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COMPARISON OF CONVERGENCES
FOR MULTIFUNCTIONS

In this paper, we extend the concept of continuous convergence for single-
valued functions to multifunctions and compare it with topological conver-
gence in points, topological convergence in graphs, quasiuniform convergence
and almost quasiuniform convergence. Relationships among these kinds of
convergences are established and some of results from [3], [9], [11] and [14]
are generalized.

1. Introduction

The concept of convergence of functions is indispensable in both analysis
and topology. The purpose of this paper is to compare several types of
convergences for multifunctions which have appeared in recent years.

Let X and Y be two topological spaces. A subset A of X is said to be
a-paracompact (1] if every open cover of A in X has a locally finite open
covering refinement in X. Let {A; : ¢ € D} be a net of subsets of X. A point
z € X is called a limit point [10], [13] of {A; : i € D}, denoted by z € LiA;,
if for every neighbourhood U of z there is ig € D such that A;NU # ( for all
i > 4p. Furthermore, € X is called a cluster point [10], [13] of {4; : i € D},
denoted by z € LsA;, if for every neighbourhood U of z and every i € D
there is ig € D such that 15 > i and A;) N U # 0. We say that {4, :7 € D}
topologically converges to A, denoted by LtA; = A, if LiA; = LsA; = A.
Note that a net {z; : ¢ € D} is convergent to zg, denoted by z; — o, iff
{{z:}Li € D} is topologically convergent to {z¢} when X is Hausdorff.

By a multifunction (or multi-valued function) F: X — Y, we mean a
point to set correspondence from X into Y such that F(z) # @ for each
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point z € X. Recall that F: X — Y is said to be upper (lower) semicon-
tinuous [10], [13], abbreviated by usc (Isc), at a point z € X if for each
open subset V C Y satisfying F(z) C V (F(z)NV # 0) there exists an
open neighbourhood U of z such that F(U) C V (F(z') NV # @ for all
z' € U). The set Gr(F) = {(z,y) € X xY:z € X,y € F(z)} is called the
graph of F. Moreover, F: X — Y is called point-compact (point-connected,
point-paracompact) if for every z € X the set F(z) is a compact (connected,
a-paracompact) subset of Y. Throughout this paper, C(X,Y) (Crn(X,Y))
denotes the family of all continuous single-valued functions (continuous and
point-compact multifunctions) from a topological space X into a topological
space Y.

In [11], Kowalczyk discussed two different types of convergences for mul-
tifunctions: topological convergence and graph convergence by means of
topological convergence of subsets. We find that the concept of continuous
convergence will enable us to compare these convergences. Thus, in Section
2, we extend in a natural way this concept from the case of single-valued
functions (see [9]) to the case of multifunctions and establish some charac-
terizations. In the next section, we compare continuous convergence with
topological convergence and graph convergence. In the last section, multi-
functions whose range is a quasiuniform space are considered, and relation-
ships among quasiuniform convergence, almost quasiuniform convergence as
well as all three kinds of convergences mentioned above are established.

2. Continuous convergence for multifunctions

Let X and Y be two topological spaces. Let Py(X) stand for the collec-
tion of all nonempty subsets of X. For each nonempty open subset G C X,
denote by Gt = Po(G) = {4 € Po(X):A C G} and by G~ = {4 ¢
Po(X): AN G # 0}. The upper (lower) topology on Po(X) is generated by
{G* : G isopenin X} ( {G~ : G is open in X}) [10]. Recall that a net
{F; : i € D} of multifunctions from X into Y converges pointwise to F
[5], denoted by F; 25 F, if for each point 2 € X the net {Fi(z):i € D}
converges to F'(z) with respect to both upper and lower topologies on Py(Y').

DEFINITION 2.1. A net {F; :1 € D} of multifunctions from X into Y is
called

(1) upper continuously convergent to F, denoted by F} =5 F, if for
each point z € X and each net {zg : § € E} on X with 23 — =z, the
net {F;(zg) : (i,8) € D x E} converges to F(z) with respect to the upper
topology on Py(Y).

