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1. Introduction

The well-known spectral theorem for self-adjoint operators on a Hilbert
space can be formulated as follows:

Let H be a complex separable Hilbert space with dim H > 2 and let
L(H) denote the orthomodular lattice (shortly, OML) of all orthogonal
projections from H onto closed linear subspaces of H. Let O denote the
set of all self-adjoint linear operators on H and {m,|a € S} the set of
all pure probability measures on L(H). Then for every A € O there ex-
ists a unique L(H)-valued measure (spectral measure) u4 on B(R) such
that for every a € S the composed mapping m, o 4 is a probability
measure on B(R). (Here and in the following B(R) denotes the Boolean
o-algebra of all Borel sets of the real line.) Hence, the spectral theorem de-
termines a doubly indexed family (p4,o)a€0, aes of probability measures on
B(R) such that each p4, can be decomposed in the form pg o = my o4
where p4 is an L(H)-valued measure on B(R) and m, is a pure proba-
bility measure on L(H). The family (pa,a)4e0,aes can be interpreted as
the spectral family of probability measures on B(R) corresponding to O
and S.

Now, by the inverse spectral theorem we may understand the following
problem:

Given a doubly indexed family (pa,o)ac0,aes Of probability measures
on B(R), what conditions are to be put on O and S in order that every
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pa.o could be decomposed into an L-valued measure p4 on B(R) and a
pure probability measure m, on L for a suitable intermediate system L.
This intermediate system L (interpreted as the logic induced by the family
(PA.a)AcO, aes) should be uniquely determined by this family in the way
that L is a subalgebra of [0, 1]5.

This problem could be of importance in axiomatic quantum mechanics,
where the sets O and S are interpreted as the set of all observables and
the set of all states of a fixed physical system F, respectively, and where
the probability pa o(E), E € B(R), is interpreted as the probability that
a measurement of A will lead to a value in F provided that F' is in the
state a.

The inverse problem formulated above can be interpreted as the problem
of determining the logic L of F on basis of the knowledge of all probability
measures P4, induced by measurements performed within F (i. e. on the
basis of knowing all results of all measurements which may be performed
within F).

We shall first formulate our problem in a very general algebraic setting
and then apply it to some concrete algebraic systems.

First observe that not all mappings occurring within the formula p4 o =
Mg 0 L4 are of the same sort:

Pa,o and m, arc probability measures whereas 4 is an L-valued meas-
ure. In order to be able to interprete all mappings occurring within the
formula p4,, = mq4 0 4 as homomorphisms, it will be convenient to con-
sider the sets B(R), [0, 1] and L as partial algebras (4, ®,’,0) of type (2.1, 0)
with a partial binary operation @ of orthogonal addition and a total unary
operation ’ of orthocomplementation defined as follows:

(B(R),®,,0): E®F:= EUF whenever ENF =, E':=R\E
([0,1],®,/,0): a®b:=a+bwhenevera+b< 1, d:=1-a
(L,®,',0): a®b:=aVbwhenever a L b(i. e. a < b).

Then all mappings occurring within the formula ps o = mqy o 4 can be
interpreted as (ortho-}homomorphisms within this type of partial algebras.

The inverse problem formulated above can now be described as the prob-
lem of decomposing the doubly indexed family (ps.o)ac0,aes of homo-
morphisms from B(R) to [0, 1] into two independent families (114)4co and
(Mqa)aes of homomorphisms from B(R) to L and from L to (0, 1], respec-
tively, such that pg o = my o g holds for all A € O and all « € S. The
next section will present a possible solution to this problem.

Section 3 will be devoted to an application of the previous results to
quantum logics (orthomodular posets). In Section 4 we will generalize and
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interpret our concepts from a different point of view: We establish a one-
to-one correspondence between ring-like structures and lattices which gen-
eralizes the well-known correspondence between Boolean rings and Boolean
algebras. In particular, we will characterize orthomodular lattices this way.

2. The generalized inverse spectral theorem for homomor-
phisms in algebraic systems

Let A; and A, be two partial algebras of type (2, 1,0). For notions con-
cerning the theory of partial algebras we refer the reader to the mono-
graph [1]. For simplicity and also with regard to later generalizations, we
shall consider in detail the case where the type of the considered partial
algebras is (2), i. e. where there is only one partial binary operation, de-
noted by @. Hence we have 4, = (A;,®) and A2 = (A4,,®). Without
loss of generality we may assume that this operation is commutative. By
dom @4, we denote the domain of the partial operation @ on A;. (We do
not exclude the case that the operation @ on A; is total, i. e. that dom
Da, = A%)

