

Mumtaz Ahmad Khan

ON AN ALGEBRAIC STUDY OF A CLASS
OF DISCRETE ANALYTIC FUNCTIONS

1. Introduction

A theory of discrete analytic functions, called q -analytic functions, was developed by Harman [2], [3] on the geometric lattice

$$(1.1) \quad H = \{(q^m x_0, q^n y_0); \\ m, n \in \mathbb{Z}, 0 < q < 1, (x_0, y_0) \text{ fixed, } x_0 > 0, y_0 > 0\}.$$

The symbol $[\alpha]$ will denote the q -number defined as

$$(1.2) \quad [\alpha] = \frac{1 - q^\alpha}{1 - q}, \quad 0 < q < 1,$$

where α is any real or complex number.

Also $[n]!$ will denote the q -factorial function given by

$$(1.3) \quad [n]! = [1][2][3] \dots [n] \equiv \frac{(1 - q)_n}{(1 - q)^n}.$$

Further, the q -difference operators $D_{q,x}$ and $D_{q,y}$ are defined as

$$(1.4) \quad D_{q,x}[f(z)] = \frac{f(z) - f(qx, y)}{(1 - q)x}$$

and

$$(1.5) \quad D_{q,y}[f(z)] = \frac{f(z) - f(x, qy)}{(1 - q)iy},$$

respectively, where f is a discrete function. The two operators involve a *basic triad* of points denoted by

$$(1.6) \quad T(z) = \{(x, y), (qx, y), (x, qy)\}.$$

Let D be a discrete domain. Then a discrete function f is said to be q -analytic at $z \in D$, if

$$(1.7) \quad D_{q,x}[f(z)] = D_{q,y}[f(z)].$$

(1.8) If in addition (1.7) holds for every $z \in D$ such that $T(z) \subseteq D$, then f is said to be q -analytic in D .

For simplicity, if (1.7) or (1.8) holds, the common operator D_q is used, where

$$(1.9) \quad D_q = D_{q,x} = D_{q,y}.$$

Harman also introduced the operator C_y defined by

$$(1.10) \quad C_y \equiv \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} (iy)^j D_{q,x}^j$$

and called the function

$$(1.11) \quad f(z) = C_y[f(x, 0)] = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} (iy)^j D_{q,x}^j[f(x, 0)]$$

the q -analytic continuation of $f(x, 0)$, into a q -analytic function f defined at the point $(x, y) \in H$ (cf. (1.1)). Similarly

$$(1.12) \quad C_x[f(0, y)] = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} x^j D_{q,y}^j[f(0, y)]$$

represents the q -analytic continuation from the y -axis.

As a discrete analogue of the classical function z^n , Harman defined a function $z^{(n)}$ satisfying the following conditions:

$$(1.13) \quad \begin{cases} (i) & D_q[z^{(n)}] = \frac{(1-q^n)}{(1-q)} z^{(n-1)}, \\ (ii) & z^{(0)} = 1, \\ (iii) & 0^{(n)} = 0, \quad n > 0, \end{cases}$$

where n is a non-negative integer. Such a function is obtained by applying the operator C_y , given by (1.10), to the real function x^n .

In fact $z^{(n)}$, for a non-negative integer n , is given by

$$z^{(n)} \equiv C_y(x^n) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} (iy)^j D_{q,x}^j(x^n)$$

or

$$(1.14) \quad z^{(n)} = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^{n-j} (iy)^j,$$

where $\begin{bmatrix} n \\ j \end{bmatrix}_q = \frac{[n]!}{[j]![n-j]!}$.

It can also be written as

$$(1.15) \quad z^{(n)} = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^j (iy)^{n-j}.$$

Harman also defined the function $e(z)$ by the equality

$$(1.16) \quad e(z) = C_y [e_q((1-q)x)].$$

Thus

$$(1.17) \quad e(z) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} z^{(j)}.$$

In 1969, Sen [4] studied the topological and algebraic structure of the set of all complex valued functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where $n!|a_n|$ is bounded.

Let R denote the set of all complex valued functions of the type

$$(1.18) \quad f(z) = \sum_{n=0}^{\infty} a_n z^{(n)}, \quad \text{where } [n]!|a_n| \text{ is bounded.}$$

It can be verified easily that the elements (1.18) of the set R are all discrete functions. In R we define addition and multiplication as

$$(1.19) \quad f(z) + g(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^{(n)}$$

and

$$(1.20) \quad f(z) \circ g(z) = \sum_{n=0}^{\infty} [n]! a_n b_n z^{(n)},$$

respectively, where $f(z)$, given by (1.18), and $g(z) = \sum_{n=0}^{\infty} b_n z^{(n)}$ are two elements of R .

The aim of the present paper is to study the topological and algebraic structure of R .

