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1. Introduction 
The well-known spectral theorem for self-adjoint operators on a Hilbert 

space can be formulated as follows: 
Let H be a complex separable Hilbert space with dim H > 2 and let 

L(H) denote the orthomodular lattice (shortly, OML) of all orthogonal 
projections from H onto closed linear subspaces of H. Let O denote the 
set of all self-adjoint linear operators on H and {mQ \ a (E S} the set of 
all pure probability measures on L(H). Then for every A 6 O there ex-
ists a unique Z(//)-valued measure (spectral measure) HA on B(R) such 
that for every a E S the composed mapping ma o is a probability 
measure on B(R). (Here and in the following B(R) denotes the Boolean 
a-algebra of all Borel sets of the real line.) Hence, the spectral theorem de-
termines a doubly indexed family (PA,a)Aeo,aes of probability measures on 
B(R) such that each Pa,o can be decomposed in the form pA,a = f^a 0 Pa 
where /i^ is an £(#)-valued measure on B(R) and m a is a pure proba-
bility measure on L(H). The family (PA,a)Aeo,aes can be interpreted as 
the spectral family of probability measures on B(R) corresponding to O 
and S. 

Now, by the inverse spectral theorem we may understand the following 
problem: 

Given a doubly indexed family (PA,a)Aeo,aes of probability measures 
on B(R), what conditions are to be put on O and S in order that every 
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PA a could be decomposed into an ¿-valued measure ha on B(R) and a 
pure probability measure ma on L for a suitable intermediate system L. 
This intermediate system L (interpreted as the logic induced by the family 
{Pa,ci)a£0,crGs) should be uniquely determined by this family in the way 
that L is a subalgebra of [0, l ] s . 

This problem could be of importance in axiomatic quantum mechanics, 
where the sets O and S are interpreted as the set of all observables and 
the set of all states of a fixed physical system F, respectively, and where 
the probability Pa,o{E), E € B(R) , is interpreted as the probability that 
a measurement of A will lead to a value in E provided that F is in the 
state a . 

The inverse problem formulated above can be interpreted as the problem 
of determining the logic L of F on basis of the knowledge of all probability 
measures Pa,o induced by measurements performed within F (i. e. on the 
basis of knowing all results of all measurements which may be performed 
within F). 

We shall first formulate our problem in a very general algebraic setting 
and then apply it to some concrete algebraic systems. 

First observe that not all mappings occurring within the formula pA,a = 
m a o ¡iA are of the same sort: 

Pa,a and ma are probability measures whereas Ha is an Z-valued meas-
ure. In order to be able to interprete all mappings occurring within the 
formula pA,a = wia 0 Ha as homomorphisms, it will be convenient to con-
sider the sets B(R) , [0,1] and L as partial algebras (A, ©,' ,0) of type (2.1,0) 
with a partial binary operation © of orthogonal addition and a total unary 
operation ' of orthocomplementation defined as follows: 

( B ( R ) , © , ' , 0 ) : E ® F E U F whenever E n F = 0, E':= R\ E 

([0,1], ©/.O) : a © b : = a + b whenever a + b < 1, a' := 1 - a 

(£ ,© , ' , 0) : a © 6 := a V b whenever s l l ( i . e . a < 6'). 

Then all mappings occurring within the formula pA,a = 0 Ha can be 
interpreted as (ortho-)homomorphisms within this type of partial algebras. 

The inverse problem formulated above can now be described as the prob-
lem of decomposing the doubly indexed family (PA,a)Aeo,aes of homo-
morphisms from B(R) to [0,1] into two independent families (/¿A)Aeo and 
( m a ) a € s of homomorphisms from B(R) to L and from L to [0,1], respec-
tively, such that pa,a = ttia o ¡iA holds for all A € O and all « € S. The 
next section will present a possible solution to this problem. 

Section 3 will be devoted to an application of the previous results to 
quantum logics (orthomodular posets). In Section 4 we will generalize and 
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interpret our concepts from a different point of view: We establish a one-
to-one correspondence between ring-like structures and lattices which gen-
eralizes the well-known correspondence between Boolean rings and Boolean 
algebras. In particular, we will characterize orthomodular lattices this way. 

2. The generalized inverse spectral theorem for homomor-
phisms in algebraic systems 

Let A\ and A2 be two partial algebras of type (2,1,0). For notions con-
cerning the theory of partial algebras we refer the reader to the mono-
graph [1]. For simplicity and also with regard to later generalizations, we 
shall consider in detail the case where the type of the considered partial 
algebras is (2), i. e. where there is only one partial binary operation, de-
noted by ©. Hence we have A\ = ( / l i ,©) and A2 = (A2,(B)- Without 
loss of generality we may assume that this operation is commutative. By 
dom ©/41 we denote the domain of the partial operation © on A\. (We do 
not exclude the case that the operation © on A\ is total, i. e. that dom 

= A l ) 
In the following let (pA,a)Aeo,c,es be a doubly indexed family of homo-

morphisms from A\ to A2. We ask, under which conditions there exists a 
partial algebra L (of the same type as A\ and A2), a family (/.iA)Aeo of 
homomorphisms from A\ to L and a family ( m a ) a € s of homomorphisms 
from L to A2 such that pA^a = m^ o /_iA for all A G O and a € S. We shall 
assume that the family (P,A)A^O is surjective, i. e. that L = |J ¡.LA{A\). 

