete 
Heyting algebra. 

It is a well-known fact (see e.g. [9]) that a complete lattice £ is a Heyting 
algebra if and only if, for every indexed subset {a t } t e x of this lattice and 
for every a £ L, the following equality holds in the lattice 

(The condition is referred to as infinite distributivity). It follows from this 
result that not every complete and distributive lattice is a Heyting algebra. 
For example, in the lattice of all closed subsets of a stright line there does 
not exists the pseudocomplement of the element p relative to the empty set 
0, where p is any point of the line. 

Clearly, every finite distributive lattice is a Heyting algebra. Also ev-
ery Boolean algebra is a Heyting algebra. It is also known (cf. [9]) that 
a Heyting algebra is a Boolean algebra iff, for every element a of this al-
gebra, a V ->a = 1, where 1 stands for the greatest element of the lat-
tice. 
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2. A representation of rough sets by Heyting algebra valued 
sets 

We begin with recalling some basic facts contained in the papers [4], 
[5], [6]. 

Let R be an equivalence relation on a set U. A subset T of U is called 
R-open, if the following condition is satisfied 

Vx, y e U[x € T & xRy => y 6 T]. 

Given an element x € U, we let [x]h denote the set {y £ U : xRy}. Then, 
for every Y C U, the sets 

:={x£U: [ « ) * C X } , 

AR(X):= {XE U:[x]RNX?9}, 

F r R ( X ) : = A R ( X ) - A R ( X ) 

are called, respectively, the lower approximation, the upper approximation, 
a n d t h e boundary of t h e se t X in U. 

The equivalence relation R on U determines the equivalence relations 5 
on the set V(U) of all subsets of U: 

XSY o [ ^ ( j r ) = Ar(Y) k A r ( X ) = Z f i ( y ) ] , 

or equivalently, 

* = AR(Y) & F r R ( X ) = FrR(Y)}. 

In the paper [6] a rough set is understood to be the equivalence class [X]s 
(in the power set V{U)) of any set X C U modulo S, i.e., the set 

[X]s = {Y CU: X 5 F } , for X C U. 

The objects of the form [X]s are interchangeably referred to as rough sets 
in the sense of Pawlak or abstract rough sets. As opposed to the above by 
a rough set we will mean any quadruple of the form ( U , R , I ) such that U 
is a set, R is an equivalence relation on U, and I, B are subsets of U which 
satisfy the following conditions: 

(aO I O B = 0, 
(a2) I and B are ii-open sets, 
(a3) Vx 6 B. 3y € B. [x ji y & xRy]. 

It is a known fact (cf. [5]) that if R is an equivalence relation on a set 
U, then the assignement 

is a bijection from the quotient set V(U)/S onto the set of all ordered pairs 
( / , B) of subsets of the set U satisfying the conditions (ai)-(a2). Thus there 
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exists a one-to-one correspondence between abstract rough sets and rough 
sets in the above sense. 

Let A be a complete Heyting algebra. By a set valued by the algebra 
A, shortly: an A-set (cf. [4]), we will mean any pair ({/, 6) such tha t U is 
a set and 6 : U x U -+ j4 is a mapping satisfying the following condi-
tions: 

(i) Vx, 2/ e U. 6(x, y) = % , x ) , 
(ii) Vx, y,z £ U. 6(x, y) A 6(y, z) < 6{x, z). 

The intuitive sense of the definition of an .4-set is this: for any two 
given elements x,y of the set U, the element 6(x,y) of the Heyting al-
gebra A define the extent with respect to which the element x is equal 
to y. 

Let us denote by £4 the chain with the underlying set £4 = {0 ,1 ,2 ,3} . 
We admit the following definition: 

D E F I N I T I O N 2 . 1 . An RC^-set is any £4-set JJ_ = (U,6) satisfying the 
following conditions: 

(R i ) Vx € U. 1 < 6{x,x), 
(R2) Vx,yeU.[2<6(xiy)=>x = y], 
(R 3 ) V * , y e U. [6{x,y)=l=*6{x,x) = 6(y,y)], 
(R 4 ) Vx € U. [¿(x, x) = 2 => 3y £ U. 6(x,y) = 1]. 