(2) lower continuously convergent to F, denoted by F; dee, F, if for

each point z € X and each net {z3 : 3 € E} on X with z3 — =z, the
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net {Fy(zp) : (i,8) € D x E} converges to F(z) with respect to the lower
topology on Py(Y).
(3) continuously convergent to F', denoted by F; = F,ifboth F; 25 F

lee

and F;, — F.

Obviously, continuous convergence defined above is a natural extension
of the corresponding notion for single-valued functions in Frink [9], and it
implies pointwise convergence. The following two fundamental lemmas are
very important in the sequel. The proof of the second lemma is similar to
that of the first one, so we omit it.

LEMMA 2.2. Let {F; : i € D} be a net of multifunctions from X into Y.
Then the following statements are equivalent.

(1) F; =5 F.

(2) For any point ¢ € X and any neighbourhood V of F(z) in'Y and
any net {zp : B € E} on X with xg — x, there exist ig € D and fp € E
such that F;(zg) CV for alli > iy and all B > [p.

(3) For any point ¢ € X and any neighbourhood V of F(z) in'Y, there
ezist a neighbourhood U of x and iy € D such that F;(U) C V for all i > 1.

Proof. The implication of (1) = (2) is trivial.

(2) = (3). If not, then there exist a point z € X and a neighbourhood
V of F(z) in Y such that for any neighbourhood U of z and any i € D
one can find A > ¢ and a point zy,y € U with Fy(zy)) ¢ V. Thus for any
given neighbourhood U of z, there exists a cofinal subset Dy of D such
that Fa(zy) ¢ V for all A € Dy. Let Dy = UUG.A/(a:) Dy, where N (z)
is the family of all neighbourhoods of 2 ordered by inclusion. Obviously,
Dy is a cofinal subset of D and the net {zy : (U,A) € N(z) X Do} is
convergent to z. From (2), there exists a pair (Up, Ag) € M(z) x Dy such
that F)\(zy,x) C V for all (U, A) € N(z) X Dy whenever U C Uy and A > Ay.
This is a contradiction.

(3) = (1). Fix ¢ € X and let {zg : B € E} be a net on X such that
zp — . From (3), for any neighbourhood V of F(z) in Y there exist a
neighbourhood U of z and iy € D such that Fi(U) C V for all ¢ > 1.
Since z3 — z, there exists By € E such that z3 € U for all 3 > fy. Hence
Fi(zg) C V forall i > ip and 3 > fo.

LEMMA 2.3. Let {F; : i € D} be a net of multifunctions from X into Y.

Then the following statements are equivalent.
lee

(1) F; — F.

(2) For any point x € X and any open set V of Y with F(z)NV # 0
and any net {zg: f € E} on X with 23 — z, there existig € D and y € E
such that F;(zg) NV # O for all i > iy and 8 > fo.
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(3) For any point = € X and any open set V of Y with F(z)N'V # 0,
there erist a neighbourhood U of x and 19 € D such that Fi(z')NV # 0
whenever ' € U and ¢ > 1p.

3. Topological convergences in points and graphs
Let {F;:% € D} be a net of multifunctions from X into Y.

DEFINITION 3.1. [11] A net {F; : i € D} is called

(1) topologically convergent in points to F, denoted by F; LA F, if
LtF;(z) = F(z) for every point z € X.

(2) topologically convergent in graphs to F, denoted by F; gt F, if
LtGr(F;) = Gr(F).

Remark: In [11], topological convergence in points and in graphs are
called “topological convergence” and “graph convergence”, respectively. In
[2] and [3], topological convergence in graphs is also called “topological con-
vergence”; while, in [14] it is called “ Hausdorff topological convergence of
graphs”. To avoid confusion, we rename these two types of convergences
as in the above. Obviously, topological convergence in points and pointwise
convergence are equivalent for single-valued functions when the range is a
Hausdorff space.