/teo 
We now define the intermediate system L as follows: 

D e f i n i t i o n 2 . 1 . Let L denote the set { [ ( / I , a)] | A G O , a G Aj} where 
for every A G O and a £ A\ [(/t,a)] denotes the mapping from S to A2 

defined by 
[(/l,a)](a) := pA,a{a) 

for all a G S. 
Now we have the following result: 

L e m m a 2.2. For all A e O and all (a,b) G d o m ©,4, ( i ) and ( i i ) hold: 

(i) ( p , a ) ] , [ ( A , 6 ) D G d o m f f i ^ s . 
(ii) [(/4, a)] © [(j4, 6)] = [(/1,0 © b)]. 

P r o o f . This follows from the fact that for all A G O and a G S pAt0t 

is a homomorphism from A\ to A2 and from the definition of the mapping 
[(4,a)] (A G O, a G AA). • 

Since is a cartesian power of A2, it can be considered as a par-
tial algebra of the same type as A2 with operations being defined coor-
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dinatewise. Obviously, the set L is a subset of the set A f , but it may 
happen that the partial algebra L is not a subalgebra of the partial al-
gebra /if since f,g € L and ( f , g ) £ dom ©¿s together need not imply 
/©9 G L. In order to ensure that the set L can be regarded as a subalgebra 
of the partial algebra /if we have to put some conditions on the homo-
morphisms pa,o from A\ to Ao- To this aim we introduce the following 
definitions: 

D E F I N I T I O N 2.3. Two elements [(^4, a)] and [ ( 5 , 6 ) ] of L are said to be 
compatible with each other if ( [ ( 4 , a)], [ ( 5 ,6 ) ] ) £ dom ffi^s. 

D E F I N I T I O N 2.4. T w o elements [ ( / I , a) ] and [ ( 5 , 6 ) ] of L are said to 
be strongly compatible with each other if there exist C £ O and (c, d) £ 

dom ® A l such that ([(A, a)], [ ( 5 , 6)]) = ( [ (C , c)], [ (C,d) ] ) . 

L E M M A 2 . 5 . Every pair of strongly compatible elements of L is compat-

ible. 

P r o o f . Let [ (/I,a) ] and [ ( 5 ,6 ) ] be two elements of L which are strongly 
compatible with each other. Then there exist C £ O and (c, d) £ dom © ¿ j 
such that ([(/I, a)], [ ( 5 ,6 ) ] ) = ( [ (C , c ) ] , [ (C ,d ) ] ) . Because of Lemma 2.2 we 
have ( [ ( C , c ) ] , [ ( C , d ) j ) € dom ® „ | and hence ( [ ( A , a)], [ ( 5 , 6 ) ] ) 6 dom ffi^s 

follows, i. e. the elements [(/I, a)] and [ ( 5 , 6 ) ] are compatible with each 
other. • 

D E F I N I T I O N 2 . 6 . The family (PA,a )Aeo,aes of homomorphisms from A\ 

to A2 is said to be compatible if every pair of mutually compatible elements 
of L is even strongly compatible. 

We are now able to formulate the main theorem of this section: 

THEOREM 2.7. Assume that the family (PA,a)Aeo,a£S °f homomor-

phisms from A\ to A2 is compatible. Then ( i ) - ( iv ) hold: 

( i ) L is a subalgebra of /if-
( i i ) For every A € O the mapping from A\ to L defined by /iyi(a) : = 

[(j4, a)] for all a £ A\ is a homomorphism from A\ to L. 

(iii) For every a £ S the mapping ma from L to A2 defined by 

mQ([(/l,a)]) := pA<a(a) for all A £ O and a £ A\ is a well-defined 

homomorphism from L to A2 • 

( i v ) For all A £ O and all a £ S we have PA,A = "^o 0 PA-

P r o o f , ( i ) Let A,B £ O and a,6 £ A\ and assume that ( [ (/ t ,a ) ] , [ (5 ,6 ) ] ) 
£ dom ©¿s . Then the two elements [(/I, a)] and [ (5 ,6 ) ] of L are compat-
ible with each other and hence by the assumption of the theorem they 
are even strongly compatible with each other. Hence there exist C £ O 
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and (c,d) £ dom © ^ such that ( [ ( ¿ , a ) ] , [ ( f l , 6 ) ] ) = ( [ ( C , c ) ] , [ ( C , d ) ] ) . Be-
cause of Lemma 2.2 we have [ (C,c ) ] f f i [ ( C , d ) ] = [ ( C , c ® d)]. T h e lat-
ter element obviously belongs to the set L. This shows [ ( / I , a)] © [ (£ ,&)] 
£ L. 

(ii) Because of Lemma 2.2 we have (¡j.A(a),fiA(b)) £ dom © ¿ s and 
fiA(a@b) = p,A(a)® p,A(b) for all A £ O and all ( a , 6) £ dom © ¿ j . 