According to the presented above intuitions connected with the func-
tion 6, the conditions (Ri) - (R4) can be formulated in a less formal way as 
follows: 

(R i ) every element x is equal to itself to a degree at least 1, 
(R2) any two elements whose degree of equality is not less than 2 are 

identical, 
(R3) if x is equal to itself to the degree 2, then there exists an element 

y which is equal to x to the degree 1. 

The following two theorems of Obtulowicz determine a representation of 
rough sets by means of RC\-sets. 

T H E O R E M 2 . 2 . For an arbitrary RC\-set U_ = (U, 6) define the relation 
Ry_ on U and the sets Iy^, By as follows: 

xRyy O 1 < 6(x,y), 

Iu = {xeU : 6(x,x) = 3}, By = {x 6 U : ¿ (x ,x ) = 2}. 

Then the quadruple Z_v = (U, Ry, Iy_, By) is a rough set. 
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THEOREM 2 . 3 . If Z_ = (U,R,I,B) is a rough set, then the pair U_z = 
(U,6z), where 6z is the mapping defined as follows: 

{3 if x = y k x £ l , 
2 i f x = y k x e B , 

1 i / ( i % & i / ! i ) o r ( i = y & i € i / - ( / U f l ) , 
0 i / ii is n o i the case that xRy, is a n RCi-set. 

To each complete Heyting algebra A the category of all A-sets is as-
signed (cf. [4]). We will speak of these categories in Chapter 4. Follow-
ing the familiar category-theoretic terminology, instead of the term "A-set" 
we will also use the word "object" in this and in further parts of the pa-
per. 

DEFINITION 2 .4 . Let A be a. complete Heyting algebra and let U = (U,6) 
be an A-set. By a description of the subobject of the object U_ we shall 
understand aby mapping a : U —* A satisfying the following conditions: 

(01) Vx G U. a(x) < S(x,x), 
( 0 2 ) V i , y € U. a(x) A S(x,y) < a(y). 

Let U_ be any >l-set. We let P(U,6) denote the set of all subobjects of 
U_. We then define the subset S(U,6) of P(U,6) in the following way: 
(1) S(U,S) = {a e P(U,6) : (Vx, y 6 U.)a(x) A a(y) < ¿(x,y)}. 
The elements of the set S(U,6) are called singletons. For each A-set U_ = 
( U , 6 ) , we define the mapping : S(U,6) x S(U,S) —• A according to the 

Then the pair (S(U,6), Ts) is also an j4-set. 
Let us also notice that for each x £ U, the mapping ax given by the 

formula: 

is an element of the set S(U, 6). 
Let U_ = ( U , 6 ) be an RC^-set. Then for every element x of U, the 

function a x defined as above "describes" one of the equivalence classes of 
the relation Ry_ (cf. Theorem 2.2), viz. the equivalence class of the ele-
ment x. 

The set P(U,6) of all descriptions of the subobjects of the object U_ = 
(U,6) is known to be partially ordered by the relation < defined as follows 

"x(y) = y), for every y G U, 

(cf. [4]): 
a < 0 o Vx e U. a(x) < 0(x). 
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Furthermore V(U_) := (P(U,6), <) is a lattice isomorphic with the lattice of 
all subobjects of the object (/. 

D E F I N I T I O N 2 . 5 . Let U_ = (U,6) be an RC4-set. An r-description of the 
subobject of the object U_ is any mapping a : U £4 which satisfies the 
following conditions: 

(rx) Vx G U. (a(x) < ¿(1,1)], 
(r2) Vx €U.[ 1 < a(*)], 
(r3) Vx, yeU. [¿(x, y) = 1 =• a(x) = a(y)], 
(r4) Vx € U. [a(x) = 2 =• (3y € U.) 6(x,y) = 1], 
The conditions (ri), (f2), (r3) above and the condition (R2) of Defini-

tion 2.1 imply that if U_ = (U, 6) is an RC4-set, then any r-description of a 
subobject of the object JJ_ is at the same time a description of this subob-
ject. 

