
DEMONSTRATIO MATHEMATICA 
Vol. XXX No 1 1997 

Mumtaz Ahmad Khan 

ON AN ALGEBRAIC STUDY OF A CLASS 
OF DISCRETE ANALYTIC FUNCTIONS 

1. Introduction 
A theory of discrete analytic functions, called g-analytic functions, was 

developed by Harman [2], [3] on the geometric lattice 

(1.1) H = {(qmx0,qny0y, 

m, n G Z, 0 < q < 1, (x0, Ho) fixed, x0 > 0, y0 > 0}. 

The symbol [a] will denote the g-number defined as 

(1.2) [a] = 0 < q < 1, 
1 - q 

where a is any real or complex number. 
Also [n]! will denote the «/-factorial function given by 

(1-3) [»]! = [1P][3] . . . [»] = | [ 5 ^ . 

Further, the difference operators Dq iX and DqtV are defined as 

( , 4 ) B m 1 / w ) . M M 

and 

(i.5) D a m - { 1 _ q ) i y , 

respectively, where / is a discrete function. The two operators involve a basic 
triad of points denoted by 

(1-6) T(z) = {(x,y),(qx,y),(x,qy)}. 
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Let D be a discrete domain. Then a discrete function / is said to be q-
analytic at z G D, if 

(1.7) £ , , * [ / ( * ) ] = Dq,y[i{z)}. 
(1.8) If in addition (1.7) holds for every z € D such that T(z) C D, then 

/ is said to be q-analytic in D. 

For simplicity, if (1.7) or (1.8) holds, the common operator Dq is used, 
where 

(1-9) Dq = Dq,x = DqtV. 
Harman also introduced the operator Cy defined by 

( i- io) = E rr^Myyvi* 
j=o v Hl3 

and called the function 

(1.11) f(z) = Cy[f(x, 0)] = £ ; ^zM(iy)iDiJf(xt 0)] 
j=0 ^ q>i 

the q-analytic continuation of f(x, 0), into a ^-analytic function / defined 
at the point (x,y) € H (cf. (1.1)). Similarly 

(1.12) Cx[f{ 0,2/)] = f ) ^ ^ - x W i j m 2/)] 
j=0 ^ q>i 

represents the «¡[-analytic continuation from the y-axis. 
As a discrete analogue of the classical function zn, Harman defined a 

function z ^ satisfying the following conditions: 

(i) = 
(1-13) (ii) = 1, 

. (iii) 0<n) = 0, n > 0, 
where n is a non-negative integer. Such a function is obtained by applying 
the operator Cy, given by (1.10), to the real function xn. 

In fact z(n\ for a non-negative integer n, is given by 

*<"> ̂  Cy(x») = f ; 

or 

(1.14) 2 ( n ) = y ^ 
• n 

xn~j(iy)j, 
a 
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It can also be written as 
n n 

(1.15) z<B> = ] T xi(iy)n~j. 

j=0 L J U 

Harman also defined the function e(z) by the equality 

(1.16) e(*) = C y [ e , ( ( l - ? ) * ) ] . 

Thus 

( M 7 , 

In 1969, Sen [4] studied the topological and algebraic structure of the set of 
all complex valued functions f(z) = Y^=aanzn, where nl\an\ is bounded. 

Let R denote the set of all complex valued functions of the type 
oo 

(1.18) f(z) — where [n]!|an| is bounded. 
71=0 

It can be verified easily that the elements (1.18) of the set R are all 
discrete functions. In R we define addition and multiplication as 

oo 

(1.19) / ( * ) + S ( * ) = X > n + M * ( n ) 

n=0 
and 

oo 

(1.20) f i z ) o g ( z ) = Y,[n]\anbnzln\ 
n=0 

respectively, where f(z), given by (1.18), and g(z) = are two 
elements of R. 

The aim of the present paper is to study the topological and algebraic 
structure of R. 

2. Algebraic and topological structure of R 
We are going to prove that R is a commutative ring with identity element. 

L E M M A 1 . R is closed with respect to the two operators '+ ' and 'o ' given 
by (1.19) and (1.20), respectively. 

P r o o f . Since [n]l\(an + bn)\ < [n]!|a„| + [n]!|6„|, therefore f(z) + g{z) is 
an element of R, when f(z),g(z) £ R. 

Again [n]l\anbn\ < [n]!|an|[n]!|6„|. This implies that, if f(z),g(z) 6 R, 
then f(z) o g(z) £ R. Hence, Lemma 1 is proved. 

L E M M A 2 . e(z) = X^^Lo ( 1 - 9 ) identity element of R. 
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P roof . It is obvious that e(z) is an element of R. Now for f(z) £ R we 
have, by (1.3), 

OO OO OO I 

<*) o /(*) = E tjr ° E «»*iB) = EM' = 
Similarly, it can be proved that f(z) o e(z) = f(z). Hence e(z) is an 

identity element of R. 

T H E O R E M 1. R is a commutative ring with identity. 