(iii) Let a be a fixed element of S. First we have to show that m a is 
a well-defined mapping from L to A2. For this purpose let A,B £ O and 
a, b £ A\ and assume [(A, a)] = [ ( 5 , 6 ) ] . Then 

m a ( [ ( A , a ) ] ) = pA,a(a) = [(A,«)](«) = [ ( ^ , 6 ) ] ( a ) = pB,a(b) = ma([(B,b)}). 

Hence ma is well-defined. Since pAtCt is a homomorphism from At to A2 
for every A £ O , we have ( m a ( [ ( / l , a ) ] ) , ma([(A, 6) ] ) ) £ dom © ^ j and 
ma{[{A, a © 6)]) = ma([(A, a ) ] ) © ma([{A, 6)]) for all A £ O and (a , 6) £ 
dom ©,4, . Application of Lemma 2.2 and of the assumption of the theorem 
completes the proof of (iii). 

(iv) For all A £ O , a £ S and a £ A\ we have 

(mQ o fiA)(a) = ma(nA(a)) = ma([(/l,a)]) = pA,a{a). • 

D E F I N I T I O N 2 . 8 . The partial algebra L whose base set was defined in 
Definition 2.1 will be called the logic induced by the family (pA,a)Aeo,aes 
of homomorphisms from A\ to A2-

We can state and prove also an inverted version of Theorem 2 .7 . But 
first we introduce two additional definitions. 

D E F I N I T I O N 2 . 9 . A family (fiA)A^o of homomorphisms from A\ to L is 
said to be strongly surjective if it is surjective and for every (a, 6) £ dom © / , 
there exist A £ O and (c, d) £ dom © 4 , such that nA{c) — a and ¡iA(d) = 6. 

D E F I N I T I O N 2 . 1 0 . A family ( M a ) a e s of homomorphisms from L to A2 

is said to be separating if a, 6 £ L and a / 6 together imply the existence of 
an a £ S such that ma(a) ^ rna(b) and it is said to be full if a,b £ L and 
(ma(a),mQ(b)) £ dom © ^ for all a £ S together imply ( a , 6) £ dom © ¿ . 

Now we have the following result: 

LEMMA 2 . 1 1 . Let (ma)aes be a separating and full family of homomor-
phisms from L to A2. Put L : = { a | a £ L) where for every a £ L a denotes 
the mapping from S to A2 defined by 

a(a) := ma(a) 

for all a £ S. Then L is a subalgebra of A f , L = L and the mapping f from 
L to L defined by 

f(a) := a 
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for all a £ L is an isomorphism from L to L. 

P r o o f . From the assumptions there follow (i) - (iii): 
(i) (a, 6) £ dom ©¿s and a © 6 = a © 6 for all (a, 6) £ dom ©¿. 

(ii) / is injective. 
(iii) (a, 6) £ dom for every a, 6 £ L with (a, 6) £ dom © ¿ s . 

• 

VVe are now able to prove a theorem inverse to Theorem 2.7: 

T H E O R E M 2 . 1 2 . Let (¡j.A)Aeo be a strongly surjective family of homo-
morphisms from A\ to L and (ma)aes a separating and full family of ho-
momorphisms from L to A2- Then the doubly indexed family (pa,a)Aeo, aes 
of homomorphisms from A\ to Ai defined by PA,O '•= ma 0 HA for all A £ O 
and a £ S satisfies the assumptions of Theorem 2.7 (i. e., this family is 
compatible) and the logic induced by this family (which is denoted here by 
L) is isomorphic to L. Moreover, we have L = L = L C 

P r o o f . We show tha t the family (PA.a)Aeo, a e s is compatible. Let 
[(A, a)] and [ (5 ,6)] be two mutually compatible elements of /,. 
Then ([(j4,a)], [ (5,6)]) £ d o m © ^ . This means tha t for every a £ 
S {ma(i.iA(a)),ma(i.iB{b))) £ dom ®,i2 . Since (ma)aE$ is full this implies 
tha t (¡iA(a), /¿B(6)) £ dom ©¿ . Since (MA)AGO is strongly surjective, there 
exist C € O and (c,d) £ dom ©^j such tha t fic(c) = and ¡.ic{d) = 
/¿ b(6) . Hence ([(/I, a)], [(5,6)]) = ([(C, c)], [(C, d)]) which shows tha t every 
pair of mutually compatible elements of L is also strongly compatible. Hence 
the family (pA,a)Aeo,aes is compatible and satisfies the assumption of The-
orem 2.7. Since {¡.la)a^o is surjective, the sets L and L coincide and hence 
we have L = L = L C ylf . • 