If (U, 6) is a non-trivial i?£4-set, i.e., S(x,y) = 0 for some x,y £ U, 
then the set of all r-descriptions of the subobjects of the object (U,6) is 
disjoint with the set S(U, 6) of all singletons of (U, 6). Indeed, if x and y are 
elements of U such that S(x,y) = 0, then for every a G S(U,6) we would 
have that a(x) = 0 or a(y) = 0. This would contradict the condition (r2) of 
Definition 2.5. 

It is easy to notice that if U_ = (U,6) is an £4-set, a : U —* £4 is a 
description of a subobject of the object U_, and the pair {/' = (U,6a) with 
6a defined as follows: 
(3) 6a(x,y) = 6(x,y) A ct(x) for all x, y G U, 
is an RC-set, then a is an r-description of a subobject of U. In turn, if 
U_ = (U, 6) is an RC4-set, a : U —• £4 is an r-description of a subobject 
of the object ¡J_, then the pair ¡¿' — (U,6a) with 6Q defined as in (3), is an 
ii£4-set. 

3. Rough subsets of a rough set 
We admit the following definition: 
D E F I N I T I O N 3 . 1 . Let Z = (U,R, I ,B ) be a rough set. A rough subset 

of Z is any rough set Z' = ( U , R ' , I ' , B ' ) such that R' = R,I' C / and 
B' CI (J B. 

Let Z' = (U, R1, / ' , B') be a rough subset of a rough set Z = (U, R, I, B). 
Let U_' = (U,6z>) and U_ — (U,¿z) be the RC4-sets resulting from Z' and 
Z, respectively, by applying to them the assignement described in Theorem 
2.3. Then, for every pair x, y G U: 

1 <Sz(x,jf) iff 1 < 6z(x,y). 
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Furthermore, 6z>(x,x) < 6z{x,x) for every x 6 U. On the basis of this 
one easily proves that the mapping a : U —i• £ 4 , defined by the formula: 
a(x) = 6z;{x, x), is an r-description of a subobject of the object U_. 

Now, let U_ = (U,6) be an i2£4-set and a an r-description of a sub-
object of the object U_. Let furthermore ¡¿' = (U,6a) be the i?£4-set with 
a given by the formula (1). Then the rough set Z' = (U,Ru>,Iu ' ,By>), 
which results from U_' by applying to it the assignement described in The-
orem 2.2, is a rough subset of the rough set Z_ = (U, Ru, Iu, By). Accord-
ing to this interpretation, r-descriptions of subobjects of the object U_ can 
be regarded as the characteristic functions of rough subsets of the rough 
set U. 

The function a , occurring in Definition 2.4, can be interpreted in the 
following way: for each element x of U, the element a(x) of the Heyting 
algebra C4 defines the extent with respect to which the element x belongs 
to the rough subset Z_'. 

The conditions (ri)-(r4) thus say that 

— an element x belongs to a subset at most to the degree to which x is 
equal to itself, 

— an element belongs to a set at most to the degree 1, 
— if x is equal to y at the degree 1, then the degrees of membership of 

each of these two elements to a set are the same, 
— if x belongs to a rough set at the degree 2, then there exists an element 

y which is equal to x at the degree 1. 

Let U_ — (U,6) be an _R£4-set and let Pr(U,6) denote the set of all 
r-descriptions of subobjects of the object U_. It is easy to notice that the 
relation < defined as follows: 

a < ¡3 Vx € U. a (x) < /3(x), 

for all a,/? € Pr(U,S), is a partial order on Pr(U,S). Moreover, for every 
pair a, ¡3 € Pr(U,6), the functions a\/ ¡3 and a A (3 defined by: 

( a V (3){x) = a (x) V /?(x), 
( a A (3){x) = a ( x ) A (3(x), 

for all x € U, are also elements of the set Pr(U,6). They define the supre-
mum and the infimum of the elements a and (3, respectively, in the par-
tially ordered set Vr(U) = (Pr(U,6),<). Vr(£) is therefore a lattice U is 
a sublattice of the lattice V(U_) of all descriptions of subobjects of the ob-
ject U_. 