2. Algebraic and topological structure of R

We are going to prove that R is a commutative ring with identity element.

LEMMA 1. R is closed with respect to the two operators '+' and 'o' given by (1.19) and (1.20), respectively.

Proof. Since $[n]!|(a_n + b_n)| \leq [n]!|a_n| + [n]!|b_n|$, therefore $f(z) + g(z)$ is an element of R , when $f(z), g(z) \in R$.

Again $[n]!|a_n b_n| \leq [n]!|a_n| [n]!|b_n|$. This implies that, if $f(z), g(z) \in R$, then $f(z) \circ g(z) \in R$. Hence, Lemma 1 is proved.

LEMMA 2. $e(z) = \sum_{n=0}^{\infty} \frac{(1-q)^n}{(1-q)_n} z^{(n)}$ is the identity element of R .

Proof. It is obvious that $e(z)$ is an element of R . Now for $f(z) \in R$ we have, by (1.3),

$$e(z) \circ f(z) = \sum_{n=0}^{\infty} \frac{z^{(n)}}{[n]!} \circ \sum_{n=0}^{\infty} a_n z^{(n)} = \sum_{n=0}^{\infty} [n]! \frac{1}{[n]!} a_n z^{(n)} = f(z).$$

Similarly, it can be proved that $f(z) \circ e(z) = f(z)$. Hence $e(z)$ is an identity element of R .

THEOREM 1. *R is a commutative ring with identity.*

Proof. From Lemma 1 we find that R is closed with respect to the operators '+' and 'o'. It can be proved easily that

$$\begin{aligned} [f(z) + g(z)] + h(z) &= f(z) + [g(z) + h(z)], \\ [f(z) \circ g(z)] \circ h(z) &= f(z) \circ [g(z) \circ h(z)], \end{aligned}$$

where $f(z), g(z), h(z) \in R$. Again $f(z) = 0$ is the element of R . In fact, it is true that for (1.18) from R the element $-f(z) = \sum_{n=0}^{\infty} (-a_n) z^{(n)}$ is the additive inverse of (1.18), because $[n]!|-a_n| = [n]!|a_n|$ is bounded so that $-f(z) \in R$ and

$$f(z) + (-f(z)) = \sum_{n=0}^{\infty} (a_n - a_n) z^{(n)} = 0.$$

Now, for $f(z), g(z)$ as above and $h(z) = \sum_{n=0}^{\infty} c_n z^{(n)}$, we verify the distributive property

$$\begin{aligned} [f(z) + g(z)] \circ h(z) &= \sum_{n=0}^{\infty} (a_n + b_n) z^{(n)} \circ \sum_{n=0}^{\infty} c_n z^{(n)} \\ &= \sum_{n=0}^{\infty} [n]! a_n c_n z^{(n)} + \sum_{n=0}^{\infty} [n]! b_n c_n z^{(n)} = f(z) \circ h(z) + g(z) \circ h(z). \end{aligned}$$

Similarly, it can be proved that

$$f(z) \circ [g(z) + h(z)] = f(z) \circ g(z) + f(z) \circ h(z).$$

Commutative property for addition and multiplication follows easily. Also from Lemma 2 we find that $e(z)$ is the identity element of R . Hence the Theorem 1 is proved.

3. Further results

We are going to show that R is a Banach algebra.

Let C denote the set of complex numbers. For $\alpha \in C$ and $f(z) \in R$ scalar multiplication is defined by $\alpha f(z) = \sum_{n=0}^{\infty} \alpha a_n z^{(n)}$.

The following axioms are satisfied:

- (1) if $\alpha \in C$, $f(z) \in R$, then $\alpha f(z) \in R$,
- (2) $(\lambda + \mu)f(z) = \lambda f(z) + \mu f(z)$, $\lambda, \mu \in C$,
- (3) $\alpha(\beta f(z)) = (\alpha\beta)f(z)$, $\alpha, \beta \in C$,
- (4) $\lambda(f(z) + g(z)) = \lambda f(z) + \lambda g(z)$, $\lambda \in C$,
- (5) $1f(z) = f(z)$.

This proves the following theorem.

THEOREM 2. *The set R is a linear space over the set of complex numbers.*

THEOREM 3. *The set R is a commutative algebra with the identity element.*

Proof. We have

$$\begin{aligned} \lambda(f(z) \circ g(z)) &= \lambda \sum_{n=0}^{\infty} [n]! a_n b_n z^{(n)} = \sum_{n=0}^{\infty} [n]! (\lambda a_n) b_n z^{(n)} \\ &= \sum_{n=0}^{\infty} (\lambda a_n) z^{(n)} \circ \sum_{n=0}^{\infty} b_n z^{(n)} = \lambda \sum_{n=0}^{\infty} a_n z^{(n)} \circ \sum_{n=0}^{\infty} b_n z^{(n)} \\ &= (\lambda f(z)) \circ g(z). \end{aligned}$$

Hence the theorem follows from the results of Theorems 1 and 2.