In the following let (p4,o)a€0,aes be a doubly indexed family of homo-
morphisms from A; to A,. We ask, under which conditions there exists a
partial algebra L (of the same type as A; and A;), a family (14)aco of
homomorphisms from A; to L and a family (m,)ees of homomorphisms
from L to A; such that pg o = myopy4 forall A € O and a € S. We shall

assume that the family (pra)aco is surjective, i. e. that L = |J pa(A41).
A€O

We now define the intermediate system L as follows:

DEFINITION 2.1. Let L denote the set {[(4,a)]| A€ O, a € A;} where
for every A € O and a € A; [(A,a)] denotes the mapping from S to A,
defined by

[(A,a))(a) := pa.a(a)

for all @ € S.
Now we have the following result:

LEMMA 2.2. For all A € O and all (a,b) € dom @4, (i) and (ii) hold:

(i) ([(4,a)], [(A,b)]) € dom @Ag'

(ii) [(A’a)] @ [(Avb)] = [(A,(l ©® b)]

Proof. This follows from the fact that for all A € O and a € S ps 4
is a homomorphism from A; to A; and from the definition of the mapping
[(A,a)] (A€ O,ac€ A). o

Since A$ is a cartesian power of A, it can be considered as a par-
tial algebra of the same type as A; with operations being defined coor-
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dinatewise. Obviously, the set L is a subset of the set AS, but it may
happen that the partial algebra L is not a subalgebra of the partial al-
gebra AS since f,g € L and (f,g) € dom @ 4s together need not imply
f®g € L. In order to ensure that the set L can be regarded as a subalgebra
of the partial algebra AS we have to put some conditions on the homo-
morphisms p4 o from A; to A;. To this aim we introduce the following
definitions:

DEFINITION 2.3. Two elements [(A,a)] and [(B,b)] of L are said to be
compatible with each other if ([(4, )}, [(B,b)]) € dom @ 4s.

DEFINITION 2.4. Two elements [(A,a)] and [(B,b)] of L are said to

be strongly compatible with each other if there exist C € O and (¢,d) €
dom @ 4, such that ([(4,a)],[(B,d)]) = ([(C.¢)],[(C,d)}).

LeMMA 2.5. Every pair of strongly compatible elements of L is compat-
tble.

Proof. Let [(A,a)] and [( B, b)] be two elements of L which are strongly
compatible with each other. Then there exist C' € O and (c¢,d) € dom G4,
such that ([(4,a)],{(B,d)]) = ([(C,¢)],[(C,d)]). Because of Lemma 2.2 we
have ([(C,¢)],{(C,d)]) € dom @ 4s and hence ([(A,a)],[(B,b)]) € dom D as
follows, i. e. the elements [(A,a)] and [(B,b)] are compatible with each
other. a

DEFINITION 2.6. The family (pa,a)4€0, aes of homomorphisms from A,
to A, is said to be compatible if every pair of mutually compatible elements
of L is even strongly compatible.

We are now able to formulate the main theorem of this section:

THEOREM 2.7. Assume that the family (paa)aco,aes of homomor-
phisms from A, to A; is compatible. Then (i) - (iv) hold:

(i) L is a subalgebra of AS.

(ii) For every A € O the mapping p4 from Ay to L defined by pa(a) :=
[(A,a)] for all a € Ay is a homomorphism from A, to L.

(iit) For every o € S the mapping m, from L to A; defined by
ma([(A,a)]) := pa,a(a) for all A € O and a € Ay is a well-defined
homomorphism from L to A,.

(iv) Forall A€ O andalla € S we have pgo = My 0 ia.

Proof. (i) Let A, B € O and a,b € A, and assume that ([(4, a)], [( B, b)])
€ dom @4s. Then the two elements [(A,a)] and [(B,b)] of L are compat-
ible with each other and hence by the assumption of the theorem they
are even strongly compatible with each other. Hence there exist C € O
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and (c,d) € dom @4, such that ([(4,a)l, (B,8)]) = ([(C, <)}, [(C, d)]). Be-
cause of Lemma 2.2 we have [(C,¢)] ® [(C,d)] = [(C,c ® d)]. The lat-
ter element obviously belongs to the set L. This shows [(A4,a)] & [(B,b)]
€L

(ii) Because of Lemma 2.2 we have (pa(a),na(b)) € dom @,s and
pala®b) = pala)® pa(b) for all A€ O and all (a,b) € dom Dy, .

(iii) Let a be a fixed element of S. First we have to show that m, is
a well-defined mapping from L to A;. For this purpose let A,B € O and
a,be€ A, and assume [(A4,a)] = [(B,b)]. Then

ma([(4,a)]) = pa.o(a) = [(4,a)l(a) = [(B,b))(a) = pB,a(b) = ma(((B,b)]).