There also holds the following theorem: 
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T H E O R E M 3 . 2 . IfU_ = (U,6) is an R£4-set, then the lattice Vr{lL) of all 
r-descriptions of subobjects of the object of the object U_ is distributive and 
complete. 

P r o o f . The distributivity of the lattice Vr(U) = (Pr(U,6),<) follows 
from the distributivity of the lattice £4. For each non-empty set X C 
Pr(U,6) denote V * = 7 and A * = Then clearly 7(1) = V M * ) •' 
a 6 X} and o(x) = /\{a(x) : a € X } . It is not difficult to see that 7 and a 
are r-descriptions. This means that Vr([L) is a complete lattice. • 

Let us notice that for each i?£4-set U_ = (U,6 ) , the mappings 0 and 1 
defined as follows: 

are r-descriptions of subobjects of the object U_. On the strength of the con-
ditions (r2) and (rx) ,0 is the smallest element and 1 is the largest element 
of the lattice Vr(U_), respectively. 

Let a and be arbitrary elements of the lattice Vr(U_). The set X = 
{7 : a A 7 < ¡3} possesses the greatest element 7 m a x , namely 

This means that in the lattice Vr(LL) for every pair a, ¡3 of elements there 
exists the pseudocomplement a —• ¡3 of a relative to (3 (this is the element 
7max)- This remark and Theorem 3 . 2 yield 

T H E O R E M 3 . 3 . For every RC4-set V. = (U,6) the lattice Vr{U) of r-
descriptions of subobjects of the object U_ is a complete Heyting algebra, m 

On account of the considerations carried out thus far, the operations 
V and A can be interpreted as the join and the meet of rough subsets of 
the RC4-set U_. Therefore Vr(LL) can be called the algebra of rough subsets 

T H E O R E M 3 . 4 . Let U = (U,6) be an R£4-set. The lattice Pr(U) of all 
r-descriptions of subobjects of the object U_ is a Boolean algebra iffU. satisfies 
the following condition: 

P r o o f . Suppose U_ = (U,6) is an #£4-set which satisfies the condition 
(4). Letting Pr(U,6) be the set of all r-descriptions of the object U_, we 
notice that for any a € Pr(U,S) there hold the conditions: 

0(i) = 1, l(x) = 6(x, x) for all x € U, 

of U. 

(4) Vx, y £ U. [ i (s , x) = S(y, y) = 3 & S(x, y) = 1 => x = y]. 

t M \ i K X 1 X ) i f a ( z ) = 1, 
= 2 or a (z ) = 3 
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and 

/ w \t \ f 6(x'x) i f o ( s ) 
( a V ->a)(x) = | 2 if a ( x ) 

= 1 or a ( x ) = 3, 
= 2 . 

The above conditions readily imply that a V ->a = 1 for every a € Pr(U,S). 
Thus Vr(lL) is a Boolean algebra. 

To prove the reverse implication, suppose U_ = (U,6) is an i2£4-set 
which does not satisfy the condition (4). Consequently, there exist elements 
xo, j/o € U such that 6(x0 ,yo) = <Kl/o,i/o) = 3,£(x0 , i fo) = 1 a n d xo # Vo-
Let us consider the mapping a : U —• £4 defined by means of the for-
mula: 

where Ru is the relation defined as in Theorem 2.2. a is r-description of 
a subobject of the object U_. Moreover ( a V ->a)(xo) = 2 ^ ¿(xo,xo), i-e., 
o V - i a ^ l . This shows that Vr{H) is not a Boolean algebra. • 

The condition (4) says that the restriction of the relation to the 
interior /y, (i.e., the set Ry_C\ {Iy_ x ic/))> is the identity relation. 