We now return to the example of the spectral theorem in a complex 
separable Hilbert space H mentioned in the introduction to show that the 
family (H A )A £ 0 of all .£(.//)-valued measures or spectral measures on B ( R ) 
and the family ( m 0 ) a € s of all pure probability measures on L(H) satisfy the 
assumptions of Theorem 2.12. First observe tha t the probability measures 
ma, a £ S, can also be indexed by one-dimensional subspaces or by unit 
vectors determining these subspaces. It is well-known by Gleason's Theorem 
tha t in case of dim H > 3 every pure probability measure on L(H) can be 
represented in the form mu with u £ 5 1 , where mu(P) := (Pu,u) for all 
P £ L(H). (Here and in the following S1 denotes the set of all unit vectors 
of H.) So we have { m a | a £ S} = {mu\u £ S 1 } . Clearly, we can inter-
pret these probability measures as homomorphisms from {L(H), ©, ' , {0}) 
t o ( [ 0 , l ] , © , ' , 0 ) . 
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The family of all such homomorphisms is separating and full. In fact, if 
P,Q G L(H) and P ^ Q then there exists a unit vector u G S1 such that 
(Pu, u) (Qu, u). (Projections are uniquely determined by the correspond-
ing quadratic forms.) If P, Q G L{H) and ((Pu,u),(Qu,u)) G dom ®[o,i) 
for all u e Sl then ( P u , u ) < 1 - (Qu,u) = {QLu,u) for all u G S1. This 
implies P < QL. (The partial order of projections coincides with that of the 
corresponding quadratic forms.) Hence P _L Q and (P,Q ) £ dom ®l(H)-
Therefore the family ( m u ) u e s 1 is a l s o full. 

The family (nA)Aeo of all homomorphisms from B(R) to L(H) is strong-
ly surjective as can be seen by the following consideration: Let (P \ ,P2) G 
dom ®l(H)- Then Pi _L P?. Hence we can define an L(#)-valued measure 
11 on B ( R ) in the following way: 

K E ) : = Y , P> 
:££n{l,2,3} 

for all E G B ( R ) where P3 := I - P\- P2 and where / denotes the identital 
projection on H. This Z(7/)-valued measure belongs to {¡iA | A G O} and 
consequently there exists an A G O such that n ~ n,4. Since /¿^({l}) = P\ 
and ^^({2}) = P2, (/.iA)Aeo is strongly surjective. (That this family is also 
surjective can be seen by taking P2 = 0 where O denotes the projection 
from II onto the subspace {0} of H). 

Hence the families {¡.iA)Aeo and ( m Q ) Q 6 s satisfy the assumptions of 
Theorem 2.12 and consequently the family ( ttIq o ha)/460, cy^s is compati-
ble. So Theorem 2.7 may be applied. In this way we obtain the inverse of 
the spectral theorem as suggested in the introduction. 

We can give another example of application of Theorem 2.12 based on 
the theory of Boolean algebras. Let - as before - (B(R) ,© , ' , 0 ) denote the 
orthomodular algebra of all Borel sets of the real line and let L denote an 
arbitrary Boolean algebra (considered also as an orthoalgebra). Further, let 

denote the family of all homomorphisms from B(R) to L. It is 
clear that this family is strongly surjective (by an analogous argument as in 
the Hilbert space case). 

Let ( m 0 ) a e s the family of all homomorphisms from L to the two-
element Boolean algebra 21 = {0,1} (they can also be interpreted as two-
valued measures on L). The family ( m Q ) a e s is separating and full. This can 
be seen as follows: By the Stone representation theorem L is isomorphic to 
a Boolean algebra of subsets of S (with set-theoretical operations). So we 
have 

L ^ l C {0,1}S . 

Let us denote the isomorphism from L to L by a ^ a. Then, for all x G L 
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x = {a G S | ma(x) = 1}. If a,b G L and (ma(a), ma(b)) G dom ffi{0,i} 
for all a G S then (mQ(fl), m a(6)) G {(0,0), (0,1), (1,0)} for all a G S and 
hence (a, 6) G dom 67; fr°m which (a, 6) G dom © l follows. Hence ( m a ) Q e S 

is full. It is also separating because if a b then also a ^ b and there ex-
ists a two-valued measure mQ on L such that ma(a) ^ ma(b). This follows 
from the fact that if the subsets a and b of S are not equal then with-
out loss of generality there exists some zo G a \ b. We can then define a 
two-valued measure m l 0 on L by putting rhXjj(c) := 1 or 0 depending on 
whether x0 G c or x0 & c, respectively (c G L). Of course, the homomor-
phism mXo from L to {0,1} corresponding to the homomorphism mXo from 
L to {0,1} belongs to the set { m 0 | a G S}. Hence (ma)aes is separat-
ing. 

So we may apply Theorem 2.12 since all the assumptions are satisfied: 
IN A) AT o is strongly surjective and ( m a ) a £ s is full and separating. Hence 
by Theorem 2.12 the doubly indexed family (m a 0/1,4 ) ^ e o , aes of homomor-
phisms from B(R) to {0,1} (which are also (finitely additive) two-valued 
probability measures on B(R)) is compatible and the logic induced by this 
family is isomorphic to L. 

Hence we see that every Boolean algebra can be interpreted as the logic 
induced by a family of probability measures on B(R) (which is the case of 
classical mechanics). 

We also see that the Stone representation theorem plays the same role 
in classical mechanics as Gleason's theorem does in quantum mechanics: 
Both theorems allow us to determine concretely all pure states (pure prob-
ability measures) on the logic L of the system. Note only that in clas-
sical mechanics this applies also to finitely additive probability measures 
whereas in quantum mechanics only cr-additive probability measures are 
involved. 