Hence m, is well-defined. Since p4, is a homomorphism from A; to A,
for every A € O, we have (m4([(4,a)]),ms([(4,b)])) € dom &4, and
mq([(A,a @ b)]) = mq([(A4,a)]) ® ma([(4,b)]) for all A € O and (a,b) €
dom @4, . Application of Lemma 2.2 and of the assumption of the theorem
completes the proof of (iii).

(iv) Forall A€ O, a € S and a € A; we have

(Mo o pa)(a) = ma(na(a)) = ma(((A,0)]) = pa,a(a). o
DEFINITION 2.8. The partial algebra L whose base set was defined in

Definition 2.1 will be called the logic induced by the family (pa,o)aco.ces
of homomorphisms from A, to A,.

We can state and prove also an inverted version of Theorem 2.7. But
first we introduce two additional definitions.

DEFINITION 2.9. A family (z4)aeo of homomorphisms from A; to L is
said to be strongly surjective if it is surjective and for every (a,b) € dom &,
there exist A € O and (c,d) € dom @ 4, such that pa(c) = a and p4(d) = b.

DEFINITION 2.10. A family (m4)aes of homomorphisms from L to A,
is said to be separating if a,b € L and a # b together imply the existence of
an a € S such that my(a) # mq(d) and it is said to be fullif a,b € L and
(ma(a), ma(b)) € dom @4, for all a € S together imply (a,d) € dom @ .

Now we have the following result:

LEMMA 2.11. Let (mqa)aes be a separating and full family of homomor-
phisms from L to A;. Put L := {a@|a € L} where for every a € L a denotes
the mapping from S to A, defined by

a(a) 1= my(a)

for alla € S. Then L is a subalgebra of AS, L = L and the mapping f from
L to L defined by

f(a):=a
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for all a € L is an isomorphism from L to L.

Proof. From the assumptions there follow (i) - (iii):

(i) (a,b) € dom D as anda®b=adb for all (a,b) € dom & .
(it) f is injective.
(iii) (a,b) € dom G, for every a,b € L with (a,b) € dom D as -

We are now able to prove a theorem inverse to Theorem 2.7:

THEOREM 2.12. Let (a)aco be a strongly surjective family of homo-
morphisms from Ay to L and (mqy)aes a separating and full family of ho-
momorphisms from L to A;. Then the doubly indezed family (pa,o)ac0, acs
of homomorphisms from A; to A, defined by pa,o := moopa forallAe O
and o € S satisfies the assumptions of Theorem 2.7 (1. e., this family is
compatible) and the logic induced by this family (which is denotea’ here by
L) is isomorphic to L. Moreover, we have L~ L = [ C AS.

Proof. We show that the family (pa,o)aco,aes is compatible. Let
[(A,a)] and [(B,b)] be two mutually compatible elements of I..
Then ([(A,a)},[(B,b)])) € dom @,s. This means that for every a €
S (ma(pea(a)), mq(pp(d))) € dom G 4,. Since (mq)aes is full this implies
that (ua(a),up(b)) € dom & . Since (14)aco is strongly surjective, there
exist C € O and (c¢,d) € dom @4, such that uc(c) = pala) and pc(d) =
1te(b). Hence ([(A, a)],[(B,b)]) = ([(C,¢)],[(C,d)]) which shows that every
pair of mutually compatible elements of L is also strongly compatible. Hence
the family (pa.a) €0, aes is compatible and satisfies the assumption of The-
orem 2.7. Since (p4)aeo is surjective, the sets L and L coincide and hence
we have L =~ [ = L C A$. a

We now return to the example of the spectral theorem in a complex
separable Hilbert space H mentioned in the introduction to show that the
family (24)aco of all L(H )-valued measures or spectral measures on B(R)
and the family (m,)qes of all pure probability measures on L( H) satisfy the
assumptions of Theorem 2.12. First observe that the probability measures
Me, @ € S, can also be indexed by one-dimensional subspaces or by unit
vectors determining these subspaces. It is well-known by Gleason’s Theorem
that in case of dim H > 3 every pure probability measure on L(H) can be
represented in the form m, with u € S!, where m,(P) := (Pu,u) for all
P € L(H). (Here and in the following S! denotes the set of all unit vectors
of H.) So we have {m,|a € S} = {m,|u € S!'}. Clearly, we can inter-
pret these probability measures as homomorphisms from (L(H),®, , {0})
to ([0, 1],®,’,0).
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The family of all such homomorphisms is separating and full. In fact, if
P,Q € L(H) and P # Q then there exists a unit vector u € S! such that
(Pu,u) # (Qu,u). (Projections are uniquely determined by the correspond-
ing quadratic forms.) If P,Q € L(H) and ((Pu,u),(Qu,u)) € dom D,y
for all w € S! then (Pu,u) < 1 — (Qu,u) = (Q*u,u) for all v € S!. This
implies P < Q. (The partial order of projections coincides with that of the
corresponding quadratic forms.) Hence P 1 @ and (P,Q) € dom ®p(x).
Therefore the family (my),est is also full.

