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ON THE STRUCTURE OF FIXED POINT SETS 
OF "k-SET-CONTRACTIONS" IN B 0 SPACES 

A theorem of Krasnosielski-Perov-Rabinowitz type on fixed point sets properties is 
given in Bo spaces for a class of maps broader then compact maps. This is applied to the 
Darboux problem for a hyperbolic equation. 

This paper deals with characterization of sets of solutions of equations 
in locally convex linear topological spaces, or, to be more specific, in Bo 
spaces. We use topological degree methods to obtain our main Theorem 
(16). Theorem (16) is a generalization of Theorem [4;(2.2)], which applies to 
fixed point sets of compact maps in Bo spaces, to a broader class of "k-set-
contractive" maps. It goes parallel to a theorem of W. V. Petryshyn [11] on 
fixed point sets properties of some k-set-contractions in Banach spaces. The 
required extension of the Banach space notion of measure of noncompactness 
and k-set-contraction to the case of a Bo space is done in the first part 
of the paper. Next we use the ideas of R. D. Nussbaum [10] to define a 
topological degree for some k-set-contractions in Bo spaces. The theory of 
k-set-contractive and more general condensing maps in locally convex linear 
topological spaces is also given in the paper of B. N. Sadovskii [12]. 

It should be stated that the proof of theorem (16) makes use, via Lemma 
(15) ([4;(3.1)], for a corresponding Banach space result see [8]), of theorem 
of N. Aronszajn [2]: the intersection A of a sequence of subsets {/4n} of 
a metric space X is an TZs-set in X, provided An are compact absolute 
retracts and {An} converges to A in the sense of Hausdorff metric. Recall 
that A C X is an 7^5-set in X iff it is homeomorphic to an intersection of a 
decreasing sequence of compact absolute retracts. An 7^-set is acyclic—in 
particular compact and connected. 

At the end, as an application, the structure of the Darboux problem for a 
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hyperbolic partial differential equation is studied in an unbounded domain. 
The right side is assumed to satisfy Caratheodory conditions and allowed to 
depend on derivatives of the unknown function. An existence theorem for a 
similar problem (with continuous right-hand side and in a bounded domain) 
was proved by K. Goebel [5]. 

The author would like to express his gratitude to Professor T. Pruszko 
for his statement of the problem and helpfull assistance. 

1. Semimeasures of noncompactness 
Let E denote a metrizable complete locally convex space (i.e. a Bo-

space or in other words a Frechet space) with topology induced by a se-
quence of seminorms {<?n | n £ N}. If Un = {x £ E\qn(x) < 1}, then U = 
{eUn | n 6 N,£ > 0} is a basis of absolutely convex neighbourhoods of 
zero. We say that a set A C E is <7„-bounded if qn(A) is a bounded subset 
of R , and denote by Bn the family of all gn-bounded subsets of E. Then 
B = D i ^ n | " G N} is the family of all bounded subsets of E. 

( 1 ) DEFINITION. Fo r n £ N let 7 „ : Bn R + , 

7„(yl) = inf{i > 0 | there exists a finite set X CE such that A c . V + SUn}. 

(2) R e m a r k . If En = E/q~1( 0) is a quotient space and jrn : E —<• En 

the projection, then the formula Hn(A) = 7„(7r~1(y4)) for any || • \\„-bounded 
set A C En, where ||[a:]||n = <7n(z)> defines a ball measure of noncompactness 
fin in the Banach space (.Entll • ||n)-

Justified by the above remark we shall call the functions {7n | n £ N} 
semimeasures of noncompactness induced by seminorms {gn | n € N}. They 
have the known properties of a Banach space ball measure of noncompact-
ness (c.f. [5]). 