3. An application to orthomodular posets (quantum logics) 
We shall apply Theorem 2.7 to the special case where A\ is the alge-

bra B(R) of all Borel sets of the real line and Ai is the interval [0,1]. In 
this case (B(R), ©, ' , 0) is an orthomodular algebra (shortly, an OMA). Also 
([0, l], © / , 0) can be considered as a partial algebra with the operations be-
ing defined as it was done at the end of Section 1. Let us recall that by an 
orthoalgebra we understand an algebraic system (A,©, ' ,0) of type (2,1,0) 
with a partial binary operation © and a total unary operation ' satisfying 
the following axioms (cf. e. g. [5]): 

(OA1) If one side of the commutativity law is defined then so is the 
other and both are equal (commutativity law). 
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(0A2) If one side of the associativity law is defined then so is the other 
and both are equal (associativity law). 

(0A3) For each a e A the element a' is the unique element x of A such 
that both a©a: is defined and a ©a: = 0' (orthocomplementation 
law). 

(OA4) If a e L and a © a is defined then a = 0 (consistency law). 

We shall assume that A is non-degenerate, i. e. that 0' ^ 0. It is easy 
to see that any orthoalgebra becomes an orthoposet by defining a < b iff 
there exists an element c of L with a © c = b (a,b G A). The elements a,b 
of A are said to be orthogonal to each other, in signs a J. b, if a © 6 is 
defined. 

From (OA1) to (OA4) it follows that an orthoalgebra (A, ©, ' , 0) is ortho-
modular. This means that the following law holds: 

(OA5) If a, b G A and a © b' is defined then a © (a © 6')' is defined and 
a © (a © b'Y = 6 (orthomodularity law). 

For a theory of orthoalgebras see e. g. [5], for a theory of orthomodular 
algebras see e. g. [2]. For orthoalgebras we also have 

«1 ® • • • © fln = fli V . . . V a„ , 

where V denotes the supremum with respect to the partial order < on A 
which was defined above. If this property holds also for an infinite sequence 
of mutually orthogonal elements then we shall say that (A, ©,',()) is a o-
orthomodular algebra (shortly, a ct-OMA). This property is necessary if we 
want to define a probability measure on an OMA, since probability measures 
are assumed to be c-additive. 

In order to apply Theorem 2.7 to probability measures, we have to 
strengthen the assumptions of this theorem. Namely, we will say that a 
sequence [(>li,ai)],[(^2»a2)]» [(A3,03)],... of elements of L is a-compatible 
if for every pair (i,j) of distinct positive integers ([(Aj,aj)], [( / l j ,aj)]) G 
d o m © ^ . Similarly, we will call a sequence [(Ai, ai)], [(A2, «2)]» 
[(A3,03)],. . . of elements of L strongly cr-compatible if there exist B G O 
and ¿>1,62» •• • G M such that both [(A,, a;)] = [(5,6,)] for all posi-
tive integers i and (6,, 6j) G dom © ^ for ail pairs (i,j) of distinct pos-
itive integers. In an analogous way as before, it can be proved that ev-
ery strongly cr-compatible sequence of elements of L is cr-compatible. The 
family (PA,a)Aeo,aes of homomorphisms from A\ to Ai is said to be a -
compatible if every ir-compatible sequence of elements of L is even strongly 
cr-compatible. 

We can now reformulate Theorem 2.7 as follows: 
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T h e o r e m 3 .1. Let(p/i,0).4eo,aes be a doubly indexed a-compatible fam-
ily of probability measures on the a-orthomodular algebra ( B ( R ) . © . ' , 0 ) of 
all Borel sets of the real line. Then in addition to (i) - (iv) of Theorem 2.7 
(v) and (vi) hold: 

(v) (Z,®,',0) is a a-orthomodular subalgebra of[0, l]s. 
(vi) For every A € O ¡ia is a a-homomorphism from B ( R ) to L and 

for every a € S m„ is a probability measure on L. 

P r o o f . In order to prove (v) we only have to show tha t L is ortho-
modular . To this aim we may use Theorem 3 of [2] (based on [8]) which 
characterizes or thomodular i ty within orthoalgebras L C [0. l ] s of so-called 
numerical functions. This theorem states tha t ( £ , © , ' , 0) is an OMA iff the 
following conditions hold: 

I o 0 € L 
2° If f e L then / ' := 1 - / € L. 
3° If / i , / 2 , / 3 e L and / , + /,• < 1 for i ¿ j then fx + f2 + f3 e L. 

In our case, the conditions I o and 2° clearly hold. In order to show that 
3° holds, assume tha t /¿ = [(,4,-, £ , ) ] for i = 1 ,2 ,3 . Then the assumption 
fi + f j < 1 for i ± j means tha t [(/!,, £,•)] © [(Aj, Ej)} € L for i ¿ j , i. o., 
the sequence f\, f i , /a , 0 , 0 , 0 , . . . is cr-compatible. Hence, by the assumptions 
of the theorem, this sequence is even strongly <7-compatible, i. e., there ex-
ist B e O and Fi,F2,F3 € B ( R ) such tha t F, n Fj = 0 for i ¿ j and 
[ ( / ! , , £ ; ) ] = [ ( B , F >)} f o r ¿ = 1 ,2 ,3 . (For i > 3 one may take F, = 0.) But. 
then we obtain: 

f l + f 2 + h = [( / l l , £ l ) ] © [(^2, £ 2 ) ] © [ ( / l 3 , E:3)] 

= [{B,F1))®[{B,F2)]®[(B,F3)] 

= [(B,F1UF2UF3)}< 1 

which shows tha t condition 3° holds. This means tha t L is or thomodular . 
It is now obvious tha t L is even a <r-OMA and tha t (vi) holds. • 

D e f i n i t i o n 3 .2. The a-or thomodular algebra ( L , ©, ' , 0) (or the (r-ortho-
complemented poset ( A , < / , 0 ) ) described in Theorem 3.1 will be called the 
logic induced by the family (pA,a)Aeo,aes of probability measures on B ( R ) 
and will be denoted by L ( 0 , S ) . 

