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Krzysztof Czarnowski

ON THE STRUCTURE OF FIXED POINT SETS
OF “k-SET-CONTRACTIONS” IN Bg SPACES

A theorem of Krasnosielski-Perov-Rabinowitz type on fixed point sets properties is
given in B spaces for a class of maps broader then compact maps. This is applied to the
Darboux problem for a hyperbolic equation.

This paper deals with characterization of sets of solutions of equations
in locally convex linear topological spaces, or, to be more specific, in By
spaces. We use topological degree methods to obtain our main Theorem
(16). Theorem (16) is a generalization of Theorem [4;(2.2)], which applies to
fixed point sets of compact maps in Bg spaces, to a broader class of “k-set-
contractive” maps. It goes parallel to a theorem of W. V. Petryshyn [11] on
fixed point sets properties of some k-set-contractions in Banach spaces. The
required extension of the Banach space notion of measure of noncompactness
and k-set-contraction to the case of a By space is done in the first part
of the paper. Next we use the ideas of R. D. Nussbaum [10] to define a
topological degree for some k-set-contractions in Bg spaces. The theory of
k-set-contractive and more general condensing maps in locally convex linear
topological spaces is also given in the paper of B. N. Sadovskii [12].

It should be stated that the proof of theorem (16) makes use, via Lemma
(15) ( [4;(3.1)], for a corresponding Banach space result see [8]), of theorem
of N. Aronszajn (2]: the intersection A of a sequence of subsets {A,} of
a metric space X ts an R;s-set in X, provided A, are compact absolute
retracts and {A,} converges to A in the sense of Hausdorff metric. Recall
that A C X is an Rg-set in X iff it is homeomorphic to an intersection of a
decreasing sequence of compact absolute retracts. An Rs-set is acyclic—in
particular compact and connected.

At the end, as an application, the structure of the Darboux problem for a
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hyperbolic partial differential equation is studied in an unbounded domain.
The right side is assumed to satisfy Carathéodory conditions and allowed to
depend on derivatives of the unknown function. An existence theorem for a
similar problem (with continuous right-hand side and in a bounded domain)
was proved by K. Goebel [5].

The author would like to express his gratitude to Professor T. Pruszko
for his statement of the problem and helpfull assistance.

1. Semimeasures of noncompactness

Let E denote a metrizable complete locally convex space (i.e. a Bg-
space or in other words a Frechet space) with topology induced by a se-
quence of seminorms {g, |n € N}. If U, = {z € F|q,(z) < 1}, then U =
{eUn|n € N,e > 0} is a basis of absolutely convex neighbourhoods of
zero. We say that a set A C E is ¢,-bounded if ¢,(A4) is a bounded subset
of R, and denote by B, the family of all ¢,-bounded subsets of E. Then
B = {B.|n € N} is the family of all bounded subsets of E.

(1) DEFINITION. For n € N let v, : B, — Ry,
Tn(A) = inf{é > 0| there exists a finite set X C E such that ACX + U, }.

(2) Remark. If E, = E/q;1(0) is a quotient space and 7, : E — E,,
the projection, then the formula pn(A) = yn (7 (A)) for any |- ||n-bounded
set A C E,, where ||[z)]|n = ¢gn(2), defines a ball measure of noncompactness
fn in the Banach space (En, || ||n).

Justified by the above remark we shall call the functions {y,|n € N}
semimeasures of noncompactness induced by seminorms {g, | » € N}. They
have the known properties of a Banach space ball measure of noncompact-
ness (c.f. [5]).

(3) PROPERTIES.
(3.1) if A € B,, BC A, then B € B,, and v,(B) < v.(A),
(3.2) if A, B € By, then AU B € By, and 7,(AU B) < max(yn(A),¥n(B)),
(3.3) if A € By, then A € B, and 7,(A) = 7,(A),
(3.4) if A€ B, and a € R, then aA € B, and v,(aA) = |a| - 7n(A),
(3.5) if A,B € By, then A+ B € B,, and 7,(A + B) < v.(A4) + 7x(B),
(3.6) if A € By, then co A € B, and 7,(co A) < v,(A), where co A denotes

the smallest conver set containing A.

Since relatively compact sets in a complete space are totally bounded
sets we have
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(4) PROPOSITION. A is a compact subset of E iff A € B and v,(A) = 0
for each n € N.

