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ON AN ALGEBRAIC STUDY OF A CLASS
OF DISCRETE ANALYTIC FUNCTIONS

1. Introduction
A theory of discrete analytic functions, called g-analytic functions, was
developed by Harman [2], [3] on the geometric lattice

(L1)  H={(q"20,7"%);
m,n € Z, 0< g< 1,(20’y0) ﬁxed, T > 07 Yo > 0}

The symbol [a] will denote the g-number defined as

o

_1-g
(1.2) o] = 7= 0<a<l,

where a is any real or complex number.
Also [n]! will denote the g-factorial function given by

_ -9
(1.3) [2)! = [1])(2](3]...[n] = o
Further, the ¢-difference operators D, ; and Dy, are defined as
(14) Dyl = L= 1Un0)
—-q)
and
(15) Dol = LA

(1-qhiy ’
respectively, where f is a discrete function. The two operators involve a basic
triad of points denoted by

(1.6) T(Z) = {(Z, y)a(qma y)a(xv qy)}'
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Let D be a discrete domain. Then a discrete function f is said to be g¢-
analytic at z € D, if

(1'7) DQYI[f(Z)] = quy[f(z)]'
(1.8) If in addition (1.7) holds for every z € D such that T'(z) C D, then
f is said to be g-analytic in D.

For simplicity, if (1.7) or (1.8) holds, the common operator D, is used,
where

(1'9) Dq = Dny = 'Dq$y'

Harman also introduced the operator Cy defined by

(1.10) C, = q) (z

and called the function
(L11)  £(2) = Cylf(z,0)] = Z Q) ~(i9)/ D31 (2,0)]

the g-analytic continuation of f(m,O), into a g-analytic function f defined
at the point (z,y) € H (cf. (1. 1)) Similarly

(1.12) £(0,9)] = 2 q) T D}, 0.9)

represents the ¢g-analytic continuation from the y-axis.

As a discrete analogue of the classical function 2™, Harman defined a
function (™ satisfying the following conditions:

(i) Dq[z(")] = ((11—_‘1—;)) z(n—l),
(1.13) (i) 2@ =1,
(iii) 0™ =0, n >0,

where n is a non-negative integer. Such a function is obtained by applying
the operator Cy, given by (1.10), to the real function z™.

In fact z(", for a non-negative integer n, is given by

A = (2 ")—Z q’ D Due”)

or
n
(1.14) M=% [n] "I (iy)?,
par g
_ nk
where [7], = prm—-
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It can also be written as
(1.15) 2™ = Z [n] zd (iy)" .
iZo Ll dq
Harman also defined the function e(z) by the equality

(1.16) e(z) = Cyleg((1 - g)z)].
Thus
(1.17) e(z) = Z 8 : Zgj 29,

In 1969, Sen [4] studied the topological and algebraic structure of the set of
all complex valued functions f(z) = > .-, an2", where n!|a,| is bounded.

Let R denote the set of all complex valued functions of the type
o0
(1.18) flz)= Z a,3"  where [n]!|a,| is bounded.
n=0

It can be verified easily that the elements (1.18) of the set R are all
discrete functions. In R we define addition and multiplication as

(1.19) F(2) +9(2) = (an +by)2™
n=0

and

(1.20) f(2)og(z) = Y [n]lanbnz™,

respectively, where f(z), given by (1.18), and g(z) = Yoo b,2(™ are two
elements of R.

The aim of the present paper is to study the topological and algebraic
structure of R.

2. Algebraic and topological structure of R
We are going to prove that R is a commutative ring with identity element.

LEMMA 1. R is closed with respect to the two operators '+’ and 0’ given
by (1.19) and (1.20), respectively.

Proof. Since [n]'{a, + b,)| < [n]!|an| + [n]!|bs], therefore f(z) + g(2) is
an element of R, when f(z),¢(z) € R.

Again [n]!lanb,] < [n]!|ay|[n]!|by|. This implies that, if f(2),9(z) € R,
then f(z)o g(2) € R. Hence, Lemma 1 is proved.

LEMMA 2. e(2) = > 00, %z(") is the identity element of R.
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Proof. It is obvious that e(z) is an element of R. Now for f(z) € R we
have, by (1.3),

2(n)
e(z)o f(2) = Z o oZanz(”) = Z[n n—]'an () — f(2).

Similarly, it can be proved that f(z) o e(z) = f(z). Hence e(2) is an
identity element of R.

THEOREM 1. R is a commutative ring with identity.