If we interpret O and S as the sets of all observables and all s ta tes of 
a physical system, respectively, then L may be interpreted as the logic of 
this system. This agrees with the interpretat ions of the logic of quantum 
mechanics suggested by G. W. Mackey in [7]. 
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In our case L is a set of mappings from S to [0,1] and hence L may also 
be called a numerical logic. 

We may interpret L also in another way: 
Put E := O x B(R). The elements of E can be called experimental 

propositions. We define an equivalence relation ~ o n E a s follows: 

(A, E) ~ (B, F) iff f o r all a G S pA,a{E) = pB,a(ñ 

((i4, E), (B, F) € E). Put L0 := E / ~ and for every (A, E) € E let \(A, E)\ 
denote the equivalence class of (A,E) with respect to Then the corre-
spondence 

|(ii, £)!«-> {(A,E)} 

is a bijection between LQ and L. It induces the structure of an OMA on Lo 
and by this procedure (Lo, < / ,0) becomes an OMA (or a cr-orthoposet). 

Since (via this correspondence) L is isomorphic to Lo, we may now 
interpret the elements of L as equivalence classes of experimental propo-
sitions which gives L an immediate experimental (i. e. physical) mean-
ing. 

We see that in our construction the logic of a physical system is deter-
mined by the results of all measurements of all observables in all states. 
(We obtain then the doubly indexed family (pJ4,a)/i€0,a6S of probability 
measures on B(R).) This means that the logic of a physical system can 
be experimentically determined. In quantum mechanics, the mathematical 
model for Lo is the OML of all orthogonal projections from a complex sepa-
rable Hilbert space H onto closed linear subspaces of H which is isomorphic 
to the OML L(H) of all closed linear subspaces of H. 

We see from the above considerations that the most important structure 
in axiomatic foundations of quantum mechanics is the logic Lo which is a 
a-orthocomplemented poset. The structure of Lo can be equivalently defined 
as an orthomodular partial algebra. There are several possibilities to give 
Lo a concrete interpretation: 

Lo may be assumed to be a Boolean algebra (classical mechanics) or the 
OML L(H) of all closed linear subspaces of a complex separable Hilbert 
space H (quantum mechanics). So the structure of LQ can be generally in-
terpreted as a generalization of a Boolean algebra. There arises the question 
how to define LQ in terms of a possibly minimal number of fundamental 
operations which have a more evident physical interpretation than the ones 
used usually. The lattice operations V and A are not suitable since only 
the operation A has a physical interpretation (the intersection of subspaces) 
whereas the interpretation of the operation V requires the use of some topo-
logical notions. (For M,N € L(H) we have M V N = M + N where M + N 
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denotes the topological closure of the linear subspace M + N of H.) Hence 
we may look for more suitable operations. It turns out that the symmetric 
difference A in a Boolean algebra B is a good starting point for this task 
since by means of this operation B can be made into a pseudometric space 
by defining 

d(a,b) := p(aAb) 

for all a,b £ B where p is a (subadditive) finitely additive measure on B. 
So the next section will be devoted to the axiomatization of OMLs and -
more general - of bounded lattices with an involutory antiautomorphism by 
means of the operations A (instead of V), A, 0 and 1 where the symmetric 
difference A - which has a well-defined meaning in Boolean algebras - has 
first to be generalized in a suitable way. It can be proved (cf. [3]) that for this 
generalized symmetric difference A on an arbitrary OML L the following 
are equivalent: 

(i) A is associative. 
(ii) A is distr ibutive wi th respect to A . 

(iii) L is a Boolean algebra. 

This shows that in an arbitrary OML L, if we replace A by + and A 
by •, we obtain a ring only in the case where i is a Boolean algebra. In 
rings, the operation + is usually assumed to be commutative and associa-
tive whereas the operation • may also be non-associative (such structures 
are usually called non-associative rings). In our case the operation • (cor-
responding to the intersection A) is commutative and associative whereas 
the operation + (corresponding to the symmetric difference A ) is com-
mutative but in general not associative. So it seems to be useful to de-
velop the axiomatic foundations for the theory of such generalizations of 
rings. 

4. Boolean quasirings 
In order to illustrate the position of Boolean quasirings within a wider 

class of algebras we start by giving the following definition: 

DEFINITION 4.1. An algebra (R, + , •) of type (2,2) is called a generalized 
Boolean quasiring (GBQR) iff there exist 0,1 € R such that for all x, y, z £ R 
the following laws hold: 

(1) x + y = y + x 
(2) i + 0 = x 
(3) (xy)z = x{yz) 
(4 ) xy = yx 
(5 ) xx = x 
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( 6 ) xO = 0 
( 7 ) x l = x 
(8) 1 + (1 + x y ) ( l + y) = y. 