(3 ) PROPERTIES. 
(3.1) i f A e B n , B c A, then B € Bn and 7 n ( f l ) < 7 n ( A ) , 
(3.2) ifA,Be Bn, then All B G Bn and-fn(AuB) < max(7„( i4) ,7„(5)) , 
(3.3) if A 6 Bn, then A £ Bn and 7n(A) = -yn(A), 
( 3 . 4 ) if A £ Bn and a £ R , then aA £ Bn and 7„(AYL) = |A| • 7 „ ( A ) , 
(3.5) if A, Be Bn, then A + B £ Bn and 7N(/L + B) < ln{A) + 7n(B), 
(3.6) if A £ Bn, then coA £ Bn and 7„(co A) < in{A), where co A denotes 

the smallest convex set containing A. 

Since relatively compact sets in a complete space are totally bounded 
sets we have 
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( 4 ) PROPOSITION. A is a compact subset of E iff A e B and in{A) = 0 

for each n 6 N . 

The next point is a version of a well known theorem of Kuratowski for 
measures of noncompactness in metric spaces [7]. 

( 5 ) PROPOSITION. Let {Am \ m € N } be a decreasing sequence of non-

empty bounded closed sets such that l i m m — ~ i n { A m ) = 0 for each n 6 N . 
Then A00 = | m € N } is a nonempty compact set. 

P r o o f . We first prove that A00 / 0. We shall use the double diagonal 
method. For every n, m 6 N can be chosen a positive 6£ and a finite set 
such that Am C X£ + and limm—«» = 0 for each n £ N . Take any 
sequence { a m |m £ N } such that am £ Am. 

Fix n - 1. We choose a subsequence { a i ) T O } o f {am} such that { a i , m } C 
+ 8\U\ for some 1 } £ Xj 1 , then we choose a subsequence { a 2 i m } of 

{ o i , m } such that {02,m} C i J + 6\U\ for some E I j i a R d so on—when 
is already defined, we choose { a ; t i m } to be its subsequence such 

that {dfc.m} C + f>\U\ for some x\ £ X\. Puting alm = a m , m we get a 
subsequence { a ^ } of { a m } which is a Cauchy sequence with respect to q\. 

Using the same method for n = 2 we define a subsequence { a^ , } of { a j „ } 
which is a Cauchy sequence with respect to both <71 and <72, and generally 
when { aD j - 1 } is already defined and is a Cauchy sequence with respect to 

02» • • •> Qn—i we define its subsequence { a ^ } which is a Cauchy sequence 
with respect to q i , q2, ..., qn• We put a m = a™ for m G N. Then { a m } is 
a subsequence of { a m } and is a Cauchy sequence (with respect to each qn). 

Hence am —• a for some a £ E and obviously a £ A^. 

The compactness of Aoo follows from (4 ) and the fact that 7n (/ loo ) = 0 
for each n £ N since by (3.1), i n M o o ) < ln{Am) for every n , m € N. • 

Let F : D E, where D is a closed subset of E, be a continuous map. 
We shall introduce the following: 

( 6 ) DEFINITION. Let { 7 , , } denote a sequence of semimeasures of non-
compactness and let { £ „ } be a sequence of non negative reals. 

(6.1) F is a {A ;N } - {7„ } -contract ion, if 7 „ ( F ( > 1 ) ) < fcn7n(A) for every 
bounded A C D and n £ N; 

(6.2) F is a strict {7„ } -contract ion, if its image F(D) is bounded and it is 
a {Ar„ } - {7n } -contract ion with { f c „ } such that kn < 1 for each n € N; 

(6.3) F is {7„ } -condensing, if its image F(D) is bounded and jn(F(A)) < 

7 n ( A ) for each n € N and bounded A C D with in{A) > 0; 

(6.4) F is a strict set-contraction (is condensing), if it is a strict { 7 , , } -
contraction (is {7 „ } -condens ing ) for some sequence of seminorms { ? „ } 
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equivalent to {<7„} and an induced sequence of semimeasures of non-
compactness {7n}-

( 7 ) P R O P O S I T I O N . If F : D —* E is a condensing map, then the vector 
field I — F : D —+ E, where I denotes the identity, is proper and hence also 
closed. 

