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ON EXISTENCE OF FIXED POINTS
FOR AUTOMORPHISMS OF ORDER TWO

In this note we use standard terminology and notations from group the-
ory ([2]). For example [a,b] = a~ b~ 1ab and [a, xb] = [a,b,,...,b].
N e’

k

DEFINITION 1 [3]. An automorphism « in a group G, which leaves only
the neutral element fixed is called regular.

In the case of abelian groups all regular automorphisms of order 2 are
completely described by the following simple observation.

LEMMA 1. Let G be abelian. Then the group AutG contains a regular
automorphism, say a, of order 2 if and only if G contains no elements of
order 2. In this case a is given by g® = g~} for every g € G.

Proof. Let @ € AutG be a regular automorphism of order two. Since
gg® is a fixed point we have ¢ = ¢g~! for any g € G. By assumption it
means that G has no elements of order two.

The converse implication is clear.

THEOREM 1. Let G be an arbitrary group and let o be a reqular auto-
morphism of order 2 in G. Then G is abelian in any of the following cases:
1. G is finite;
2. G is locally nilpotent,;
3. For every g € G, the subgroup gp(g, g®) is finite;
F or every g € G, the subgroup gp(g, g®) is nilpotent.

Proof. The first case was established in [5] and the second in [1]. Since
the automorphism a is of order two, any subgroup gp(g, %) is a-invariant. If
9p(g,g®) is finite (nilpotent), then by [5] ({1]) it is abelian. Now the third and
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fourth cases follow immediately from one of the two first cases respectively
and from the above Lemma.

For a non-abelian group G' with an automorphism « of order two G.
Higman proved that if G is locally nilpotent, then a has non-trivial fixed
points in G. We proved that if for every g € G, the subgroup gp(g,g®) is
nilpotent, then a has non-trivial fixed points in G. To see that our condition
is weaker we show that if g and g commute, then the group G need not be
locally nilpotent.

EXAMPLE 1. The group G = (z,y|[z%,y]) has an automorphism o of
order two, such that every g € G commutes with g%, while G is neither
nilpotent nor finite.

Proof. The group G is neither nilpotent nor finite, because it has as
a quotient the infinite dihedral group D = (z,y|z%,¢?). The map z —
z71, y — y defines the required antomorphism, because it maps the rela-
tion [z2,y] = 1into [z~2,y] = [z%,3]~® " = 1. Since 22 belongs to the center
of G, we have 27! = 2 modulo center. Then also g% equals ¢ modulo center
and hence g and g* commute as required.

The next aim of this note is a simple proof of Theorem 1 without using
the G. Higman’s result, based on Lie rings methods.
We start with a Lemma, which by itself can be useful.

LEMMA 2. If [a, b?] = 1, then [a, b](-2" = [a, 4y1b].
Proof. We shall denote
t; = [a, b]('Q)‘ for i > 0.
The following properties of symbols ¢; are obvious:
(i) ti, t; commute,
(ii) t; = ;3.
We have to prove the equality
tk = [a, k+1b].

For k = 1, since [a, b?] = 1, the equality follows from the commutator
identity [a, b]~% = [a, b, b][a, b?] 1. To proceed by induction, we assume, that

(1) t; = [a, i410], for ¢ < k.
It follows from the assumption that

(2) [tk—2, b] = tk-1.

We need also

(3) [tels0 B = 151,
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which follows from the identity [a~!, 8] = a[a, b]~1a~!, (2) and property (i):
[te2y, ] = thoaltioz, BT\l = tea 85y i1, = 12,

To make the inductive step to tx = [a, x+1b], we use the assumption

(1), the property (ii), the identity [a?,b] = [a, b]%[a, b], and the equality (3),
-1 _

then [a, k41b] = [a, kb, b] = [te—1, b] = [t52,, b] = [ti),, b]*+=2[t;),, b] =

(t,:il)t’:-12 t,:il = t;fl = 1y, which finishes the proof.

CoOROLLARY 1. If a is a regular automorphism of order two in a group
G and for some k, [a, a“]("2)k =1, then [a, a®] = 1.

Proof. An automorphism « is regular if and only if the following holds:
(4) (997" =1) = (9=1), Vgeq.

In the above notation #; = [a, ®]"?", we have to show that if #; = 1,
then to = 1. Since [a, a®]™! = [a, a®]®, we have t;!, = % ,, and by (ii),
tr = (t,:_l_1 2 = tg_lt,:il. Now by (4), if tx = 1 then tx_; = 1. By repeating
the step we get to = 1.

NOTATION. Let G be a group with a regular automorphism a of order two,
then for every g € G we define a sequence of elements ¢; = g, ¢y = ¢1¢§
and for 1 > 2:

(5) ¢ = ¢i_1¢] .
It follows for 7 > 1 that
(6) ¢; “ei = [eima, €fL4]

We need two more properties of elements c;.

LEMMA 3. Let o be a regular automorphism of order two in a group G.
If g € G, we denote H = gp(g,g®). Then in the above notation the following
holds:

(7) c; ¢ € vi(H),
(8) [eis1, ci_-ll] = {ei-1, 0331]-

Proof. If ¢ = 2, then by (6), c; “c2 = [c1, ¢§] € 72(H). Now by (6), by
the identity [a, 8] = [6~"a, b], and by the inductive assumption we get

¢; %ei = [eim1, i) = [e; 5 cim1, €§14] € [vima(H), H] € vi(H),

which proves (8).

To prove (8) we note, that by (5), ¢;+1 can be written as ¢;33 =
ci—1€2%,¢i_1, which, by the identity [ab’a, a=] = [a, b?], gives required (8).

THEOREM 2. Let o be a regular automorphism of order two in a group
G. If for every g € G, the subgroup gp(g, g) is nilpotent then G is abelian.
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Proof. By assumption for every g € G there exists n = n(g), such that
the subgroup H = gp(g,¢®) is n-nilpotent and hence by (7), ¢, ¥ cns1 €
Yn+1(H) = 1. Since o is regular, it follows by (4), that ¢,41 = 1.

To show by induction that ¢,4+; = 1 implies ¢; = 1, we perform the
inductive step. Let ¢;41 = 1, then because of (8), we get [¢;—1, ¢?*;] = 1. By
Lemma. 2, we obtain [ci_1, ¢®,]("2""" € y,11(H) = 1, and since o is reg-
ular, it follows by Corollary 1, that [c;—1, ¢¥ ;] = 1. Now by (6), ¢; %¢; = 1
and again, since « is regular, we get ¢; = 1. By repeating this step we obtain
¢y = 1, which means that for every g € G, g¢® =1, and hence G is abelian
as required.

We note now that in spite of the fact that nilpotent non-abelian groups do
not have regular automorphisms of order two, there exist soluble non-abelian
groups with regular automorphisms of order two.

EXAMPLE 2. The infinite dihedral group D = (z,y| z2,y?) is metabelian,
but not nilpotent. The automorphism permuting generators is of order two
and regular.

In [4] we gave an example of “the biggest” two-generator metabelian
group G, where the automorphism permuting generators is regular. By “the
biggest” we mean that any other group with the same properties is a quo-
tient group of G. A natural question arises:

In which varieties non-abelian groups have no regular automor-
phisms?
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