D E F I N I T I O N 4 . 2 . F o r a G B Q R R = (R, + , •) w e def ine 

x V y := l + ( l + x ) ( l + y) 

x A y := xy 

x' := 1 + x 

L(R) := (R, V, A, ' ) . 

LEMMA 4 . 3 . L ( I ? ) is a bounded lattice with an involutory antiautomor-
phism. 

P r o o f . (R, A) is a semilattice with least element 0 and greatest element 
1. If in equation ( 8 ) we put y = x we obtain 1 + (1 + x) = x for all x € R, 
hence x" = x. 

x < y, i. e. xy = x, implies x' > y' for x,y 6 R, because again by (8 ) 
1 + x'y' = 1 + (xy)'y' = y, wherefrom we conclude x'y' = y'. Therefore 
11' < x'. 

Because of the properties x < y o x' > y' and x" = x the element 
(x' A y')' = 1 + (1 + x ) ( l + y) is the least upper bound of x and y, therefore 
L ( R ) is a lattice. • 

DEFINITION 4 . 4 . Let L = ( £ , V , A , ' ) be a bounded lattice with an in-
volutory antiautomorphism '. (The least and greatest element of L will be 
denoted by 0 and 1, respectively.) We define 

x + y : = ( x V y) A (x A y)' 

xy : = x A y 

R(L) :=(£,+,-). 

LEMMA 4 . 5 . R ( L ) is a GBQR in which the following equation holds: 

( 9 ) (1 + (1 + x ) ( l + j / ) ) ( l + xy) = x + y 

for all x,y G L. 

P r o o f . It is obvious that the defining laws ( 1 ) - ( 7 ) of G B Q R s are 
satisfied. 1 + x = 1 A x ' = x ' . Condition ( 8 ) we obtain in the following 
way: 

1 + (1 + x y ) ( l + t/) = [{xy)'y']' = (x A y) V y = y 

and ( 9 ) we get by 

( ! + ( ! + x ) ( l + y ) ) ( 1 + xy) = [x'y'Wxy)' = (x V y) A ( x A y)' = x + y. • 
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Examples of GBQRs 
1) #[0,1] := ([0, l ] , (x,y) h-» |x-r / | ,min) , where [0,1] is the real unit inter-

val and min means the binary operation of forming the minimum. Obviously, 
equations (1) - (7) hold. Equation (8) is satisfied because 

1 - min(l - min(x, y), 1 - y) = max(l - (1 - min(x, y)), 1 - (1 - y)) 
- max(min(x, y), y) - y 

for all x, y G [0,1]. (9) does not hold in i?[o,i] because equation (9) with y = x 
implies xx' = x -f x, whereas in iZ[o,i] we have x(x + 1) = min(x, 1 - x) and 
x + x = |x — x| = 0. 

2) As in Section 1 let S denote a set (of states) and let jj be the 
algebra of all functions from S to ifyo.i] endowed with the operations + and 
• defined coordinatewise (direct product in the sense of universal algebra). 
Then every substructure of ^ is a GBQR. (In the case of these substruc-
tures the neutral elements with regard to + and • have not to be the same 
as in fl® i r ) 

Homomorphisms of the algebra (B(R), A, f l ) of Borel sets to i?^, ^ can 
be interpreted in the following way: Considering Borel sets as events, for 
two events E,F £ B(R) and a homomorphism h the equation h(E A F) = 
\h(E) — h(F)| can be thought of as a kind of measure for the distance between 
E and F. Because of /i(0) < h{E) < h(R) 

h(E) = h(E A 0) = h(E) - h($) and h(E') = h{E A R) = /i(R) - h(E) 

(where the binary operation - denotes the difference of functions from S 
to [0,1]). Therefore h(E) and h(E') tell "how far E and E' are away" from 
the impossible and certain event, respectively. (Of course, the respective 
distances have to be related to the valuations of /i(0) and /i(R).) 

3) According to Lemma 4.5 every algebra R(X) associated with a bound-
ed lattice L having an involutory antiautomorphism gives rise to a GBQR. 
The underlying lattice L can be interpreted as a certain kind of quan-
tum logic in which the laws x V x' = 1 and x A x' = 0 do not hold in 
general. If the elements of L are interpreted as questions and x', x V y 
and x A y stand for the negation of x, for "x or ¡/" and for "a: and ?/", 
respectively, this means that the answer to "x or not x" is not always 
yes. 

On the other hand, because of ' not necessarily being an orthocomple-
mentation, L can be regarded as the set-theoretic union of Boolean sublat-
tices of L (with respect to the operations V, A and '; the various subalgebras 
may have different zeros and ones. (Cf. Fig. 4.1.)) This shows that R(Z) 
can be the union of homomorphic images of a GBQR that corresponds to 
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a Boolean algebra. This has been required at the beginning of Section 2 
(L= (J 

AGO 

1 

Fig. 4.1 

LEMMA 4.6. For GBQRs R which satisfy equation (9) and bounded lat-

tices L with an involutory antiautomorphism we have R (L ( i 2 ) ) = R and 

L ( R (L)) = L. 