The family (14 )aeo of all homomorphisms from B(R) to L( H ) is strong-
ly surjective as can be seen by the following consideration: Let (P, P;) €
dom ®(p). Then P, L P;. Hence we can define an L(H )-valued measure
s on B(R) in the following way:

u(E) = Z P

i€FEN{1,2,3}

for all ¥ € B(R) where P3 := I — P, — P, and where I denotes the identital
projection on H. This L(H )-valued measure belongs to {ua|A € O} and
consequently there exists an A € O such that g = p,. Since pa({1}) = P
and p4({2}) = P>, (1ta)aco is strongly surjective. (That this family is also
surjective can be seen by taking P, = O where O denotes the projection
from H onto the subspace {0} of H).

Hence the families (14)aco and (my)aes satisfy the assumptions of
Theorem 2.12 and consequently the family (mq 0 1t4)4€0, aes is compati-
ble. So Theorem 2.7 may be applied. In this way we obtain the inverse of
the spectral theorem as suggested in the introduction.

We can give another example of application of Theorem 2.12 based on
the theory of Boolean algebras. Let - as before - (B(R),®,',0) denote the
orthomodular algebra of all Borel sets of the real line and let L denote an
arbitrary Boolean algebra (considered also as an orthoalgebra). Further, let
(1ta)aeo denote the family of all homomorphisms from B(R) to L. It is
clear that this family is strongly surjective (by an analogous argument as in
the Hilbert space case).

Let (mqy)aes be the family of all homomorphisms from L to the two-
clement Boolean algebra 2! = {0,1} (they can also be interpreted as two-
valued measures on L). The family (m,)aes is separating and full. This can
he seen as follows: By the Stone representation theorem L is isomorphic to
a Boolean algebra of subsets of S (with set-theoretical operations). So we
have

L=~1Lc{0,1}5

Let us denote the isomorphism from L to L by a — a. Then, forall z € L
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= {a € S|my(z) = 1}. If a,b € L and (ma(a), ma(b)) € dom B yo.1y
for all @ € S then (mq4(a), ma(d)) € {(0,0),(0,1),(1,0)} for all a € S and
hence (@, b) € dom @1 from which (a,b) € dom @, follows. Hence (mq)qes
is full. Tt is also separating because if @ # b then also @ # b and there ex-
ists a two-valued measure m, on L such that m,(@) # my(b). This follows
from the fact that if the subsets @ and b of S are not equal then with-
out loss of generality there exists some zo € @\ b. We can then define a
two-valued measure m,, on L by putting m,(¢) := 1 or 0 depending on
whether zo € ¢ or zo & ¢, respectively (¢ € f,). Of course, the homomor-
phism m, from L to {0,1} corresponding to the homomorphism m,, from
L to {0,1} belongs to the set {m,|a € S}. Hence (m,)ses is separat-
ing.

So we may apply Theorem 2.12 since all the assumptions are satisfied:
(t4)aeo is strongly surjective and (m,)aes is full and separating. Hence
by Theorem 2.12 the doubly indexed family (myop4)a€0, xes of homomor-
phisms from B(R) to {0,1} (which are also (finitely additive) two-valued
probability measures on B(R)) is compatible and the logic induced by this
family is isomorphic to L.

Hence we see that every Boolean algebra can be interpreted as the logic
induced by a family of probability measures on B(R) (which is the case of
classical mechanics).

We also see that the Stone representation theorem plays the same role
in classical mechanics as Gleason’s theorem does in quantum mechanics:
Both theorems allow us to determine concretely all pure states (pure prob-
ability measures) on the logic L of the system. Note only that in clas-
sical mechanics this applies also to finitely additive probability measures
whereas in quantum mechanics only o-additive probability measures are
involved.

3. An application to orthomodular posets (quantum logics)

We shall apply Theorem 2.7 to the special case where A; is the alge-
bra B(R) of all Borel sets of the real line and A; is the interval [0,1]. In
this case (B(R),®,’,0) is an orthomodular algebra (shortly, an OMA). Also
([0,1],,",0) can be considered as a partial algebra with the operations be-
ing defined as it was done at the end of Section 1. Let us recall that by an
orthoalgebra we understand an algebraic system (A, ®,’,0) of type (2,1,0)
with a partial binary operation @ and a total unary operation ' satisfying
the following axioms (cf. e. g. [5]):

(OA1) If one side of the commutativity law is defined then so is the
other and both are equal (commutativity law).
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(OA2) If one side of the associativity law is defined then so is the other
and both are equal (associativity law).