P r o o f . From Lemma 1 we find that R is closed with respect to the 
operators '+ ' and 'o'. It can be proved easily that 

[/(z) + g(z)} + h(z) = f(z) + [g{z) + h(z)], 
[f(z)og(z))oh(z) = f(z)o[g(z)oh(z)}, 

where f(z),g(z),h(z) £ R. Again f(z) = 0 is the element of R. In fact, it 
is true that for (1.18) from R the element - f ( z ) = is the 
additive inverse of (1.18), because [n]!|-an | = [rc]!|an| is bounded so that 
- f ( z ) £ R and 

OO 

f(z) + ( - f ( z ) ) = y£(an-an)z^ = 0. 
n=0 

Now, for f(z),g(z) as above and h(z) = X ^ o cnz^, we verify the distribu-
tive property 

OO OO 

[/(*) + g(z)] O h(z) = + bn)zW O £ cnzW 
n=0 n = 0 

OO OO 

= + l>]!&»cnz<n> = f ( z ) 0 M*) + 9(*) o h(z). 
n=0 n = 0 

Similarly, it can be proved that 
. f ( z ) o \g{z) + h(z)} = f(z) o g(z) + f(z) o h(z). 

Commutative property for addition and multiplication follows easily. 
Also from Lemma 2 we find that e(z) is the identity element of R. Hence 
the Theorem 1 is proved. 

3. Further results 
We are going to show that R is a Banach algebra. 
Let C denote the set of complex numbers. For a £ C and f(z) £ R 

scalar multiplication is defined by a f ( z ) = S^Lo 
The following axioms are satisfied: 
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(1) if a 6 C, f{z) € R, then a f ( z ) € R, 
(2) (A + / , ) / (*) = A/(z) + nf(z), \,fi6C, 
(3) a(0f(z)) = {aP)f(z),a,l3eC, 
(4) A(/(z) + «,(*)) = A/(z) + Afl(z), A e C, 
(5) l / ( z ) = f(z). 

This proves the following theorem. 

T H E O R E M 2 . The set R is a linear space over the set of complex numbers. 

T H E O R E M 3 . The set R is a commutative algebra with the identity ele-
ment. 

P r o o f . We have 
oo oo 

\(f(z)og(z)) = \Yyi]\anbnz^ = £[n]!(Aan)&nz<B> 
7 1 = 0 71=0 

CO OO CO oo 

= £(AaB)*<"> O £ bnz^ = A £ aB*<»> o £ bnz^ 
n=0 n=0 n=0 n=0 

= (Af(z))og(z). 

Hence the theorem follows from the results of Theorems 1 and 2. 

We now define the norm of (1.18) from R by 

| | /(*)| | = sup[n]!|an|; 
n 

since [ra]!|an| is bounded, supn[n]!|an | exists. Now 

(i) | | / (z) | | = s u p > ] ! | a n | J ; 0 and | | /(z) | | = 0 iff supn[n]!|a„| = 0, i.e., 
an = 0 for all n or f ( z ) = an-?(n) = 0; 

(») \\f(z)+9(*)\\ = supn[n]!|an+&„| < supn[n]!(|a„| + |6n |) = sup„[n]!|an | 
+ snpB[n]!|6B| = 11/(̂ )11 + M H , 

(iii) \\af(z)\\ = | | a £ ~ 0
 anz(n)\\ = l l££Lo( a a n)2 ( n ) l l = snpB[n]!|aaB | 

= |a|supw[n]!|aB | = |a | | | / (z) | | . 
Hence we have the following result. 

T H E O R E M 4 . R is a normed linear space. 
Our next aim is to prove the following theorem. 

T H E O R E M 5 . R is a Banach space. 

P r o o f . Consider the sequence {fp(z)}, where fp(z) = apnz^ is 
an element of R. Let {fp(z)} be a Cauchy sequence. Hence for every e > 0 
there exists a positive integer po such that || fp(z) — /9(z) | | < £ for p, q > po, 
i.e., 

sup[n]!|ap„ - aqn\ < e iorp,q>p0. 
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< e 

This implies that 

(3-1) [ 

for p,q > po and for every n. We regard n fixed and consider the sequence 
a \n i o-2ni ®3n, • • • j s rni • • • On account of (3.1) this sequence would converge 
to a limit an (say) according to Cauchy test. From (3.1) we have 

(3.2) [ 

for p > po and for all n. Hence [7i]!|a„| is bounded, for 

[n]!|a„| = [n]\\an - apn + apn\ < [n]!|a„ - apn\ + [n]!|apn|. 

Then (1.18) is an element of R. 
Now we find from (3.2) that supn[n]!|a„ — apn\ < e for p > po, that is 

II f p ( z ) ~ f(z)II < £ for p > p0. Therefore f p ( z ) —> f ( z ) £ R, when p oo. 
This implies that R is complete. So the proof of the theorem follows from 

Theorem 4. 
THEOREM 6. R is a commutative Banach algebra with identity element. 

P r o o f . Let f ( z ) , g ( z ) 6 R. Since 

l l / (*)o0(*)l l= Il J 2 ^ - a n b n z ( n ) =sup([n]!)2 |anò„| < sup[n]!|an| sup[n]!|ò, 

i.e., 
n=0 

| | / W o f l ( z ) | | < | | / ( z ) | | | | ^ ) | | . 
Again e(z) is the identity element of R, since we have 

1 
||e(*)|| = sup[n]! 

n 
Hence, Theorem 6 is proved. 

M! 
= 1. 
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