It is pointed out in [11] that the notions of topological convergence in
points and topological convergence in graphs are for multifunctions inde-
pendent, even when the domain is a metric space. Now we will establish
relationships between continuous convergence and topological convergence
in graphs.

THEOREM 3.2. Let {F; : ¢ € D} be a net of multifunctions from X
intoY.

(1) If F; 2% F then Gr(F) C LiGr(F;).

(2) IfY is a Hausdorff space and F is a point-paracompact multifunction
such that F; =5 F then LsGr(F;) C Gr(F).

Proof. (1) Take an arbitrary pair (zo,y0) € Gr(F) and let U and V be
neighbourhoods of z¢ and yo respectively. Since F(zo) NV # 0 then there
exist a neighbourhood G of 2¢ and iy € D such that Fi(z)NV # @ for all
¢ € G and all ¢ > ¢5. Hence (U x V)NGr(F;) # 0 for all ¢ > 45 which implies
that (zo,y0) € LiGr(F}).

(2) Suppose that (zo,yo) € LsGr(F;)\ Gr(F). Then in particular yo ¢
F(zo). Since Y is a Hausdorff space, then for every point y € F(zo) there
exist disjoint open subsets V, and W, containing y and yo, respectively.
The family {V, : y € F(zo)} forms an open cover of F(z¢). By a-para-
compactness of F(zg), there is a locally finite open cover V = {U) : A € A}
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of F(zo) which refines {V, : y € F(z0)}. Therefore there exists an open
neighbourhood Wj of yo such that W intersects only finitely many members
Ux,»Uxzy - Ua, of V. So we may choose finitely many points y1, 42, ..., Yn of

F(zg) such that Uy, CV,, foreachk,1 <k < n.Put W = Won(Ny=y Wy,)
and V = {Jycp Ua. Observe that W is an open neighbourhood of y disjoint
with V and F(zo) C V. Since F; == F there exist a neighbourhood G
of z and iy € D such that F;(G) C V for all i > 4. Now G x W is a
neighbourhood of (zg,%) in X x Y and (G x W) N Gr(F;) = 0 for all
i > 4o. This contradicts the fact that (zo, yo) € LsGr(F;). Thus, LsGr(F;) C
Gr(F).

CoRrOLLARY 3.3. Let {F; : i € D} be a net of multifunctions from X
into a Hausdorff space Y and let F be a point-paracompact multifunction.

IfF, =5 F, then F; 25

COROLLARY 3.4. [9] Let {f; : ¢ € D} be a net of functions from X into
a Hausdorff space Y. If fi — f, then f; =5 Ehe

By a similar proof to that one of Theorem 3.2 we can get the following
result.

THEOREM 3.5. Let {F; : i € D} be a net of multifunctions from X
into a Hausdorff space Y and let F be a point-paracompact multifunction.

IfF; =5 F then F; 25

Following [6], a space X is called rimcompact if for each point z € X and
each neighbourhood U of = there exists a neighbouhood V of & such that
the boundary Fr(V) of V is compact and VU Fr(V) C U. It is well-known
that rimcompact Hausdorff spaces are regular.

THEOREM 3.6. Let X be a locally connected space and Y be a rimcompact
space. Let {F; : i € D} C Cn(X,Y) be a net such that all F; are point-

connected. If F; — 9 Fand F is point-compact multifunction, then F; — F.