The next point is a version of a well known theorem of Kuratowski for
measures of noncompactness in metric spaces [7].

(5) PropPosITION. Let {A, |m € N} be a decreasing sequence of non-
empty bounded closed sets such that limy;, oo Yn(Am) = 0 for each n € N.
Then Ao = [{Am | m € N} is a nonempty compact set.

Proof. We first prove that A, # 0. We shall use the double diagonal
method. For every n,m € N can be chosen a positive é;, and a finite set X
such that A, C X + 65, U, and lim,, ., 6, = 0 for each n € N. Take any
sequence {a, | m € N} such that a,, € Ap,.

Fix n = 1. We choose a subsequence {a; ,} of {am} such that {a) nm} C
z} + 6]U; for some z! € X], then we choose a subsequence {ajm,} of
{a1,m} such that {azm} C z} + 61U, for some z} € X}, and so on—when
{ax-1.m} is already defined, we choose {akx,m} to be its subsequence such
that {ax,m} C zi + 6LU; for some z} € X}. Puting a}, = apm,» we get a
subsequence {al.} of {a,,} which is a Cauchy sequence with respect to gq;.

Using the same method for n = 2 we define a subsequence {a? } of {al }
which is a Cauchy sequence with respect to both ¢; and ¢z, and generally
when {a?'} is already defined and is a Cauchy sequence with respect to
q1, G2, - - -» gn—1 we define its subsequence {aZ } which is a Cauchy sequence
with respect to qq, g2, ..., ¢n. We put @,, = al* for m € N. Then {a,,} is
a subsequence of {a,,} and is a Cauchy sequence (with respect to each g,).
Hence @,, — a for some a € F and obviously a € A.

The compactness of Ay, follows from (4) and the fact that v,(Ae) =0
for each n € N since by (3.1), Yn(Acx) < Yn(Anm) forevery n,m € N. m

Let F': D — FE, where D is a closed subset of E, be a continuous map.
We shall introduce the following:

(6) DEFINITION. Let {7,} denote a sequence of semimeasures of non-

compactness and let {k,} be a sequence of non negative reals.

(6.1) F is a {kn}-{yn}-contraction, if ¥,(F(A)) < knvn(A) for every
bounded A C D and n € N;

(6.2) F is a strict {y,}-contraction, if its image F(D) is bounded and it is
a {kn}-{7n}-contraction with {k,} such that k, < 1 for each n € N;

(6.3) Fis {yn}-condensing, if its image F(D) is bounded and v,(F(A)) <
Yn(A) for each n € N and bounded A C D with y,(4) > 0;

(6.4) F is a strict set-contraction (is condensing), if it is a strict {7,}-
contraction (is {¥n }-condensing) for some sequence of seminorms {§y }
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equivalent to {¢,} and an induced sequence of semimeasures of non-
compactness {J,}.

(7) ProposiTION. If F : D — E is a condensing map, then the vector
field I — F : D — E, where I denotes the identity, is proper and hence also
closed.

Proof. For an arbitrary compact C C Elet A = (I — F)"}(C). Then
A C F(A)+ C and 1,(A) € 1 (F(A) + C) < 7(F(A)) for each n € N
because of (3) and (4). But this implies that y,(A4) = 0 for each n € N since
F is condensing. m

An example of a {k,}-{7,}-contraction is given by

(8) PROPOSITION. Let us assume that a continuous mapV : Dx D — E
satisfies the following conditions
(8.1) V(A,y) is relatively compact for every bounded A C D and y € D
(i.e. the map V(-,y): D — E is completely continuous),
(8.2) for each n € N there ezists k, > 0 such that

gn (V(z,11) = V(z,%2)) < kngn(t1 — 32)

for all z € D and y1,y2 € D (i.e. the section V(z,-): D — FE is a
{kn}-{gn}-contraction).

Then the map F : D — E, F(z) = V(z,z) is a {kn}-{7n}-contraction.