We now define the norm of (1.18) from R by

$$\|f(z)\| = \sup_n [n]! |a_n|;$$

since $[n]! |a_n|$ is bounded, $\sup_n [n]! |a_n|$ exists. Now

- (i) $\|f(z)\| = \sup_n [n]! |a_n| \geq 0$ and $\|f(z)\| = 0$ iff $\sup_n [n]! |a_n| = 0$, i.e., $a_n = 0$ for all n or $f(z) = \sum_{n=0}^{\infty} a_n z^{(n)} = 0$;
- (ii) $\|f(z) + g(z)\| = \sup_n [n]! |a_n + b_n| \leq \sup_n [n]! (|a_n| + |b_n|) = \sup_n [n]! |a_n| + \sup_n [n]! |b_n| = \|f(z)\| + \|g(z)\|$,
- (iii) $\|\alpha f(z)\| = \|\alpha \sum_{n=0}^{\infty} a_n z^{(n)}\| = \|\sum_{n=0}^{\infty} (\alpha a_n) z^{(n)}\| = \sup_n [n]! |\alpha a_n| = |\alpha| \sup_n [n]! |a_n| = |\alpha| \|f(z)\|$.

Hence we have the following result.

THEOREM 4. *R is a normed linear space.*

Our next aim is to prove the following theorem.

THEOREM 5. *R is a Banach space.*

Proof. Consider the sequence $\{f_p(z)\}$, where $f_p(z) = \sum_{n=0}^{\infty} a_{pn} z^{(n)}$ is an element of R . Let $\{f_p(z)\}$ be a Cauchy sequence. Hence for every $\varepsilon > 0$ there exists a positive integer p_0 such that $\|f_p(z) - f_q(z)\| < \varepsilon$ for $p, q \geq p_0$, i.e.,

$$\sup_n [n]! |a_{pn} - a_{qn}| < \varepsilon \quad \text{for } p, q \geq p_0.$$

This implies that

$$(3.1) \quad [n]!|a_{pn} - a_{qn}| < \varepsilon$$

for $p, q \geq p_0$ and for every n . We regard n fixed and consider the sequence $a_{1n}, a_{2n}, a_{3n}, \dots, a_{rn}, \dots$. On account of (3.1) this sequence would converge to a limit a_n (say) according to Cauchy test. From (3.1) we have

$$(3.2) \quad [n]!|a_n - a_{pn}| < \varepsilon$$

for $p \geq p_0$ and for all n . Hence $[n]!|a_n|$ is bounded, for

$$[n]!|a_n| = [n]!|a_n - a_{pn} + a_{pn}| \leq [n]!|a_n - a_{pn}| + [n]!|a_{pn}|.$$

Then (1.18) is an element of R .

Now we find from (3.2) that $\sup_n [n]!|a_n - a_{pn}| < \varepsilon$ for $p \geq p_0$, that is $\|f_p(z) - f(z)\| < \varepsilon$ for $p \geq p_0$. Therefore $f_p(z) \rightarrow f(z) \in R$, when $p \rightarrow \infty$.

This implies that R is complete. So the proof of the theorem follows from Theorem 4.

THEOREM 6. *R is a commutative Banach algebra with identity element.*

P r o o f. Let $f(z), g(z) \in R$. Since

$$\|f(z) \circ g(z)\| = \left\| \sum_{n=0}^{\infty} [n]! a_n b_n z^{(n)} \right\| = \sup_n ([n]!)^2 |a_n b_n| \leq \sup_n [n]! |a_n| \sup_n [n]! |b_n|,$$

i.e.,

$$\|f(z) \circ g(z)\| \leq \|f(z)\| \|g(z)\|.$$

Again $e(z)$ is the identity element of R , since we have

$$\|e(z)\| = \sup_n [n]! \left| \frac{1}{[n]!} \right| = 1.$$

Hence, Theorem 6 is proved.

References

- [1] W. Hahn, *Beiträge zur Theorie der Heineschen Reihen*, Math. Nachr. 2 (1949), 340–379.
- [2] C. J. Harman, *Discrete geometric function theory I*, Appl. Anal. 7 (1977), 315–336.
- [3] C. J. Harman, *Discrete geometric function theory II*, Appl. Anal. 9 (1979), 191–203.
- [4] M. K. Sen, *On a class of integral functions*, Bull. Calcutta Math. Soc. 61 (1969), 67–74.

DEPARTMENT OF APPLIED MATHEMATICS
FACULTY OF ENGINEERING
A.M.U., ALIGARH-202002, U.P., INDIA

Received November 29, 1995.