Proof. From Lemma 1 we find that R is closed with respect to the
operators 4+’ and ’o’. It can be proved easily that

[f(2) + 9(2)] + h(2) = f(2) + [9(2) + R(2))],

[7(2) 0 g(2)] 0 A(2) = f(2) o [9(2) o B(2)],
where f(z),9(z),h(2) € R. Again f(z) = 0 is the element of R. In fact, it
is true that for (1.18) from R the element —f(z) = Yoo ((—a,)2(™ is the

additive inverse of (1.18), because [n]!|—a,| = [n]!|a.| is bounded so that
—f(z) € R and

f()+ (=f(2)) = Y (an - an)2™ = 0.
n=0

Now, for f(z), g(z) as above and h(z) = 3.°0 ; ¢, 2™, we verify the distribu-
tive property

[f(2) + g(2)) o h(z) = Z(an +b,)2™ o Z cn 2™

n=0 n=0
= E[n]!ancnz(”) + Z[n]!bncnz(") = f(2) o h(2) + g(2) o h(2).
n=0 n=0

Similarly, it can be proved that
f(2) o [g(2) + h(2)] = f(z) 0 9(2) + f(2) o h(2).
Commutative property for addition and multiplication follows easily.

Also from Lemma 2 we find that e(z) is the identity element of R. Hence
the Theorem 1 is proved.

3. Further results

We are going to show that R is a Banach algebra.

Let C denote the set of complex numbers. For a € C and f(z) € R
scalar multiplication is defined by af(z) = 2%, @a,2(™.

The following axioms are satisfied:
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(1) ifa€C, f(z) € R, then af(z) € R,
(2) (A +p)f(z) = Af(2) +uf(2), hpeC,
(3) a(Bf(2)) = (af)f(2), @,B € C,
(4)  MSf(2) +9(2)) = Af(2) + Ag(2), A € C,
(5) 1f(2) = f(2):
This proves the following theorem.
THEOREM 2. The set R is a linear space over the set of complex numbers.

THEOREM 3. The set R is a commutative algebra with the identity ele-
ment.

Proof. We have
A(2)09(2)) = A S [nllanbpz® = 3 (]l (Aan)bnz™
n=0 n=0

= Z(z\an)z(") ) Z b, 2™ = ) Z anz™ o Z b, 2™
n=0 n=0 n=0 n=0
= (Af(2)) 0 g(2).

Hence the theorem follows from the results of Theorems 1 and 2.
We now define the norm of (1.18) from R by

1£ ()l = sup[r}]an];

since [n)!]a,| is bounded, sup, [n]!|a,] exists. Now

(i) 1f(2)ll = sup,[n]ilas| > 0 and ||f(2)]| = 0 iff sup,[n]!|an] = 0, ie.,
an = 0for all n or f(2) = 3.0 anz(™ = 0;

(ii) || /(2)+9(2)l| = supp[n]!|an+ba| < sup,(n]!(lan|+]bnl) = sup,[n]!|an]
+ sup, [l = [F(2)] + o), ’

(iii) lef ()l = llo ZpZg anz™|| = | Zolo(aan)zV|| = sup,[n]!aay|
= |a| sup,[n]!|an| = |afll F(2)]-

Hence we have the following result.

THEOREM 4. R is a normed linear space.
Our next aim is to prove the following theorem.

THEOREM 5. R is a Banach space.

Proof. Consider the sequence {f,(z)}, where f,(2) = 3520 ; apn2(™ is
an element of R. Let {f,(z)} be a Cauchy sequence. Hence for every € > 0
there exists a positive integer py such that || f,(2) — fo(2)|| < € for p,q > po,
ie.,

sup[n]!lapn - aqn,l <¢ for P,q > Po.
n
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This implies that
(3.1) [n)llapn — agn] < €

for p,q > po and for every n. We regard n fixed and consider the sequence
Q1ny G2, A3ny « - -5 Arny - - - ON account of (3.1) this sequence would converge
to a limit a, (say) according to Cauchy test. From (3.1) we have

(3.2) n)!|a, — apn| < €
for p > po and for all n. Hence [n]!|a,| is bounded, for
[n]!|an| = [n]!|an — apn + apn| < [n]!lan — apn| + [n]!]apnl.

Then (1.18) is an element of R.

Now we find from (3.2) that sup,[n]!|a, — apn| < € for p > po, that is
| fo(2) — f(2)|| < € for p > po. Therefore f,(2) — f(2) € R, when p — oo.

This implies that R is complete. So the proof of the theorem follows from
Theorem 4.

THEOREM 6. R is a commutative Banach algebra with identity element.
Proof. Let f(2),g(2) € R. Since

I1f(=)og(2)ll = H i[n]!anbnz(“)

ie.,

= sup([n]!)*|anbn| < sup[n]!|as| sup[n]![bnl,
n n n

17(z) o g(2)l < I F()Illlg(2)I}-

Again e(z) is the identity element of R, since we have
1

o

le(:)l| = suplny:

Hence, Theorem 6 is proved.
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