(OA3) For each a € A the element a’ is the unique element z of A such
that both a®z is defined and a®z = 0' (orthocomplementation
law).

(OA4) Ifa € L and a @ a is defined then a = 0 (consistency law).

We shall assume that A is non-degenerate, i. e. that 0’ # 0. It is easy
to see that any orthoalgebra becomes an orthoposet by defining a < b iff
there exists an element ¢ of L with a® ¢ = b (a,b € A). The elements a,b
of A are said to be orthogonal to each other, in signs a L b,if a® b is
defined.

From (OA1) to (OA4) it follows that an orthoalgebra (A4, ®,’,0) is ortho-
modular. This means that the following law holds:

(OA5) Ifa,b € A and a® b is defined then a @ (a @ b')' is defined and
a®(a®b’) = b (orthomodularity law).

For a theory of orthoalgebras see e. g. [5], for a theory of orthomodular
algebras see e. g. [2]. For orthoalgebras we also have

aIEB...EBa,.zalV...Van,

where V denotes the supremum with respect to the partial order < on A4
which was defined above. If this property holds also for an infinite sequence
of mutually orthogonal elements then we shall say that (A4,®, ,0)is a o-
orthomodular algebra (shortly, a 0-OMA). This property is necessary if we
want to define a probability measure on an OMA, since probability measures
are assumed to be o-additive.

In order to apply Theorem 2.7 to probability measures, we have to
strengthen the assumptions of this theorem. Namely, we will say that a
sequence [(Ay, a1)],[(A2,a2)], [(A3,a3)],... of elements of L is o-compatible
if for every pair (7, ) of distinct positive integers ([(Ai,a;)],[(4;,a;)]) €
dom D as - Similarly, we will call a sequence [(4;,a1)],[(42,a2)],
[(As,a3)], ... of elements of L strongly o-compatible if there exist B € O
and by,by,b3,... € Ay such that both [(A;,q;)] = [(B,b;)] for all posi-
tive integers ¢ and (b;,b;) € dom @4, for all pairs (7, ) of distinct pos-
itive integers. In an analogous way as before, it can be proved that ev-
ery strongly o-compatible sequence of elements of L is o-compatible. The
family (pa,a)a€0,aecs of homomorphisms from A; to A, is said to be o-
compatible if every o-compatible sequence of elements of L is even strongly
o-compatible.

We can now reformulate Theorem 2.7 as follows:
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THEOREM 3.1. Let (pa,o)a€0, aes be a doubly indexed o-compatible fam-
ily of probability measures on the g-orthomodular algebra (B(R).%.".0) of
all Borel sets of the real line. Then in addition to (i) - (iv) of Theorem 2.7
(v) and (vi) hold:

(v) (L,®,",0) is a g-orthomodular subalgebra of (0,1]5.
(vi) For every A € O p4 ts a o-homomorphism from B(R) to L and
for every a € S m, is a probability measure on L.

Proof. In order to prove (v) we only have to show that L is ortho-
modular. To this aim we may use Theorem 3 of [2] (based on [8]) which
characterizes orthomodularity within orthoalgebras L C [0, 1] of so-called
numerical functions. This theorem states that (L,®,’,0) is an OMA iff the
following conditions hold:

1°0€e L
2°If fe Lthen f/:=1- fe€ L.
3°If fisfo,fa€ L and fi+ f < 1fori#jthen fi + o+ f3 € L.

In our case, the conditions 1° and 2° clearly hold. In order to show that
3° holds, assume that f; = [(A;, E;)] for i = 1,2,3. Then the assumption
fi+ f; < 1for i # j means that [(A;, Ei)] @ [(Aj, Ej)] € Lfori # j,i. e.,
the sequence f;, f2, f3,0,0,0,...is o-compatible. Hence, by the assumptions
of the theorem, this sequence is even strongly o-compatible, i. e., there ex-
ist B € O and F1, 13, F3 € B(R) such that F; N F; = 0 for i # j and
((Ai, E)] = (B, F)] for i = 1,2,3. (For i > 3 one may take F; = ().) But
then we obtain:

H+ ot fi=[(ALE)]® [(As, E2)) @ [(As, E3)]
=B, )9 (B, )] & [(B, F3)]
= [(B,Fl U Fg U Fg)] S 1

which shows that condition 3° holds. This means that L is orthomodular.
It is now obvious that L is even a 0-OMA and that (vi) holds. o

DEFINITION 3.2. The o-orthomodular algebra (L, ®,’,0) (or the a-ortho-
complemented poset (L, <,’,0)) described in Theorem 3.1 will be called the
logic induced by the family (pa.o)aco,aes of probability measures on B(R)
and will be denoted by L(O,S).