P r o o f . Let ©, © be the operations of R (L ( i ? ) ) . 

i ® y = ( i V y ) A ( i A j ) ' = ( l + ( l + x ) ( l + y ) ) ( l + xy) = x + y by (9) 

xQy = xAy = xy. 

On the other hand, let V , /\, * be the operations of L ( R ( Z ) ) . 

x V V = 1 + (1 + x)(l + y) = (x' A i/')' = x V y 

x f\y = xy = x Ay 

x* - 1 + x = (1 V x) A (1 A x)' = x'. a 

DEFINITION 4.7. A GBQR R is said to have characteristic 2, if x + x = 0 
for all x 6 R. 

DEFINITION 4.8. A GBQR of characteristic 2 satisfying equation (9) is 
called a Boolean quasiring (BQR). 

THEOREM 4.9. There is a one-to-one correspondence between Boolean 

quasirings and ortholattices. 
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P r o o f . For a GBQR R of characteristic 2 from equation (9) and y = x 
we infer 

xx ' = (1 + (1 + x) ) ( l + x) = (1 + (1 + x) ( l + x) ) ( l + xx) = x + x = 0. 

Again by equation (9), if we put y = x' we obtain (1 + x 'x) ( l + xx') = 
x + x', wherefrom we conclude x + x' = 1. Therefore L(Ä) has the property 
x A x' = xx' - 0 and 

i V I ' = 1 + ( 1 | X ) ( 1 + I ' ) = 1 + I ' I = H 0 = 1, 

which implies that L(i?) is an ortholattice. 
Conversely, if L is an ortholattice, R ( L ) is a GBQR which satisfies (9) 

by Lemma 4.5. Because of x + x = (x V x) A (x A x)' = x A x' = 0 R ( £ ) is 
of characteristic 2. • 

R e m a r k . The identities x + x' = 1 and xx' = 0 suggest to consider 
BQRs as algebras (R, + , - , ' , 0 ,1 ) of type (2 ,2 ,1 ,0 ,0 ) . 

THEOREM 4.10. There is a one-to-one correspondence between Boolean 
quasirings which satisfy the equation 

(10) (1 + xy) + (x + xy) = 1 + x 

and orthomodular lattices. 

P r o o f . Equation (9) with y = xy implies x ( l + xy) = x + xy. Therefore, 
if L is an OML, we deduce in R ( I ) using that (x A y) V (x A (x A y)') = x 
in OMLs: 

(1 + xy) + (x + xy) = (1 + xy) + x ( l + xy) = (1 + xj/)( l + x( l + xy)) 

= [(x A y) V (x A (x A j/)')]' = x' = 1 + x. 

Conversely, if R is a BQR satisfying equation (10) and x < y in L(Ä), 
then 

x V (y A x') = l + ( l + x ) ( l + j/(l + x ) ) = 1 + ((1 + x) + y(l + x)) 

= 1 + ((1 + xy) + y( l + xy)) = 1 + ((1 + xy) + (y + xy)) 

= 1 + (1 + y) = y. 

Therefore in L(Ä) we obtain: x < y implies x V (y A x ' ) = y. • 

THEOREM 4.11. A Boolean quasiring is a Boolean ring i f f it satisfies 

(11) x ( l + y) = x + xy. 

P r o o f . Since equation (11) is valid for every Boolean ring because of the 
distributive law, we have only to show that a BQRR which fulfils equation 
(11) is a Boolean ring. 
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As usual we call two elements x , y o f R orthogonal to each other - in sym-
bols x 1 y - if x < y', i. e. if xy' = x. Because of xy = xy'y = xyy' = xO = 0 
in case of x _L y the relation x L y implies xy = 0, but the converse is 
not true for every BQR. However, if equation (11) holds, xy = 0 yields 
xy' = x, hence x L y. From this it follows that L ( R ) is pseudocom-
plemented with regard to '. (For the definition of a pseudocomplemented 
lattice see [4].) It is well-known (cf. [4]) that for a pseudocomplemented 
lattice L the set S := {x1 \ x G L} is a Boolean algebra with respect to 
the operations A (from L) and x\j y := (x' A y')' and that for such a 
lattice x G S iff x" = x. In case of L = L ( R ) we have x\/y = x V y 
and S = L(i2). Therefore we obtain that R = R(L(i?)) is a Boolean 
ring. • 

R e m a r k . In our proof we have made use of the theory of pseudocom-
plemented meet-semilattices. One could also proof Theorem 4.11 by taking 
into account that for a BQR equation (11) is equivalent to a; Ay' = i A ( i A y ) ' 
within the corresponding OML. It is well-known (cf. e. g. [6]) that the lat-
ter equation is valid if and only if x and y commute. If this is the case for 
all elements x and y of the OML this means that the OML is a Boolean 
algebra. 

As far as applications to quantum mechanics are concerned, if we take 
into account BQRs or GBQRs instead of lattices when dealing with ob-
servables, the mapping fia occurring in the formula = m a o (see 
Section 1) can be interpreted as a homomorphism within the variety of 
BQRs and GBQRs, respectively, whereas the mapping mQ can only be con-
sidered as a (full) homomorphism with respect to operations of type 1 and 
also, if they do occur, of type 0. If we consider only the 2-place operation + , 
ma is only a homomorphism with respect to orthogonal elements, the very 
assumption we have made in Section 1. 
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