P r o o f . For an arbitrary compact C C E let A = (I - F ) - 1 ( C ) . Then 
A C F(A) + C and ln{A) < 7 n { F ( A ) + C) < ln{F[A)) for each n G N 
because of (3) and (4). But this implies that 7 = 0 for each n G N since 
F is condensing. • 

An example of a {A;n}-{7n}-contraction is given by 

( 8 ) P R O P O S I T I O N . Let us assume that a continuous map V : D x D —• E 
satisfies the following conditions 
(8.1) V(A,y) is relatively compact for every bounded A C D and y £ D 

(i. e. the map V(-,y) : D —• E is completely continuous), 
(8.2) for each n G N there exists kn > 0 such that 

qn{V(x,yi) - V(x,y2)) < knqn(yi - y2) 

for all x € D and y\,y2 € D (i.e. the section V(x,-) : D —• E is a 
{kn)-{qn}-contraction). 

Then the map F : D —• E, F(x) = V(x,x) is a {A;n}-{7n}-contraction. 

P r o o f . Let A £ D be a bounded set and let 6n = *)n(A), where n G N 
is arbitrarily fixed. For any £ > 0 there exists Y = {j/i, y2,..., yi) such that 
A C Y + (Sn + e)Un. Thus we get 

1 
F(A)CV(A,A)CV{A,Y + (6n+e)Un) C |J V{A, Vi + (6n + e)Un) 

t=i 
/ / 

C |J {V(A, yi) + kn(6n + e)Un) C j j ( x , + [kn(6n + e) + e) Un), 
1=1 >=i 

where a finite set Xi was taken so that V(A, yi) C Xi + eUn, since V(A, yi) 
is totally bounded. Hence 7„(F(i4)) < kn[-yn(A) + £ ) + £ , and therefore 
7 n ( F ( A ) ) < k„jn(A), since e > 0 was arbitrarily chosen. • 

2. Topological degree. Admissible maps and homotopies 
We follow the method of R. D. Nussbaum [10] to define a degree for a 

class of maps including strict set-contractive vector fields in Bo spaces. We 
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start with a general construction for a continuous map F : G —• E, G C E 
open. We define 

Ki = KX(F,G) = coF(G) , 
Km = Km(F,G) = co F{GnKm^), m > 1, 

Koo = K o o ^ G ) = P | { # m | m G N}. 

Notice that {A'm} is a decreasing sequence of closed and convex sets and 
F(GnKm) C Km+i for m G N. Hence K^ is a closed, convex and invariant 
set (i.e. F(G fl A'oo) C A'oo)- Moreover the set of fixed points F i x F of the 
map F is contained in K^. We denote by r : E —• K a retraction. 

(9 ) L E M M A . Let us assume that C C E is a closed, convex and invariant 
set (i. e. F(Gi)C) C C) such that /i'oo C C, and R : E C is a retraction. 
Consider the map 

H : G x [0,1] -» E, given by H(x,t) = (1 - t)rF(x) + tRF(x). 

Then Fix H = FixF (where Fi xH = {x G G\x = H(x,t) for some 
<€[0,1]}). 

P r o o f . Since F i x F C Koo C C, the inclusion F i x F C F i x ^ follows. 
In order to prove the inclusion Fi xH C F i x F let us suppose that x = 
(1 -1) rF(x) +1 RF(x) for some t G [0,1]. Then x G C and by the invariance 
of C, RF(x) =_F(z) , hence x = (1 - t)rF(x) + tF(x). We get x G Ku 

since F(x) G F(G) C A'i, and if x G A'm, then F(x) G Km+i. Thus x G K«> 
and x G Fix F . • 

Let us note that a topological degree is defined for the class of compact 
vector fields (c.f. [9]). The following corollary is an immediate consequence 
of the above lemma. 