If we interpret O and S as the sets of all observables and all states of
a physical system, respectively, then L may be interpreted as the logic of
this system. This agrees with the interpretations of the logic of quantum
mechanics suggested by G. W. Mackey in [7].
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In our case L is a set of mappings from S to [0, 1] and hence L may also
be called a numerical logic.

We may interpret L also in another way:

Put E := O x B(R). The elements of E can be called experimental
propositions. We define an equivalence relation ~ on E as follows:

(A,E)~ (B,F)iff forall @ € Sps,a(E) = pB,o(F)

((A,E),(B,F) € E). Put Ly := E/ ~ and for every (4, E) € E let |(A, F)|
denote the equivalence class of (A, E) with respect to ~. Then the corre-
spondence

I(4, E)| — [(4, E)]

is a bijection between L¢ and L. It induces the structure of an OMA on Ly
and by this procedure (Lg, <,’,0) becomes an OMA (or a o-orthoposet).

Since (via this correspondence) L is isomorphic to Lo, we may now
interpret the elements of L as equivalence classes of experimental propo-
sitions which gives L an immediate experimental (i. e. physical) mean-
ing.

We see that in our construction the logic of a physical system is deter-
mined by the results of all measurements of all observables in all states.
(We obtain then the doubly indexed family (pa,o)4c0,acs of probability
measures on B(R).) This means that the logic of a physical system can
be experimentically determined. In quantum mechanics, the mathematical
model for Lo is the OML of all orthogonal projections from a complex sepa-
rable Hilbert space H onto closed linear subspaces of H which is isomorphic
to the OML L(H) of all closed linear subspaces of H.

We see from the above considerations that the most important structure
in axiomatic foundations of quantum mechanics is the logic Ly which is a
o-orthocomplemented poset. The structure of Ly can be equivalently defined
as an orthomodular partial algebra. There are several possibilities to give
Ly a concrete interpretation:

Lo may be assumed to be a Boolean algebra (classical mechanics) or the
OML L(H) of all closed linear subspaces of a complex separable Hilbert
space H (quantum mechanics). So the structure of Ly can be generally in-
terpreted as a generalization of a Boolean algebra. There arises the question
how to define Ly in terms of a possibly minimal number of fundamental
operations which have a more evident physical interpretation than the ones
used usually. The lattice operations V and A are not suitable since only
the operation A has a physical interpretation (the intersection of subspaces)
whereas the interpretation of the operation V requires the use of some topo-
logical notions. (For M, N € L(H) we have MVN = M + N where M + N
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denotes the topological closure of the linear subspace M + N of H.) Hence
we may look for more suitable operations. It turns out that the symmetric
difference A in a Boolean algebra B is a good starting point for this task
since by means of this operation B can be made into a pseudometric space
by defining

d(a,b):= p(a Ab)

for all a,b € B where p is a (subadditive) finitely additive measure on B.
So the next section will be devoted to the axiomatization of OMLs and -
more general - of bounded lattices with an involutory antiautomorphism by
means of the operations A (instead of V), A, 0 and 1 where the symmetric
difference A - which has a well-defined meaning in Boolean algebras — has
first to be generalized in a suitable way. It can be proved (cf. [3]) that for this
generalized symmetric difference A on an arbitrary OML L the following
are equivalent:

(i) A is associative.
(ii) A is distributive with respect to A.
(iii) L is a Boolean algebra.

This shows that in an arbitrary OML L, if we replace A by + and A
by -, we obtain a ring only in the case where L is a Boolean algebra. In
rings, the operation + is usually assumed to be commutative and associa-
tive whereas the operation - may also be non-associative (such structures
are usually called non-associative rings). In our case the operation - (cor-
responding to the intersection A) is commutative and associative whereas
the operation + (corresponding to the symmetric difference A) is com-
mutative but in general not associative. So it seems to be useful to de-
velop the axiomatic foundations for the theory of such generalizations of
rings.

4. Boolean quasirings
In order to illustrate the position of Boolean quasirings within a wider
class of algebras we start by giving the following definition:

DEFINITION 4.1. An algebra (R, +, ) of type (2,2) is called a generalized
Boolean quasiring (GBQR) iff there exist 0,1 € R such that forall z,y,2 € R
the following laws hold:

(1) z4+y=y+z

(2) z+0=2z
(3) (zy)z=12(yz)
(4) zy=yz

(5) zz==z
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(6) z0=0

(7) zl==z

(8) 1+(1+zy)(1+y)=y.