uce

Proof. (1) We shall prove first that F; — F. If not, then there exist
a point z € X and a neighbourhood V' of F(z) in Y such that for any
neighbourhood U of z, there is a cofinal subset Dy of D satisfying F;(U) N
(Y - V') # 0 for all ¢ € Dy. Since Y is rimcompact then for every point
y € F(z) there exists a neighbourhood V}, of y such that Fr(V,) is compact
and V, U Fr(Vy) C V'. The family {Int(V,) : y € F(z)} forms an open
cover of F(z). Thus there are finitely many points yq,¥2,...,¥n € F(z)
such that F(z) C Up_; Vo, Put V = Uj-; Vi, and observe that Fr(V) C
Urz; Fr(Vy, ). It is easy to see that Fr(V') is compact and VU Fr(V) C V'.
Therefore F;(U)N(Y = V) # 0 for all ¢ € Dy.
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Let M,(z) be the family of all connected neighbourhoods of z ordered by
inclusion. Since X is locally connected, NV () is a base of the neighbourhood

system NV (z) of z. Let U € N (). Since F; 2% F then there exists iy € D
such that (U x V)NGr(F;) # O whenever ¢ > 1. Let Dy = {i € D : 4> 41 }.
Then Dy, is a cofinal subset of D such that for each i € Dy;, we have both
F(U)NV # @ and F(U)N(Y —V) # 0. From Theorem 7.4.4 in [10] the sets
F;(U) are connected for all 7 € Dj,. This implies that F;(U) N Fr(V) # 0.
For each ¢ € Dy; choose points z; y € U and y; v € Fi(zi )N Fr(V). Thus,
we get a net {y; v : i € Dl;} C Fr(V). Let yy € Fr(V) be a cluster point
of {yiv : ¢ € Dy}. Then {yy : U € Nc(z)} is also a net in Fr(V') and hence
it has a cluster point y € Fr(V).

We will show that (z,y) € LsGr(F;). To see this, let G and W be any
open neighbourhoods of  and y respectively. Since X is locally connected
and y is a cluster point of {yy : U € N(z)} then we can choose U € N (z)
such that z € U C G and yy € W. Thus, for any given + € D, there
exists a A € Dy; such that A > ¢ and yyy € W. From the definitions of
z) v and yx v, we have (z v,yrv) € Gr(F )N (G x W). This implies that
(z,y) € LsGr(F;). Since F; 25 F, then (z,y) € Gr(F),ie,y€ F(z)CV.
But this contradicts with the fact that y € Fr(V). Therefore F; 25 F.

lee

(2) F; — F. If not, one can find a point z € X and an open subset
V' of Y with F(2) N V' # 0 such that for each neighbourhood U of z there
exists a cofinal subset Dy of D satisfying F;(z{ ;) C (Y — V") for some point
z;y € U, whenever ¢ € Dy. Let yo € F(z) N V'. Since Y is rimcompact
then there exists a neighbourhood V' of yo such that Fr(V) is compact and
V U Fr(V) C V'. Thus, for any given neighbourhood U of z there exists a
cofinal subset Dy of D such that Fi(U)N(Y — V) # 0 for all ¢ € Dy. The
rest of the proof is similar to that of (1).

CORROLARY 3.7. [14] Let X be a locally connected space and Y be a
rimcompact space. If {f; : i € D} is a net in C(X,Y) and f € C(X,Y)
such that f; i f, then f; =5 f.

As an immediate corollary of Theorems 3.5 and 3.6, we can establish
the following relationship between topological convergence in points and
topological convergence in graphs.

COROLLARY 3.8. Assume that X is a locally connected space and Y is

a rimcompact space. Let {F; 11 € D} C Cpr(X,Y) be a net such that each

F; is point-connected. If F; S P and Fisa point-compact multifunction

then F; e P
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THEOREM 3.9. Let {F, :i € D} be a net of multifunctions from X into
a regular space Y. If F; =% F and F is a point-paracompact multifunction
then F is continuous.