(10) C O R O L L A R Y . Let us assume that F i x F C G, C C E satisfies the 
assumptions of lemma (9) and rF,RF : G —• E are compact maps. Then 

deg(/ - rF, G, 0) = deg(/ - RF, G, 0). 

For a given open G C E we shall call a continuous map F : G —• E to 
be admissible (notation: F G ^4(G)) if Fix F C G and K = A"oo(F, G) is a 
compact set. We define 

deg(/ - F, G, 0) = deg(/ - rF , G, 0) (= 0, when K^ = 0), 

for F G A{G). Corollary (10) shows that this definition is independent of the 
choice of the retraction r : E —• K^ (take C = K^ and R : E K—any 
other retraction), and that the degree thus defined agrees with the degree 
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for compact vector fields whenever F : G —• E is a compact map (take 
C = E and R = 7). 

Let H : G x [0,1] —• E be a continuous map and put 

Qi = Qi(H,G) = co H(G x [0,1]), 
Qm = Qm(H,G) = Co77((Gfl Qm-l) X [0, l]), 771 > 1, 

Qoo = Qoo{H,G) = P |{Qm | Til e N}. 

The map H is an admissible homotopy (notation: H 6 AH(G)) if Fix 77 C G 
and Qoo(77,G) is a compact set. The degree defined above has standard 
properties of normalization, additivity and homotopy invariance (c. f. [1]). 

( 1 1 ) P R O P O S I T I O N . 

(11.1) ifO € G, then deg(7,G,0) = 1, 
(11.2) if F € A(G) and G\,G2 C G are open and disjoint sets such that 

Fix F C G I U G 2 , then F € A(Gi) n A(G2) and 

deg(/ - F, G, 0) = deg(/ - F, Gu 0) + deg(/ - F,G2,0), 

(11.3) if H e AH(G), then H(-,t) 6 A(G) for each t e [0,1] and 

d e g ( 7 - 7 7 ( - , 0 ) , G , 0 ) = d e g ( 7 - 7 7 ( . , l ) , G , 0 ) . 

P r o o f . (11.1) is obvious. To prove (11.2) let 7i'oo = K^F, G), r : E —* 
A'oo and A'oo,, = Koo(F,Gj), r, : E K^, for i = 1,2. Since A'oo,, C A.'^, 
then F € -4(G0- Since F ( G j n A'oo) C K^ and A'oo.i C A'oo, we get 

deg(7 - r , F , G „ 0) = deg(/ - r F , G „ 0 ) 

by means of (10). Hence 

deg(7 - F, G, 0) = deg(7 - rF, G, 0) = deg(7 - rF, Gx, 0) + deg(7 - rF, G2,0) 
= deg(7 - nF, Gi,0) + deg(7 - r2F, G2,0) 
= deg(7 - F, G , , 0) + deg(7 - F, G 2 , 0 ) . 

To prove (11.3) let R : E Qoo and 7 ^ , , = 7v'00(7/(-, ¿), G), rt : E — 
7i'oo,i for i € [0,1]. Since, for any i_e [0,1], A'oo.i C Qoo, then #(• ,<) € .4(G). 
Moreover, from the inclusion 77(G ft Qoo, 0 C Qoo for t £ [0,1], we have 

d e g ( 7 - rtH(-,t),G,0) = deg(7 - RH(-,t),G,0) 

by means of (10). The compact homotopy RH is admissible and the proof 
is complete. • 

The following propositions give examples of admissible maps and homo-
topies. 
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( 1 2 ) P R O P O S I T I O N . / / F : G —• E is a strict set-contraction, then the set 
li'oo = Koo{F,G) is compact (possibly empty). Hence F £ -4(G), provided 
Fix F C G. 