4. Morphisms of ,4-sets. The category of RC4-sets 
Our nearest goal is to present a thorough explanation of our understand-

ing of a mapping of one rough set to another. Instead of the word "mapping" 
we will use in this context the term "morphism". The definitions of a mor-
phism of rough sets and of the category of rough sets will be presented in 
Chapter 5. In this chapter we will focus our attention on the notion of a 
morphism of A-sets (cf. Higgs [4]). We shall also discuss some properties of 
the category of -sets. 

Let A be a complete Heyting algebra and let U_ = ( U , 6 ) and W_ = (W, a) 
be arbitrary yl-sets. A morphism from U_ to W_\s any triple of the form 
( V V ) , where / is a function from U x W to A {A is the underlying set 
of the algebra A) which satisfies the following conditions: 

Any such a function / is called an A-function. 
Each ^-function / : U x W —* A can be treated as a "characteristic 

function" of a "subset" of the set U x W. For each pair (x,y) belonging to 
U x W, f(x, y) is interpreted as the element of the algebra A which defines 
the degree of relatedeness of the element y to x through /. 

2 if x e [ z o W 
1 otherwise, 

( m i ) Vx, x' EU.Vye W. / ( x , y) A S(xt x') < /(*', y), 
(m2) Vx € U. Vy, y' € W. f(x, y) A o(y, y') < f(x,y'), 
(m 3 ) Vx e U. \/y, y' e W. /(x, y) A /(x, y') < a(y, y'), 
(m 4 ) Vx G U. \/{f{x,y) :yeW} = ¿>(x,x). 
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EXAMPLE 4.1. Let {/ = (U,6) be an arbitrary A-set. According to con-
siderations presented in Chapter 2, the pair (S(U,6), Ts) is also an .4-set. 
We remind that S(U,6) is the set of all singletons (cf. (1) ) and rs is defined 
as in (2). The A-set (S (U,6) , rs ) is denoted by Cs• We define the function 
/ : U x S(U, 6) A in the following way: 

(5) f(x,(3) = S(x,x) A /i(ar,/3), 

for all x 6 U and /3 € S(U, 6), where ax(y) = 6(x, y) for all y € U. 

From the properties of the supremum and the infimum in Heyting alge-
bras and from the conditions (o j ) and (02) of Definition 2.3 and the condi-
tions ( i )- ( i i ) of Chapter 2 it follows that the function / defined by means 
of (5) satisfies the conditions (mi)-(ni4). Hence the triple ({/, f,Cs) ' s a 

morphism from U_ to Cg. 

In turn, if (17, f,W_) and (W_, /', V) are morphisms from U_ = (U, 6) to 

W = ( iy,C) and from W_ to V = (V, 7 ) , respectively, then the composition 

of these morphisms is the triple (¡¿, /' o f,V_), where 

(6) (/' o / ) ( ! , z) = \J{f(x, y) A f'(y, z) : y <= W}, 

for all (x,z) € U x V. 

The identity morphism is any triple of the form (U_,6,U_), where U_ = 

(U,6) is any ,4-set. The identity morphism is denoted by the symbol iy_. 

Let A = £4 and let U = (U,6),W = {W,o) be fl£4-sets. Let ( U , f , W ) 

be any morphism from U_ to W_. The function / is then an £4-function. 
The equality f(x,y) = a, where a G £ 4 , can be then interpreted as fol-
lows: 

"y is not an /-image of 1" in case when a = 0. 
uy is an /-image of x" when 1 < a. 

If 1 < f(x, y) and the knowledge of the exact value of f(x,y) is irrelevant 
for us, we will shortly say that y is an /-image of x. 

In order to interpret the conditions (mi)-(m2) in the case when A ~ £4, 
we will say that elements 11,12 of an arbitrary i?£4-set (U,<T) are entirely 

different if ¿(11,12) = 0. 
It follows from the conditions (mi)-(m2) that: 

if y is an /-image of x at the degree ai and x is equal to x' at the degree 
0,2, then y is an /-image of x' at the degree at least min{a\,a2}-

The condition (m2) expresses a certain kind of the injectivity property 
of the morphism /: 

if both y and y' are /-images of x, then the elements y and y' cannot be 
entirely different. 
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The condition (nru) says that each element x of U has an /-image y 
which belongs to W at the same degree at which x is equal to itself. 