Proof. Let A € D be a bounded set and let 6, = v,(A), where n € N
is arbitrarily fixed. For any ¢ > 0 there exists Y = {y1,¥2,..., %} such that
ACY + (6, +€)U,. Thus we get

l
F(A)CV(A,A CV(AY + (6, +6)Un) C U V(A i+ (6n +)Un)
i=1

| l
U (V(A, i) + kn(bn + €)Us) U( a(6n +e)+s)U)

where a finite set X; was taken so that V(A,y;) C X, + €Uy, since V(4, y;)
is totally bounded. Hence v, (F(A)) < kn(yn(A) + €) + €, and therefore
7n(F(A)) < knYn(A), since € > 0 was arbitrarily chosen. m

2. Topological degree. Admissible maps and homotopies
We follow the method of R. D. Nussbaum [10] to define a degree for a
class of maps including strict set-contractive vector fields in By spaces. We
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start with a general construction for a continuous map F: G — E,GC E
open. We define

Kl = Kl(Fva) = EF(E),
Kmn=Kn(F,G)=@F(GNKn_y), m>]1,

Koo = Koo(F,G) = [{Km|m € N}.

Notice that {K,,} is a decreasing sequence of closed and convex sets and
F(GNK;,) C K4y for m € N. Hence K is a closed, convex and invariant
set (i.e. F(GN Ko) C Ko). Moreover the set of fixed points Fix F of the
map F is contained in K.,. We denote by r: £ — K, a retraction.

(9) LEMMA. Let us assume that C C E is a closed, convez and invariant
set (i.e. F(GNC) C C) such that K, C C, and R : E — C 1is a retraction.
Consider the map

H:Gx[0,1] - E, givenby H(z,t)=(1-t)rF(z)+tRF(z).

Then FixH = FixF (where FixH = {z € G|z = H(z,t) for some

Proof. Since Fix FF ¢ K., C C, the inclusion Fix F C Fix H follows.
In order to prove the inclusion Fix H C Fix F let us suppose that z =
(1-t)rF(z)+t RF(z) for some t € [0, 1]. Then z € C and by the invariance
of C, RF(z) = F(z), hence z = (1-1t)rF(z)+ t F(z). We get z € K,,
since F(z) € F(G) C K;,and if z € K,, then F(z) € Kny1. Thus z € Ko
and z € FixF. m

Let us note that a topological degree is defined for the class of compact
vector fields (c.{. [9]). The following corollary is an immediate consequence
of the above lemma.

(10) CoROLLARY. Let us assume that Fix F C G, C C E satisfies the
assumptions of lemma (9) and rF,RF : G — E are compact maps. Then

deg(I — rF,G,0) = deg(I — RF,G,0).

For a given open G C E we shall call a continuous map F : G — E to
be admissible (notation: F € A(G))if Fix F C G and Ko, = Koo(F,G) is a
compact set. We define

deg(I - F,G,0) = deg(I — rF,G,0) (= 0, when K, = 0),

for F' € A(G). Corollary (10) shows that this definition is independent of the
choice of the retraction 7 : £ — K, (take C = K, and R : E —» K, —any
other retraction), and that the degree thus defined agrees with the degree
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for compact vector fields whenever FF : G — E is a compact map (take
C=Fand R=1I).
Let H : G x [0,1] — E be a continuous map and put
Q1= Q:1(H,G) =t H(G x [0,1]),
Qm =Qm(H,G) = EH((@O Qm-1) x [0, 1]), m> 1,
Qu = Qu(H,G) = [[{Qm|m € N}.
The map H is an admissible homotopy (notation: H € AH(G))if FixH C G

and Q. (H,G) is a compact set. The degree defined above has standard
properties of normalization, additivity and homotopy invariance (c.f. {1]).

(11) PROPOSITION.
(11.1) if 0 € G, then deg(I,G,0) =1,
(11.2) if F € A(G) and G1,G2 C G are open and disjoint sets such that
Fix F C G1 UGy, then F € A(G1) N A(G2) and

deg(I — F,G,0) = deg(I - F,G,,0) + deg(I — F,G.,0),
(11.3) if H € AH(G), then H(-,t) € A(G) for each t € [0,1] and
deg(I — H(-,0),G,0) = deg({ — H(+,1),G,0).