P r o o f . The set R\ = co F(G) is a bounded set, hence {Kn} is a decreas-
ing sequence of closed bounded sets (possibly empty) and for each n 6 N we 
have 

7n(A'm + i) = 7 n ( c o F ( G n K m ) ) < ktfrXG n Kn) < kn%(Km), 

and hence limm^oo 7„ (A ' m ) = 0. Thus i n ( K o o ) = 0 and the assertion fol-
lows. • 

( 1 3 ) P R O P O S I T I O N . Let H : G x [ 0 , 1 ] —• E be a strict set-contractive 
homotopy (i. e. we assume that H(G x [0,1]) is a bounded set and in(H(A x 
[0,1])) < knin(A) with kn < 1, n 6 N, for some {7„} and an arbi-
trary bounded A C G). Then Qoo = Q^H^G) is a compact set. Moreover 
H € AH{G), provided YixH C G. 

P r o o f . The set Q\ = c o H ( G x [0,1]) is a bounded set, hence { Q m } is 
a decreasing sequence of closed bounded sets (possibly empty) and for each 
n € N we have 

7n(Qm+i) = ln(coH((G n Qm) x [0 ,1])) < *„7n(<2m), 

and so limm^oo 7 n ( Q m ) = 0. Thus 7„(C?oo) = 0. • 

( 1 4 ) P R O P O S I T I O N . Let F0,Fi : G —• E be strict {7„}-contractions for 
some sequence {7„}- Then the linear homotopy 

H : G x [0,1] -» E, H(x, t) = (1 - t) F0{x) + t F^x) 

satisfies assumptions of (IS) and hence H (E AH(G) provided FixH C G. 

P r o o f . The set H(G x [0,1]) C co(/o(G) U Fi(C?)) is bounded and for 
an arbitrary n € N and a bounded A C G 

7 n ( H ( A X [0 ,1])) < 7 n ( c o ( F o M ) U F , ( 4 ) ) ) = max (7n ( i r o (^)) ,7n (/ , i (A)) ) 

< max(Ar0)„7„(>l),fci)n7„(>l)) < kn^/n(A), 

where kn = max(fco,n, &i i n) < 1. • 

3. Structure of fixed point sets of strict set-contractions 
The sequence of seminorms {<?„} generating the topology of E is now 

assumed to be non decreasing. Let / : G —• E be a continuous map and 
{ e n } a sequence of positive reals tending to zero. A sequence of continuous 
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maps {/„ : G —• E \ n G N} is an {£„}-{g„}-approximation of the map / , if 
qn(fn(x) — / ( z ) ) < £n for all n G N and x G G. 

The following lemma was proved in [4]: 

( 1 5 ) L E M M A . Suppose that a continuous map f : G E satisfies the 
following conditions 
(15.1) every sequence { i n } C G such that f(xn) —• 0 contains a convergent 

subsequence; 
(15.2) there exists an {en}-{qn}-approximation {/„ : G —* E \ n G N} of f 

such that the map 

fn : f-HCnUn) - £nUn, fax) = fn(x) 

is a homeomorphism for each n G N. 

Then / - 1 ( 0 ) is an 7Zs-set in the space E. 

Let denote a sequence of seminorms equivalent to {gn} (not neces-
sarily non decreasing) and let {7n} be a corresponding sequence of semimea-
sures of noncompactness. Now we prove our main result. 

( 1 6 ) T H E O R E M . Suppose that F : G —• E is a strict {7m}-contraction 
satisfying the following conditions 
(16.1) Fix F C G and deg(/ - F,G,0) / 0; _ 
(16.2) there exists an {£n}-{qn}-approximation {Fn : G —• E \ n G N} of F 

such that the equation x — Fn(x) = y has at most one solution for 
every y £ £nUn and n € N; 

Then the set of fixed points Fix F is an 7Zs-set in the space E. 