The axiom (m 3)-(m 4) imply that 

( 7 ) f(x,y) < ¿ ( i , x ) A a ( y , y ) , 

i.e., the element y is an /-image of x at the degree not greater than that 
at which x is equal to itself and not greater than the degree at which y is 
equal to itself. 

We infer from the conditions (mi)-(ni3) that if elements x i , x i are not 
entirely different, then their /-images j/i,j/2 are not entirely different ei-
ther. 

4-Set denotes the category whose objects are all A-sets and the mor-
phisms from one object U_= (U, 6) to another W_= (W, a) are all the triples 
( IL/ tMD in which / is an ^-function. 

The following theorems are true for the category A-set: 

4.2. A morphism (U_, f,W_) from an object U_ = (U,6) to an object 
W_ = (W, a) is a monomorphism iff 

f(x,y)Af{x',y)<6(x,x'), 

for all x,x' £ U and y G W. 

4.3. A morphism (U_,f,W) is an epimorphism iff 

\J{f(x,y):xe U} = o(y,y), 

for every y £ W. 

4.4. If (U, / , W) is both a monomorphism and an epimorphism, then it 
is an isomorphism. 

The proofs of these results can be found in Higgs [4]. 
The following corollary readily follows from Theorem 4.2-4.4 and Exam-

ple 4.1: 

C O R O L L A R Y 4 . 5 . For every A-set U_ = (U,6), the triple (U_,f,Cs), where 
Cs = (S(U,6), Ts) and f : U x S(U,6) —• A is defined as in (5), is an 
isomorphism in the category A-Set. 

Let RCi-Set denote the category whose objects are all .ft/Vsets and the 
morphisms from an object U_ to an object W_ are all triples of the form 
( £ , / , ] £ ) , where / is an /^-function. The composition of morphisms is de-
fined according to the equality (6). The identity morphism in the category 
i?£4-Set is any triple of the form (H,6,U_), where U_ = (U, 6) is any RC4-
set. 

The category RC4-Set is a full subcategory of the category ZVSet; more-
over this category has products and a terminal object. The product U xW 
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of two objects U = ( U , 6 ) , W = {W,ct) is defined as U x W = {U x 

for all x, x' £ U and all y,y' G W. 
A terminal object T in the category R£4-Set is any pair (U, r ) such that 

U is a one-element set, i.e., U = {¡/} and r(y,y) = 3. 
A certain fact connected with the notion of isomorphic closedness of a 

subcategory relative to its supercategory deserves attention while investigat-
ing the category RCfSet as a subcategory of/^4-Set. This fact is expressed 
in Theorem 4.6. But first we shall recall the definition of isomorphic closed-
ness of a subcategory. 

A subcategory B of a category C is isomorphically closed (cf. [2]) if 
any C-object (i.e., an object of the category C) which is isomorphic with a 
5-object is actually a 5-object. 

THEOREM 4.6. The category RC^-Set is not an isomorphically closed 
subcategory of the category C^-Set. 

P r o o f . Let U_ = (U,6) be an iZ/Vset such that ¿¡(io>£o) = 3 for some 
Zo € U. Let S(U, 6) be the set of all singletons for U_. We define the functions 
«ro : U —1- C\,(3X0 : I J - * C 4 in the following way: 

axo(z) = ¿(x 0 ,z) , 

Clearly both a r o and (jx0 belong to the set S(U,6). On account of Corollary 
4.5, the i2£4-set U_, which is clearly also an £4-set, is isomorphic (in the 
category £4-Set) with the £4-set C& — (S(U,6), Ts), where r s is given by 
the formula (2). However rs(oixo,Pxo) = 2 and aXo ^ (3Xo, so the function 

does not satisfy the condition (R2) of Definition 2.1. This means that Cf 

is not an RC^-set. 
The proof of the theorem is complete. • 

5. The category of rough sets 
The representation of rough sets through #£4-sets enables us to expect 

that the notion of a morphism of rough sets is strictly related to the notion 
of a morphism in the sense of Higgs. The relationship between the two no-
tions is expressed in the theorem formulated below. This theorem concludes 
our considerations. 

