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ON THE ASYMPTOTIC BEHAVIOUR 
OF SOLUTIONS OF DIFFERENCE EQUATIONS 

For the difference equation 
oo 

AVn = X ] anVn+i 
i-0 

sufficient conditions for the existence of an asymptotically constant solution 
are presented. 

We denote: JV-the set of natural numbers, R-the set of real numbers, 
C-the set of complex numbers and we write y(n) = yn. For each function 
y : N R or y : N —• C the difference operator 

Ayn = Vn+i ~ Vn, neN, Alyn — A(A'~1yn), for i > 1 
has been defined. 

To simplify formulae we use the conventional assumption that the void 
sum is equal to zero and the void product is equal to one, that is 

k k 
yj °> n yi:= 1 f o r k < n-

j—n j=n 
Instead of l i m « - ^ yn = K we shall write yn = K + o(l). 

THEOREM. Let a' : N ->• R, ^ - 1 for neN, sup„>m[maxj | a j , | ] > 0 

for each m £ N and 
oo oo 

(1) E E k i < ° ° -
i=0 j=1 

Then for each arbitrary constant K G R, there exists a solution y : N R 
of the equation 

oo 

( 2 ) Ayn = a ^ J / n + t 
t = 0 
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such that 

(3) yn = K + o( 1). 

P r o o f . If K = 0 then the zero sequence y (i.e. yn = 0 for n e N) is the 
solution of equation (2) and the theorem holds. From now on let K > 0 (for 
K < 0 the proof runs analogically). It means that there exists a positive 
constant e such that K — e > 0. Let K\ = K + e, I = [I( - e, K + g], and 

oo oo 
(4) = 2 neN. 

i=0j=n 
From assumption (1) it follows that there exists n-i E N such that an < e 
for any n > ri2. Let n\ — min{ra2 € N : an > e}. Further let be a Banach 
space of bounded sequences x = with the norm ||a:|| = sup n > 1 |£n | . 
Denote by T — T(K,n\) the set of sequences x = € loo such that 

J £„ = K for n = 1 , 2 , . . . , ri\ — 1 
1 In € In for n> n\ 

where In = [K — an,K + an] and observe that In C I for each n>n\. 
The closedness of the set T will be shown by the examination that the set 

loo \ T is open. Let's take a sequence h = {hi}^ £ T. Then hk ^ K for an 
index k < n\ or hk £ Ik for an index k > n\. Thus one can find £\ > 0 such 
that K £ (hk - £i,hk + £\) or Ik f ) (hk - £i,hk + £i) = 0, respectively. Let 
B ( X , £ i ) denote £\-neighbourhood of arbitrarily chosen point x in the space 
Zoo. We will show that B(h,£i) fl T = 0. Let's take an arbitrary element 
h! = { f c j ^ i £ B{h,e{). Then h\ e (hi - £ U hi + e j ) for every i £ N. 
Thus either h'k ^ K for an index k < n\ or h'k £ Ik for an index k > ni. It 
implies that the sequence h' together with its e\-neighbourhood is contained 
in ZQO \ T. This proves that the set l00\T is open. 

It is easy to check that T is a convex subset of Z^. 
We will prove that T is a compact subset in l00. Let's take any e2 > 0. If 

d i a m / n i < £2, then v = {K,K,...} 6 T is the £2-net on the set T. Suppose 
that there exists 713 > n\ such that diam/„ 3 > £2 and d i am/„ 3 + i < £2- We 
denote r,- = [ d i a m 7jm+-'] + 1 . T h e n the set {K, K,..., K, K - sX£2,..., K -
s n 3 - n i + i £ 2 , K , . . . } G ZQO, where ŝ  takes all values from the set {1 ,2 , . . . , r , } 
for each i — 1 , 2 , . . . , - n\ + 1 , is the ¿vnet on the set T. This net is finite, 
i.e. it consists of finite number of sequences such that their £2-neighbourhood 
covers the considered set. 

Next we define the operator A = A(A', ni) : l ^ —>• loo as follows: for an 
arbitrary x = 6 loo put kx = y - {r]n}n=i> where 

( K , for n = 1 , 2 , . . . , ni - 1 
= \ K - ZZo f ^ « > «1» 
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We show that operator A tranforms the set T into T. Let us take any 
x = € T. Using (4) and since £ j + i € I j + i C I for each j > n1? 

i = 0,1,2,. . . , we get the following estimation 
oo oo oo oo 

\Vn - K\ < £ £ |a$||fj+i| < K\ £ E l«}l-
¿=0 j=n ¿=0 j~n 

Hence r/n £ In for each n 6 N and therefore the operator A transforms T 

into T. 

Now we show that the operator A is continuous on the set T . Fix arbit-
rary £3 > 0 and let S3 = where 

00 00 

- E E Ki-
! = 0 j = Tll 

Take two arbitrary elements x = and 2 = of the set T such 
that ||x — z\\ < ¿3. By the assumption (1) we see that the series 

00 00 00 00 

E E a n d E E a K i + i 
i—0 j—ni ¿=0 j= « i 

are absolutely convergent. So, we have 
00 00 00 00 

II Ax - Az\\ = s u p | { t f - £ E « & + , • } - - E E flKi+<} I 
t=0 j=n i=0 j=n 

00 00 00 00 

< ™ p E E K I I ^ - o+» i < ik - E E ia5i < £3-
¿=0 j=n i=0 j=n 

Since £3 is arbitrary the latter proves that the operator A is continuous 
on the set T . Hence by virtue of the Schauder's Fixed Point Theorem the 
equation x = Ax has a solution in T. Let w = be fixed point of 
Ax = x. Then w 6 T can be written in the form 

w = { K , K , . . . , K , u n i , u n i + i , . . . , u j n , . . . } 

and 
OO OO CO 00 

A w = { K , K , . . . , K, K - E E • • • ' K - E E aJuj+i> • • •} • 

t = 0 j=ni j=0 j=n 

Hence 
00 00 

(5) un = K ~ Y , Y , f o r n > n i 
t=0 j=n 
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and therefore 
CO 

Aun = a*nujn+i for n > n i . 
t = 0 

So the sequence w = {wn}J°=1 satisfies equation (2) for n > n\ only, i.e. 
yn = ojn for n > n\. We can derive the others j/j's, j = n\ — 1 , . . . , 2 ,1 , 
directly from the equation (2) which can be written down in the form 

oo 

( 6 ) yn = - ( 1 + a°n)_1 (a* - l ) y „ + i + ahVn+i 
i=2 

Finally, we get a sequence satisfying equation (2) for any n G N. Moreover, 
this sequence has for n > n\ identical elements as sequence w and satisfies 
the condition (3), because u>n 6 In and diam/ n —• 0 and n —> oo. This 
completes the proof of the theorem. 

The similary prove methods are presented in papers [1] and [2]. The 
equation 

- «n^n+l 
i = 0 

is investigated in the paper [2]. 

EXAMPLE. Let us consider the equation (2), where 

, 3 1 
n 8 2 ' (2 n + 1 - 1) ' 

By the theorem, for an arbitrary K we can find the solution x converging 
to K. For example for K = 1 this is yn = 1 + ^r. 

R e m a r k . Let a1 : N —»• C, ^ — 1 for n € N, and supn > m[max, |ajj|] 
> 0 for each m € N, and 

oo oo 

i=0 j=l 

Then for each arbitrary constant K € C there exists a solution z : N —• C 
of the equation 

oo 
A z " = E K\zn+1 

i=0 

such that 

zn = K + o ( l ) . 
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