P r o o f . It suffices to check that the maps / = I - F and fn — I - Fn. 
n G N, satisfy the assumptions of lemma (15). By virtue of (7) the map / is 
proper, hence it satisfies the condition (15.1). Moreover / is a closed map, 
hence ( 2 e n U n ) n f(dG) = 0 for sufficiently large n G N, since 0 £ f{dG). 
Then for every y G £nUn the linear homotopy 

Hn,y : G x [0,1] - E, Hn,y(x, t) = (1 - t) F(x) + t (Fn(x) - y) 

has no fixed points on dG and, by (14), HntV G AH{G). Thus 

deg(/ n - y, G, 0) = deg(/ , G, 0) ^ 0 

for all y G enll„. _ 
We have shown that enUn C fn(G) for sufficiently large n G N. By virtue 

of (16.2) and (7) fn : f~1(enUn) £nUn is a one-to-one closed continuous 
map, hence it is a homeomorphism. • 
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(17) COROLLARY. If F : E E is a strict {jm}-contraction satisfying 
condition (16 .2) , then Fix F is an Hs-set in the space E 

P r o o f . The homotopy 

H : E x [0,1] - » E, H{t,x) = tF{x) 

is admissible by (14) . Hence deg (I - F,E, 0 ) = d e g ( / , £ , 0 ) = 1 and the 
assumptions of theorem (16) are fullfilled. • 

Now we are going to apply the above theorem to the Darboux problem 
for a hyperbolic equation. Let R + = [ 0 , + o o ) , A = K + x R + and A„ = 
[0, n] x [0, n], n e N. Let / : A x R 4 " - » R " be a Caratheodory map, i. e. we 
assume that all its sections 

are continuous and all sections 

/(•, •; u, r, s, t): A R " , (u,r,s,t) € R 4 " 

are measurable in the Lebesgue sense. 
The Darboux problem is stated as follows: 

( DX f uxy = f(x,y;u,ux,uy,uxy) ilL A, 
' \ u(0, y) = g(y), u(x, 0) = h(x) on OA, 

where g,h : R + —» R " are given absolutely continuous maps which satisfy 
condition g (0 ) = h(0). A solution of this problem is any absolutely continu-
ous map u : A —> R^ which satisfies the differential equation almost every-
where in A and the boundary condition for all x,y 6 R + . 

In the sequel we say that a measurable function v : A —» R + is locally 
bounded (locally less then a, a > 0), if 

ess s u p ( x y ) 6 A n j/)| < + o o (respectively: . . . < a) 

for each n 6 N. 
In the following theorem we study the set of all solutions of the problem 

(D) as a subset of the Bo space C of continuous maps from A into R1 ' : 

C = ( c ( A , R " ) , { g „ | n € N } ) , qn{u) = s u p { \u(x, y)\ j (x , y) € A n } . 

The sequence {<7„} of seminorms in C is nondecreasing. 
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( 1 8 ) THEOREM. Let b,c,K,M,N : A — R + be measurable locally 
bounded functions and let N be locally less then 1. We assume that the 
following two conditions are satisfied: 

(18.1) for all (x,y\u,r,s,t) 6 A x R 4" , 

\f(x,y;u,r,s,t)\ < b(x,y)\u\ + c(x,y), 

(18.2) for all (x,y,u,ri,si,tl),{x,y;u,r2,s2,t2) G A X R 4" , 

\f(x,y;u,r1,s1,ti) - f(x,y;u,r2,s2,t2)\ 
< K(x, 2/)|r*i - r2 \ + M{x,y)\si - s2| + - t2\. 

Then the set of all solutions of the Darboux problem (D) is an 7Zs-set in the 
space C. 