We admit the following definition: 

where 

(8) 

M x ) = | 2 if x = xo, 
6 ( X Q , X ) otherwise. 
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DEFINITION 5 .1 . Let Z = (U, R, / , B) and Z ' = (U', R', /', B') be arbi-
trary rough sets. A morphism from Z to Z ' is any quadruple (Z, F, Z ;) 
such tha t 

(si) F is a function defined on the quotient set U/R with values in the 
set U'/R', 

(S2) <p is a function defined on / U B with values in / ' U B\ 
(S3) V I , I ' elUB. [xRx' =• <p(x)R'<p(x')], 
(s4) x 6 / =» <p(x) 6 / ' , 
( S 5 ) V X € / U 5 . M i ) € F([X]R). 

The category RS of rough sets is defined to be the category whose 
objects are all rough sets and morphisms are all quadruples (Z, F, <£>,Z') 
defined as above. The composition of morphisms in the category RS is 
defined in the natural way by means of the compositions of functions. 
An identity morphism is any quadruple of the form (Z, Id, id,Z), where 
Z = (U, R, I, B) is a rough set, Id is the identity relation on U/R and id is 
the identity on luB. A terminal object in the category RS is any quadruple 
Z = (U, R, I , B) such that U is a one-element set, i.e., U = {a} for some a, 
and R = {(a, a)}, I = { a } , 5 = 0. 

The facts and lemmas we will present are easy consequences of the con-
siderations carried out thus far. They will be employed in the proof of a 
theorem which establishes the relationship between the categories RS and 
RC4 -Set. 

For any two rough sets Z = ( U , R , I , B ) , Z * = ( U ' , R ' , I ' , B ' ) and a mor-
phism (Z, F, v , Z ' ) between them we define the function f~:U x U' —• £4 
in the following way: 

3 if x € / & y = <p(x), 
2 if xe B k y = <f(x), 
1 if y G f ([*]«) k y ji 
0 \{yeF([x)R). 

(The symbol y / tp(x) in the above formula means that either x does not 
belong to the domain of ip or the element <p(x) is different from y.) 

LEMMA 5 . 2 . Suppose (Z_,F,<p,Z'!) is a morphism of the category RS 
from a rough set Z = (U,R,I,B) to a rough set Z' = {U',R',1',B'). Let 
Hz = {U,6z),U_z- = (U,6z-) ( c f 2 . 3 ) and let f~ : U x U' -» C4 be the 
function defined as in (if). Then the triple (U_z, f~,U_z') 15 a morphism of 
the category RC\-Set. 

5.3. Let U_ = (U, 6) and W_ = (W, a) be any RC^-sets. Let furthermore 
Ru, Rw be the relations and Iu, Bu, Iw, Bw the sets defined as in Theorem 

(9) r ( * , y ) = 
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2.2. Then (U_,f,W.) is a morphism from U_ to W_ in the category RC4-

Set. 

We define two functions Fj and ipj. Fj is the function from U/Ry_ to 

W/Rw_ defined as follows: Fj assigns to any equivalence class [x]/?,, belong-

ing to U/Ry_ the equivalence class [ v ] r w in WJRwj, where y is any element 

which satisfies the condition 1 < f(x,y). (In virtue of ( m 4 ) and (.ftj) such 

an element y exists.) In turn, the function <pj : Iy_ U Bu_ —• Iw_U Bw_ 

is defined according to the following rule: to each element x belonging to 

Iy_ U is assigned an element y such that f(x,y) = 6(x,x). (Such an 

element y exists on account of (7714); moreover y belongs to Tw_U Bw_ by 

( 7 ) - ) 

B o t h the functions Fj and <pj are well-defined — for Fj this fact is a con-

sequence of the condition (7713) while for ipj this follows from the conditions 

( m 3 ) and { R 2 ) . 