Proof. (11.1) is obvious. To prove (11.2) let Ko, = Ko(F,G),r: E —
Ko and Ko ;i = Koo F, GL)’ ri:E— Ky, fori=1,2. Since Ko, ; C K,
then F € A(G;). Since F(GiN Ko) C Koo and Koo, C Koo, We get

deg(I — r;F,G;,0) = deg({ — rF,G,0)
by means of (10). Hence
deg(I - F,G,0)=deg(I — rF,G,0) = deg(I - rF,G1,0) + deg(I — rF,G,,0)
= deg(I - r F,G,,0) + deg(I — 2 F, G;,0)
= deg(l — F,G1,0) + deg(I — F,G3,0).
To prove (11.3)let R: E — Qo and Koot = Koo(H(+,1),G), 7y : E —

K o for t € [0,1]. Since, for any te (0,1], Koot C Qoo, then H(-,t) € A(G).
Moreover, from the inclusion H(G N Quo,t) C Qoo for t € [0, 1], we have

deg(I — rH(-,1),G,0) = deg(I — RH(-,1),G,0)

by means of (10). The compact homotopy RH is admissible and the proof
is complete. m

The following propositions give examples of admissible maps and homo-
topies.
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(12) ProposiTION. If F: G — E is a strict set-contraction, then the set
Ko = Ko(F,G) is compact (possibly empty). Hence F € A(G), provided
Fix FCG.

Proof. The set Ky = o F(G) is a bounded set, hence {K,} is a decreas-
ing sequence of closed bounded sets (possibly empty) and for each n € N we
have

n(Kmt1) = (@ F(GN Kp)) < kn¥n(G N Kp) < knAn(Km),
and hence lim;, oo ¥n(Km) = 0. Thus 5,(K) = 0 and the assertion fol-

lows. m

(13) ProposITION. Let H : G x [0,1] — E be a strict set-contractive
homotopy (i. e. we assume that H(G x [0, 1)) is a bounded set and 7,(H(A x
(0,1])) < knYn(A) with k, < 1, n € N, for some {¥,} and an arbi-
trary bounded A C G). Then Qo = Qo(H,G) is a compact set. Moreover
H € AH(G), provided FixH C G.

Proof. The set ¢; = T H(G x [0,1]) is a bounded set, hence {Qn.} is
a decreasing sequence of closed bounded sets (possibly empty) and for each
n € N we have

n(Q@m+1) = In(BH((G N Qm) x [0,1])) < knTn(Qum),
and o im0 Yn(@m) = 0. Thus 4,(Q) = 0. m

(14) PROPOSITION. Let Fy, Fy : G — E be strict {§,}-contractions for
some sequence {Jn}. Then the linear homotopy

H:Gx[0,1]- E, H(z,t)=(1-t)Fo(z)+tF(z)
satisfies assumptions of (13) and hence H € AH(G) provided Fix H C G.

Proof. The set H(G x [0,1]) C co(F_b(@) U Fi(G)) is bounded and for
an arbitrary n € N and a bounded A C G

¥a(H(A X [0,1])) < Fn(co(Fo(A) U Fi(A))) = max(Tn(Fo(A)), In(F1(A)))
S ma‘x(ko,n:)"n(A)» kl.n:/n(A)) S knﬁn(A),

where k, = max(kon,k1,,) < 1.8

3. Structure of fixed point sets of strict set-contractions

The sequence of seminorms {g,} generating the topology of E is now
assumed to be non decreasing. Let f : G — E be a continuous map and
{en} a sequence of positive reals tending to zero. A sequence of continuous
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maps {f, : G — E|n € N} is an {€n}-{gn}-approximation of the map f, if
gn(fa(z)— f(z)) < epforalln € Nand z € G.
The following lemma was proved in [4]:

(15) LEMMA. Suppose that a continuous map f : G — E satisfies the
following conditions
(15.1) every sequence {z,} C G such that f(z,) — 0 contains a convergent
subsequence;
(15.2) there ezxists an {€,}-{qn}-approzimation {f, : G — E|n € N} of f
such that the map

fn :fn-l(gnﬁn)—’enﬁn’ fn(z)zfn(x)
is a homeomorphism for each n € N.
Then f~1(0) is an Rs-set in the space E.

Let {g.} denote a sequence of seminorms equivalent to {g,} (not neces-
sarily non decreasing) and let {%,} be a corresponding sequence of semimea-
sures of noncompactness. Now we prove our main result.