P r o o f . In the proof we consider the Bo space of locally integrable maps 

£ = ( £ ( A , R " ) , { p „ | n e N } ) , ? » ( « ) = J \u{x,y)\ dx dy 
A„ 

({pn} is nondecreasing). With a Carathéodory map / : A x R 4 " —> R1 ' 
satisfying condition (18.1) we associate a continuous map V¡ : C x C —»• C 
(c.f. [6]) given by the formula 

Vf(v,w)(x,y) 
x y y x 

= f(x,y\ f f v({,rj)d£di], J w(x, r¡) dr), f w(^,y)d^w(x,y)j 
0 0 0 0 

and a corresponding map F¡ : C —• C, Ff(v) = Vf(v,v). 
A map u : A —• R " is a solution of the problem (D) if and only if v = uxy 

is a fixed point of the map Fj : £ —> C, where 

/ : A x R 4 " —• R", 

f ( x , y, u, r, s,t) = f ( x , y,u+ h(x) + g(y) - g(0), r + h'(x), s + g'(y), t) 

and / satisfies the same assumptions as / . 
If v € F i x / ) , then, by (18.1), 

x y 

\v(x,y)\ < c(x,y) + b(x,y) J J\v(^T])\d^drj 
o o 

and, by an inequality of Wendroff ([3], chapter 4, §30), 

N * , y)I < c(x, y) e'yt'rt = a(x, y), (x,y) e A, 
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where a : A —• R+ is measurable, locally bounded and we can also assume 
that a ( x , y ) > 0 for each (x,y) € A. Hence the set of all fixed points of 
Fj coincides with the fixed point set of the map Fj given by the formula 
Fj(v) = Vj(R(v), v) where R : C —• C is a retraction onto the set 

T>q = { v € £ : |r(a;,2/)| < ct(x,y) almost everywhere in A } 

defined by 

{ v(x,y), K®»y)l < a(aMJ), 

v(x>y) ( \ i / \i s / \ |t>(g y)[Q y 

With a positive locally bounded measurable function a on A, we also asso-
ciate the following subset of A x R 4 " : 

X y 
Üa = { ( ® , y ; u , r , a 1 < ) € A X R 4 " : |u| < / f a(£,r¡) d^drj, 

o o 
y x 

|r|< f ot(x,T))dr), |s| < / a ( f , y ) d f , | i | < a ( ® , y ) } . 
o o 

In order to complete the proof of Theorem (18) we need the following 
two lemmas. The first of them is stated without proof, since it is very similar 
to the approximation lemma in [4] (Lemma (3.2)). The proof in [4] requires 
only minor changes. 

(19) Lemma. Suppose a : A —• R + is a positive locally bounded measur-
able function and f : A x R 4 " —• R" is a Carathéodory map which satisfies 
the hypothesis of Theorem (18). 

For each £ > 0 and n > 0 there exists a Carathéodory map 

7 : A x R 4 " —<• R", 

measurable locally bounded functions b,c,L : A —>• R + and an integrable 
function <¿5 : A n —> R + such that 

f <p{x, y) dx dy < e, 
A n 

and the map f satisfies conditions (18.1), (18.2) (with b and c replaced by b 
and c), and moreover 

( 1 9 . 1 ) for all ( x , j / ; u 1 , r 1 , á 1 , í i ) , ( x , y ; u 2 , r 2 , 5 2 , Í 2 ) € ÜQ, 

\f(x,y;uuri,si,ti) - f(x,y;u2,r2,S2,t2)\ < L(x,y)\ui - u21 
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+ K(xyy)\rx - r 2 | + M{x,y)\Sl - s 2 | + A'(*,2/)|<i - h\ 

and 
(19.2) for all (x,y;u,r,s,t) £ n ( A n x R 4 " ) , 

\J(x,y;u,r,s,t) - f(x,y;u,r,s,t)\ < <p{x,y). 

( 2 0 ) L E M M A . Suppose a : A —• R + is a positive locally bounded measur-
able function and / : A X R 4 " -» R " is a Caratheodory map which satisfies 
the hypothesis of Theorem (18). Then the map 

F} :£-+£, Ff(v) = Vf(R( v),v) 

is a strong {7n}-contraction, for some sequence of seminorms {g„} (and 
implied {7n}) equivalent to {qn}, where the choice of {qn} depends only on 
the functions Ii, M and N. 