DEFINITION 4.2. For a GBQR R = (R, +, ) we define

zVy:=1+(14+z)(1+y)
TAYy:=zy
2 =14z
L(R) := (R,V,A/).

LEMMA 4.3. L(R) is a bounded lattice with an involutory antiautomor-
phism.

Proof. (R,A)is a semilattice with least element 0 and greatest element
1. If in equation (8) we put y = z we obtain 1+ (1+ z) = z for all z € R,
hence z" = z.

z < y,i. e. zy = z, implies ' > y’ for z,y € R, because again by (8)
1+ 2z'y =1+ (zy)'y’ = y, wherefrom we conclude z'y’ = y'. Therefore
y' <a'.

Because of the properties z < y & z' > ¢’ and z” = z the element
(g’ Ay') =14 (1+2)(1+ y) is the least upper bound of z and y, therefore
L(R) is a lattice. D

DEFINITION 4.4. Let L = (L,V,A,') be a bounded lattice with an in-
volutory antiautomorphism ’. (The least and greatest element of L will be
denoted by 0 and 1, respectively.) We define

Tty:=(Vy)A(zAy)

zy:=cAy
R(L):=(L,+,").
LEMMA 4.5. R(L) is a GBQR in which the following equation holds:
(9) (1+(1+2)1+y))(l+zy)=z+y

forallz,y€ L.

Proof. It is obvious that the defining laws (1) - (7) of GBQRs are
satisfied. 1 + £ = 1 A 2/ = z’. Condition (8) we obtain in the following
way:

1+ (1 +zy)(1+y) = [(en)y] = (e ry)Vy=y

and (9) we get by
A+ Q+2)1+y))1+z2y)=[2"Y])(zy) =(@VyA(zAy) =z +y. O
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Examples of GBQRs

1) Rio.q) := ([0, 1],(z,y) — |z —y|, min), where [0, 1] is the real unit inter-
val and min means the binary operation of forming the minimum. Obviously,
equations (1) — (7) hold. Equation (8) is satisfied because

1 — min(1 — min(z,y),1 - y) = max(1 — (1 - min(z,y)),1 - (1 - y))
= max(min(z,y),y) =y

forall z,y € [0, 1]. (9) does not hold in Ry ;) because equation (9) withy = =
implies zz’ = z + z, whereas in Rjo ;) we have z(z + 1) = min(z,1 - z) and
t+z=|r—2z2|=0.

2) As in Section 1 let S denote a set (of states) and let RSOJ] be the
algebra of all functions from S to R|o ;j endowed with the operations + and
- defined coordinatewise (direct product in the sense of universal algebra).
Then every substructure of R[SO,I] is a GBQR. (In the case of these substruc-
tures the neutral elements with regard to + and - have not to be the same
as in R 11.)

Homomorphisms of the algebra (B(R), A, N) of Borel sets to R[S(’]'” can
be interpreted in the following way: Considering Borel sets as events, for
two events E, F € B(R) and a homomorphism A the equation h(E A F) =
|h(E)—h(F)| can be thought of as a kind of measure for the distance between
E and F. Because of h(0) < h(E) < h(R)

h(E) = h(E A D) = h(E) — h() and h(E') = h(E AR) = h(R) — h(E)

(where the binary operation — denotes the difference of functions from S
to [0,1]). Therefore h(E) and h(E') tell how far E and E’ are away” from
the impossible and certain event, respectively. (Of course, the respective
distances have to be related to the valuations of A(0) and h(R).)

3) According to Lemma 4.5 every algebra R(L) associated with a bound-
ed lattice L having an involutory antiautomorphism gives rise to a GBQR.
The underlying lattice L can be interpreted as a certain kind of quan-
tum logic in which the laws 2 V2’ = 1 and z A 2’ = 0 do not hold in
general. If the elements of L are interpreted as questions and z’, z V y
and z A y stand for the negation of z, for "z or y” and for "z and y”,
respectively, this means that the answer to "z or not z” is not always
yes.

On the other hand, because of /' not necessarily being an orthocomple-
mentation, L can be regarded as the set-theoretic union of Boolean sublat-
tices of L (with respect to the operations V, A and ’; the various subalgebras
may have different zeros and ones. (Cf. Fig. 4.1.)) This shows that R(L)
can be the union of homomorphic images of a GBQR that corresponds to
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a Boolean algebra. This has been required at the beginning of Section 2
(L= U #ra(Ar)).
A€O

dvd'

bAY

0
Fig. 4.1

LEMMA 4.6. For GBQRs R which satisfy equation (9) and bounded lat-
tices L with an involutory antiautomorphism we have R(L(R)) = R and
L(R(L)) = L.

Proof. Let @, © be the operations of R(L(R)).
s@y=(VyAr(zry) =1+0+2)1+y)1+ey)=z+y by (9)
TOQy=xANy=uzy.