(16) THEOREM. Suppose that F : G — E is a strict {Vm }-contraction
satisfying the following conditions
(16.1) Fix F C G and deg(I — F,G,0) # 0;
(16.2) there ezxists an {e,}-{qn }-approzimation {F, : G — E|n € N} of F
such that the equation ¢ — F,(z) = y has at most one solution for
every y € e,U, and n € N;
Then the set of fired points Fix F is an Rs-set in the space E.

Proof. It suffices to check that the maps f =T — F and f, =1 - Fj,.
n € N, satisfy the assumptions of lemma (15). By virtue of (7) the map f is
proper, hence it satisfies the condition (15.1). Moreover f is a closed map,
hence (2c,U,) N f(8G) = O for sufficiently large n € N, since 0 ¢ f(9G).

Then for every y € €,U, the linear homotopy
Hoy:Gx[0,1] > E, Hyy,(z,t)=(1-1t)F(z)+t(Fa(z)-y)
has no fixed points on 0G and, by (14), H, y, € AH(G). Thus
deg(fn — y,G,0) = deg(f,G,0) # 0

forall y € ,U,. _
We have shown that ¢,Uy, C fn(G) for sufficiently large n € N. By virtue

of (16.2) and (7) fn : f71(enUn) — €nUn is a one-to-one closed continuous

map, hence it is a homeomorphism. m
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(17) CoROLLARY. If F : E — E is a strict {Jm }-contraction satisfying
condition (16.2), then Fix F is an Rs-set in the space E

Proof. The homotopy
H:Ex[0,1]—- E, H(tz)=tF(z)

is admissible by (14). Hence deg(l — F, F,0) = deg(/,E,0) = 1 and the
assumptions of theorem (16) are fullfilled. m

Now we are going to apply the above theorem to the Darboux problem
for a hyperbolic equation. Let Ry = [0,+00), A = Ry x R} and A, =
[0,7] x {0,n]},n € N. Let f: A x R* — R be a Carathécdory map, i.e. we
assume that all its sections

f(m:y;"'7'a'):R4u—"Ryv (IB,y)(—:A
are continuous and all sections
f(-,~;u,7‘,s,t):A—+R", (U,T,S,t)€R4u

are measurable in the Lebesgue sense.
The Darboux problem is stated as follows:

(D) {uz‘y = f(zv Y u, Uy, uyaury) ma,

u(0,y) = g(y), u(z,0) = h(z) on JA,

where g,h : Ry — RY are given absolutely continuous maps which satisfy
condition g(0) = h(0). A solution of this problem is any absolutely continu-
ous map u: A — R¥ which satisfies the differential equation almost every-
where in A and the boundary condition for all z,y € R,.

In the sequel we say that a measurable function v : A — R is locally
bounded (locally less then a, a > 0), if

ess sup(r‘y)eAn|v(z,y)| < 400 (respectively: ... < a)

for each n € N.
In the following theorem we study the set of all solutions of the problem
(D) as a subset of the By space C of continuous maps from A into R¥:

c=(CAR){gineN}),  gu(w) =sup{lu(z.v)!|(@.v) €A, ).

The sequence {¢,} of seminorms in C is nondecreasing.
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(18) THEOREM. Let b,c, K, M,N : A — R, be measurable locally
bounded functions and let N be locally less then I. We assume that the
following two conditions are satisfied:

(18.1) for all (z,y;u,r,s,t) € A x R4,
[f(z,yiu,7,8,1)] < b(z, y)|ul + (=, ),
(18.2) for all (z,y;u,r1,81,t1),(2,¥;u,72,82,t2) € A x R*,

|f($1y§uv7‘1,31»t1) - f(I,y;U,Tz,Sz,h)l
< K(z,y)|lr = 12| + M(z,y)ls1 — 82| + N(z,9)|t1 — t2].

Then the set of all solutions of the Darbouz problem (D) is an Rs-set in the
space C.