L e m m a 5 .4 . Suppose (U_,f,W_) is a morphism from an object U_ = (U,6) 

to an object W_= (W, a) in the category RCi-Set. Let Z_v = (U, Ry, Iy, B¡¿), 

Z_w = {W, Rw_,Iw_, Bw) {cf. 2.2) and let the functions Fj and i f f be de-

fined as in 5.3. Then the quadruple (ZJJ, Ff,ip/,Z_W) is a morphism of the 

category RS. 

T H E O R E M 5 . 5 . The category RS of rough sets is isomorphic with the 

category RC4 -Set. 

P r o o f . We shall prove that there exist covariant functors such that 

# : RS —• # £ 4 - S e t , 9 : RjC4-Set — RS and 

( 1 0 ) M = = lRCt-SeU 

where //< stands for the identity function in the category K . 

We define the functor <£. T o each objec t Z = ( U , R , I , B ) of the cat-

egory RS is assigned the o b j e c t = ( U , 6 z ) (cf. 2 .3 ) of the category 

RCi-Set. In turn, to each morphism h = (Z_, F,tp,Z!) of the category RS 

is assigned the morphism i»(/i) = {U_zi filLz1) ' n - R ^ - S e t , defined as in 

L e m m a 5 .2 . Let us notice that if h is a morphism from an object as in 

L e m m a 5 .2 . Let us notice that if h. is a morphism from an object Z_ to an 

objec t Z ' in RS, then $ ( h ) is a morphism from to in RC4-

Set. 

We see that if Z_ is an arbitrary o b j e c t of the category RS, then $ assigns 

to the identity a certain identity if/ in the category RC\-Set. 

It is not difficult to show that # preserves compositions, i.e., if h\ = 

(Z., F\,ipi,Z_') and /12 = (Z_', F2, <p2,Z!.') are morphisms in RS, then 

( 1 1 ) ${h2ohi) = *{h2)o$(hl). 
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g~{x,z) = < 

For we have: <?(/n) = / f . ^ s O ' ^ 2 ) = (Hz>, f?,U-z") an<* 

= {¡Lzifi 0 f \ ilLz")i where /2~ o f f is defined according to (6). In 
turn, $(/i2 o hi) = (U_z,g~,LLzn)i where g~ : U x U" —• £4 is defined as 
follows: 

3 if x £ I k (<f2 o <fii)(x) = z, 
2 if x € B k (<fi2 o y>i)(x) = z, 
1 if z € (F2 o F x ) ( [ x ]h ) k (<p2 o tp\){x) ± z, 
0 if z $ (F2 o F M x U ) . 

(11) then follows from the equality ( f ? o f f ) ( x , z ) = g~(x,z), for all 
1 e u , z e u " . 

This proves that # is a covariant functor from the category RS to the 
category ¿¿£4-Set. 

We now define the functor ty. Each object ¡J_ = (U, 6) of the category 
#£4-Set is assigned the object Zjj = (U, Ru, ¡¡¿, By) (cf. 2.2) of the cate-
gory RS. Any morphism ( U , f , VVT from an object U_ = (U,6) to an object 
W = (U,a) of .ft/VSet is assigned the morphism (Z_u, F/,<pf,Z_w) in RS 
(cf. Lemma 5.4). 

We then notice that for any identity morphism ty_ of the category 
#£4-Set its image ^(tu) is an identity morphism in RS. Furthermore, if 
{ILifiiW} and (W_,f2,V_) are arbitrary morphisms in i2£4-Set, then Fj2 o 
Fj \ = F(j2oj\) and ^¡2 = V(/2o / i ) - This ultimately proves that tp is 
covariant functor from the category i2£4-Set to the category RS. 

We also see that the functors <P, $ satisfy the equations (10). The func-
tor $ is thus a covariant bijector from RS to i2£3-Set (and $ is a covariant 
bijector from iZ£4-Set to RS). So the category RS is isomorphic with the 
category i?£4-Set. • 

In the light of the above result, Theorem 4.6 can be formulated as follows: 
an £4-set which is isomorphic with a rough set need not be a rough set 
itself. 
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