On the other hand, let \/, A, * be the operations of L{R(L)).
sVy=1+(1+2)1+y)=("Ay) =2Vvy
sAy=zy=zAy
*=1+z=(1Vvz)A(lAaz) =1 a

DEFINITION 4.7. A GBQR R is said to have characteristic 2,ifz+z =0
for all z € R.

DEFINITION 4.8. A GBQR of characteristic 2 satisfying equation (9) is
called a Boolean quasiring (BQR).

THEOREM 4.9. There is a one-to-one correspondence between Boolean
quasirings and ortholattices.
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Proof. For a GBQR R of characteristic 2 from equation (9) and y = z
we infer

' =(1+(1+2))(1+2)=1+(1+2)(1+z))(1+zx)=2+2=0.

Again by equation (9), if we put y = z’ we obtain (1 + z'z)(1 + zz') =
z + z', wherefrom we conclude z + 2’ = 1. Therefore L(R) has the property
zAz' =zz' =0 and
vz =1+(14+z)(1+z)=1+2'2=14+0=1,
which implies that L(R) is an ortholattice.
Conversely, if L is an ortholattice, R(L) is a GBQR which satisfies (9)

by Lemma 4.5. Because of z+ z = (2 Vz)A(z Az) =zAz' =0R(L)is
of characteristic 2. a

Remark. The identities z + 2’ = 1 and zz' = 0 suggest to consider
BQRs as algebras (R, +,:,,0,1) of type (2,2,1,0,0).

THEOREM 4.10. There is a one-to-one correspondence between Boolean
quasirings which satisfy the equation

(10) Q+zy)+(z+zy)=1+=z
and orthomodular lattices.

Proof. Equation (9) with y = zy implies z(1+ zy) = z + zy. Therefore,
if L is an OML, we deduce in R(L) using that (z Ay)V(zA(zAy)) ==
in OMLs:

(I+zy)+(z+zy)=(1+zy)+2(1+2y) = (1 + zy)(1 + 2(1 + zy))
=[(zAy)V(zA(zAy))) =z'=1+2.
Conversely, if R is a BQR satisfying equation (10) and z < y in L(R),
then
tV(yrd)=1+(1+2)1+y(l+2)=1+((1+z)+y(l+z))
=1+ ((1+2zy)+y(l+zy)) =1+ ((1+2y) + (v + zy))
=1+(1+y)=y.
Therefore in L(R) we obtain: z < y implies z V (y A 2') = y. m]
THEOREM 4.11. A Boolean quasiring is a Boolean ring iff it satisfies
(11) z(l+y)==z+zy.

Proof. Since equation (11) is valid for every Boolean ring because of the
distributive law, we have only to show that a BQRR which fulfils equation
(11) is a Boolean ring,.
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As usual we call two elements z, y of R orthogonal to each other - in sym-
bolsz L y—ifz < ¢',i. e if zy’ = 2. Becauseof zy = zy'y = zyy’' =20 =0
in case of z L y the relation z L y implies zy = 0, but the converse is
not true for every BQR. However, if equation (11) holds, zy = 0 yields
ry’ = z, hence z L1 y. From this it follows that L(R) is pseudocom-
plemented with regard to '. (For the definition of a pseudocomplemented
lattice see [4].) It is well-known (cf. [4]) that for a pseudocomplemented
lattice L the set S := {¢’|z € L} is a Boolean algebra with respect to
the operations A (from L) and z\/y := (z’ A ¢') and that for such a
lattice z € § iff 2”7 = z. In case of L = L(R) we have z\/y = z V y
and S = L(R). Therefore we obtain that R = R(L(R)) is a Boolean
ring. o

Remark. In our proof we have made use of the theory of pseudocom-
plemented meet-semilattices. One could also proof Theorem 4.11 by taking
into account that for a BQR equation (11) is equivalent to z Ay’ = zA(zAy)’
within the corresponding OML. It is well-known (cf. e. g. [6]) that the lat-
ter equation is valid if and only if z and y commute. If this is the case for
all elements z and y of the OML this means that the OML is a Boolean
algebra.

As far as applications to quantum mechanics are concerned, if we take
into account BQRs or GBQRs instead of lattices when dealing with ob-
servables, the mapping p4 occurring in the formula pg o = mq o p4 (see
Section 1) can be interpreted as a homomorphism within the variety of
BQRs and GBQRs, respectively, whereas the mapping m, can only be con-
sidered as a (full) homomorphism with respect to operations of type 1 and
also, if they do occur, of type 0. If we consider only the 2-place operation +,
M, is only a homomorphism with respect to orthogonal elements, the very
assumption we have made in Section 1.
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