Proof. In the proof we consider the By space of locally integrable maps
£=(LAR) {paln €N}),  pa(w)= [ Ju(z,y)ldedy
An

({pn} is nondecreasing). With a Carathéodory map f : A x R%* — R*
satisfying condition (18.1) we associate a continuous map Vy : L x L — L
(c.f. [6]) given by the formula

Vi(v,w)(z,y)
= f(s.v f f (6m) dgdn, f mdn, [ (€ y)de u(z,y))
0

and a corresponding map Fy: L — L, Fy(v) = Vy(v,v).
A map u: A — R"is a solution of the problem (D) if and only if v = u,,
is a fixed point of the map F; : L — L, where

f:AxR* - R,
fzoysu,m,8,0) = f(z,y;u+ h(z) + g(y) - 9(0), 7+ K (z),s + g'(y), 1)

and f satisfies the same assumptions as f.
If v € Fix F;, then, by (18.1),

ry
v(z,y)| < e(z,9) + b(z,9) [ [ |v(& n)|dEdn
00

and, by an inequality of Wendroff ([3], chapter 4, §30),
|v(2,y)| < e(z,9) ™Y = a(s,y), (2,9) € A,
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where a : A — R, is measurable, locally bounded and we can also assume
that a(z,y) > 0 for each (z,y) € A. Hence the set of all fixed points of
F 7 coincides with the fixed point set of the map F F given by the formula

f‘j(v) = VI(R(v), v) where R: L — L is a retraction onto the set

Do ={veL: |v(z,y)| < a(z,y) almost everywhere in A }

defined by
(z,3), oz, )] < a(,),
(Be)(z9) = { 20D aa,y), [o(29)| 2 o(z,),

With a positive locally bounded measurable function a on A, we also asso-
ciate the following subset of A x R%:

zy
N, = {(m,y;u,r,s,t)GAxR“’: |u| < ffa({,n)dfdn,
00

rl< [a(emydn, ls|< [al6,y)de, |t <a(zy)}.

(1] 0

In order to complete the proof of Theorem (18) we need the following
two lemmas. The first of them is stated without proof, since it is very similar
to the approximation lemma in [4] (Lemma (3.2)). The proof in [4] requires
only minor changes.

(19) LEMMA. Suppose a : A — Ry ts a positive locally bounded measur-
able function and f : A x R* — RY is a Carathéodory map which satisfies
the hypothesis of Theorem (18).

For each € > 0 and n > 0 there ezists a Carathéodory map

F:AxRY R,

measurable locally bounded functions b,é,L : A — R, and an integrable
function ¢ : A, — R, such that

[ elz,y)dzdy <,
A,

and the map f satisfies conditions (18.1), (18.2) (with b and c replaced by b
and ¢), and moreover

(191) fOT all (z’y;uhrlaslvtl)a (-‘L',y;uz, Tg,Sz,tz) € Qa,

IT(z’ Yy uy, rhslvtl) - 7("5» y;"2,7‘2,82,t2)| S E(.’L’, y)lul — U2
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+ K(z,y)|r1 — r2| + M(z,y)|s1 — s2| + N(z,9)lt1 — t2]

and
(19.2) for all (z,y;u,7,5,t) € o N (A x RY),

If(z, ¥4, 7,8,8) — f(z, 954, 7,8,1)] < p(z,9).

(20) LEMMA. Suppose o : A — R is a positive locally bounded measur-
able function and f : A x R¥ — R is a Carathéodory map which satisfies
the hypothesis of Theorem (18). Then the map

Fr:L—L,  Fy(v)=Vi(R(v),v)

is a strong {9n}-contraction, for some sequence of seminorms {G,} (and
implied {7,}) equivalent to {q,}, where the choice of {Gn} depends only on
the functions K, M and N.

Proof. It follows from the definition of retraction R and (18.1) that
the image V(R(L),w) is a bounded subset of the space £ for each w € L.
Moreover, since the image of the set R(L) = D, under the map J : £ — L,

J(v)(z,y)= [ [o(&n)dédn
00

is relatively compact (it is a set of functions equicontinuous on each A,),
the section

v~ V(R(v),w): L L

is a compact map.

Now we are going to show that for arbitrary v € L the section
V(v,") : L — L is a {kn}-{Pn}-contraction with k, < 1, n € N, for a
suitable sequence of seminorms {p,} in £, equivalent to {p,}. The assertion
will then follow from (8) applied to the map (v, w) — V;(R(v), w).