P r o o f . It follows f rom the definition of retraction R and (18.1) tha t 
the image V(R(C),w) is a bounded subset of the space C for each w £ C. 
Moreover, since the image of the set R(C) = T>a under the map J : £ C, 

x y 

J(v)(x,y)= f fv({,T))dtdT] 
0 0 

is relatively compact (it is a set of funct ions equicontinuous on each A n ) , 
the section 

v w V(R(v),w) : £ C 

is a compact map. 
Now we are going to show tha t for arbi t rary v £ £ the section 

V(v,-) : £ —• £ is a {A;n}-{p„}-contraction with kn < 1, n G N, for a 
suitable sequence of seminorms {pn} in equivalent to {pn}- The assertion 
will then follow from (8) applied to the map ( f , w ) Vf(R(v),w). 

We use the method of Bielecki considering the family of seminorms 

Pnjv)= J e~K(x+^ \v(x,y)\dxdy, n £ N, K > 0. 
A„ 

We introduce the following denotat ions 

Kn = e s s s u p ( l i J , ) e A n |A ' (x ,y ) | < 00, 

Mn = e s s s u p ( x ! / ) e A i i \M(x,y)\ < 00, 

Nn = e s s s u p ( l J , ) e A n \N(x,y)\ < 1, n <E N | 
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and note that Nn < 1 for each n € N. By virtue of (18.2) and integration 
by parts we have 

Pn,K{V(v,Wi) - V(V,W2)) 

y 
< f dxdye~K{x+v) K(x,y) f dr)\wi{x,y) - W2(X,T})\ 

+ M(x, y) f |u>!(f, y) - w2(£, + N(x, y)|ti>i(z, y) - w2{x, y)|] 
o 

n n y 

<I<n J dxe~KX J dy e~Ky J drj |tt>i(®, 77) - w2(x, 17) | 

0 0 0 
n n x 

+ Mn J dye~Ky J dxe~KX f l ^ f , y) - w2{£, y)| + # „ ; > „ , « ( w i - w2) 
0 0 0 

< ( K U ^ M U + JV„) PnAW 1 - Wl)' 

It is sufficient now to take pn = pniK with K > (Kn - Af n ) / (1 - 7Vn), to get 
kn = (Kn + Mn)/n + Nn < 1 and the proof is complete. • 

Now we complete the p r o o f o f T h e o r e m ( 1 8 ) . Let / „ : A x R 4 " -» R^ 
denote the approximation of / given by lemma (19) for n € N and £ = 
and let F = Fj and Fn = Fjn. Then {Fn} is a { l /n} - {p n } -approximation 
of F and, by Lemma (20), F and Fn (n € N) are strict {7m}-contractions 
for some common sequence of semimeasures of noncompactness {7™}. 

Suppose now v\ - Fn(v 1) — v2 — Fn(v2) for some n € N and v\,v2 € C. 
Then vi - v2 = Fn(vi) — Fn(v2) and, since Fn satisfies (19.1) with some 
L = Ln, then 

x y 

\ v i { x , y ) - v 2 ( x , y ) \ < - ^ ^ - J J l v ^ r i - v ^ r i l d Ç d r i 

^ 0 0 

and so we get v\ = v2 (see inequalities [3], chapter 4, §30). 
Thus F : C —• C satisfies assumptions of corollary (17) and hence Fix F 

is an 7^-set in the space C. Let us notice that the set of all solutions of (D) 
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coincides with the set 5 ( F i x F ) , where 
X y 

S:C-*C, S{u)(x,y) = h(x) + g(y)-g{ 0) + / f v^^d^drj. 
o o 

Since S is continuous and one-to-one, it is homeomorphic on compact sets, 
and S ( F i x F ) is an 7^-set in C. • 
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