We use the method of Bielecki considering the family of seminorms

Pax(V) = f e~ (zt+y) |v(z,y)|dzdy, n€N, k>0
A,
We introduce the following denotations
K, = esssup, ,ea, |K(z,y)| < oo,
M, = esssup(; ,)ea. |M(z,y)| < oo,
N, = esssup(, y)ea. IN(z,y)| < 1, neN
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and note that N, < 1 for each n € N. By virtue of (18.2) and integration
by parts we have

Prx (V(v,w1) = V(v, wg))

Yy
< [ dedye™=49 [K(a,y) [ dn|wi(z,y) - walz,n)
A 0

T

+ M(z,9) [ de|wr(&,9) - w26, 9)| + N(z,9)|wi(2,9) - wa(z, )]
0

n n y
<K, [dze™ [dye ™ [ dn|wi(z,n) - wo(z,n)|
0 0 0

+ M, fdye"‘" fdze'” fdflwl(fvy)'—w2(£vy)|+ann,n(wl_w2)
0 0 0

<

(k_nlﬂg + Nn) P (w1 — w2).

It is sufficient now to take p, = p, « With & > (K, — M;,)/(1 — Ny), to get
k, = (K, + M,)/k+ N, <1 and the proof is complete. m

Now we complete the proof of Theorem (18). Let f, : A xR* — R
denote the approximation of f given by lemma (19) for n € Nand ¢ = 1,
and let F' = F; and F,, = Fy,. Then {F,} is a {1/n}-{p,}-approximation
of F and, by Lemma (20), F and F, (n € N) are strict {4, }-contractions
for some common sequence of semimeasures of noncompactness {¥, }.

Suppose now vy — F,(v;) = v — Fp(v) for some n € N and v, v; € L.
Then v; — vz = Fp(v1) — Fu(vz) and, since F, satisfies (19.1) with some
L=1L,, then

La(z,9) | |
Ivl(z,y)—vz(z,y)lsl_—;@y,—wofOflvl(E,n)—vz(ﬁ,n)Idfdn

Mz

(1 Y T
EED [t -l ant 12220 T e, )-ule o) d
0 ’ 0

I—N(:l:,y)

and so we get v; = vy (see inequalities [3], chapter 4, §30).
Thus F : L — L satisfies assumptions of corollary (17) and hence Fix F
is an Rs-set in the space £. Let us notice that the set of all solutions of (D)
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coincides with the set S(Fix F'), where
zy
S:L—C,  S(u)(z,y)=h(z)+9(y) - 90)+ [ [ (€ n)dEdn.
00

Since S is continuous and one-to-one, it is homeomorphic on compact sets,
and S(Fix F') is an Rs-setinC. ®

References

(1] H. Amann,S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130
(173) 39-54.

[2) N. Aronszajn, Le correspondant topologique de l’'unicute dans la theorie des equa-
tiones differentielles, Ann. Math. 43 (1942), 730-738.

[3] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin-Heidelberg-
New York, 1971.

[4] K. Czarnowski, T. Pruszko, On the structure of fized point sets of compact maps
in By spaces with applications to integral and differential equations in unbounded
domain, J. Math. Anal. Appl,, 154 No. 1 (1991) 151-163.

(5] K. Goebel, Grubosé zbioréw w przestrzeniach metrycznych i jej zastosowania w
teoris punktéw stalych, Rozprawa habilitacyjna, Lublin 1970 (in Polish).

[6] M. A. Krasnosielskiiet al., Integral equations, Moskva 1968 (in Russian).

[7] K. Kuratowski, Sur les espaces completes, Fund. Math. 15 (1930) 301-309.

[8] J. M. Lasry, R. Robert, Analyse non linéaire multivoque, Centre de Recherche de
Math. de la Décision, No. 7611, Universite de Paris-Dauphine.

[9] M. Nagumo, Degree of mapping in convez linear topological spaces, Amer. J. Math.
73 (1951), 497-511.

[10] R. D. Nussbaum, The fized point indez for local condensing maps, Annali di Math-
ematica 89(1971), 217-258.

[11] W. V. Petryshyn, Structure of fized point sets of k-set-contractions, Arch. Rational
Mech. Anal. 40(1971), 312-328.

(12] B. N. Sadovskii, Limit compact and condensing operators, Usp. Mat. Nauk 27 No.
1 (1972) 81-146 (in Russian).

INSTITUTE OF MATHEMATICS
UNIVERSITY OF GDANSK

ul. Wita Stwosza 57

89-952 GDANSK, POLAND
E-mail: kczarn@ksinet.univ.gda.pl

Received December 14, 1993; revised version January 30, 1997.