Proof. (1) F is usc. Fix z € X and an open neighbourhood V' of F(z)
in Y. Since Y is regular than for each point y € F(z), there exists an open
subset U, such that y € Uy C Uy C V. The sets {U, : y € F(z)} form
an open cover of F(z). By a-paracompactness of F(z) there exists a locally
finite open cover V = {Vy : A € A} of F(z), which refines {U, : y € F(z)}.
Then we have

F(z)CUVACU VACUV)\C U —UTy.CV.
AEA AEA AEA yEF(z)

Since F; == F, by Lemma 2.2., there are iy € D and a neighbourhood G

of z such that F;(G) C U,egs Vi for all @ > ép. By Theorem 3.5 we have

F; P F and thus we have

F(III,)C n UF]’(IE’)C U VncV

€D j2i A€EA

for all z' € G. Hence F is usc.
(2) F is Isc. Fix z € X and an open subset V of Y with F(z)nV # §.
Choose a point y € F(z)NV and a closed neighbourhood W of y such that

W C V. Since F; dee, F, by Lemma 2.3, there exist a neighbourhood G of
z and ip € D such that F;(z")NW # 0 for all ' € G, whenever ¢ > 15. We
claim that F(z')NV # 0 for all 2’ € G. If not, then there exists a point
z"” € G such that F(z")NV = . Thus F(z") CY ~V CY — W. Using
the fact that F; 255 F, there exists iy € D such that Fi(z") C Y - W
for all 4 > i;. So Fi(z")N W = () whenever 7 > 4 and ¢ > 4; which is a
contradiction. Therefore F' is Isc.

CORROLARY 3.10. [9] Let {f; : i € D} be a net of functions from X into
a regular space Y. If f; = f, then f is continuous.

4. Convergence of multifunctions into quasiuniform spaces

Let (Y,U) be a quasiuniform space [7]. The conjugate quasiuniformity of
U is denoted by 1. Moreover, 7 () and 7 (U4 ~1) will denote topologies on
Y induced by U and U1, respectively. Recall that (Y,U) is said to be locally
symmetric [7] if for each U € U and each point y € Y there is a symmetric
V € U such that VZ(y) C U(y). It is well-known that a topological space Y
can admit a compatible locally symmetric quasiuniformity if and only if it
is regular. Finally, (Y,U) is called small-set symmetric [8] provided that for



178 J. Cao, L. L. Reilly, M. K. Vamanamurthy

each U € U and each open set A CY we have A C U(A). It was shown in
[12] that (Y,U) is small-set symmetric if and only if T7(U~1) C T(U).

DEeFINITION 4.1. [5] Let X be a topological space and (Y,¥) be a qua-
siuniform space. A net {F; : i € D} of multifunctions from X into (Y,U)
is said to be convergent almost quasiuniformly to F, denoted by F; 25 F,
if for each U € U and each point © € X there exists ¢g € D such that for
each ¢ > i, there is a neighbourhood G; of = such that F;(z) C U(F(z))

and F(z) C U™Y(F;(2)) for all z € G;.

THEOREM 4.2. Let {F; : i € D} be a net of multifunctions from a
topological space X into a small-set symmetric quasiuniform space (Y,U).
age

If F€Cn(X,Y) and F; =5 F, then F; =5 F.

Proof. For any z € X and any U € U, choose V € U with V2 C U.
Since (Y,U) is small-set symmetric and {Int(V(y)NV~1(y)):y € F(z)} is
an open cover of F'(z) then there is a finite set {y1,¥2,...,¥n} C F(z) such
that F(z) C Ui (V(yx)NV~1(yk)). Since F; = F then there exist o € D
and a neighbourhood G of z such that for all ¢ > 4o, Fi(G1) C Up—; V(yk)
and F;(2) N V(yx) # @ for all 2 € G, and all k, 1 < k < n. Furthermore, by
continuity of F, there exists a neighbourhood G3 of z such that F(G;) C
Ur=1 V" yx) and F(2) NV Y(y,)# D forall z € Gy and all k, 1 < k < n.
For any point z € G = G; N G; we have

Fi(2) ¢ |J V(m) C VE(F(2) C U(F(2))
k=1

and "

F(z)c |JV 7' w) c V7o VTH(E(2) C UTN(Ei(2)),
k=1

whenever i > ig. This implies that F; — F.

EXAMPLE 4.3. The small-set symmetry of (Y,2{) in Theorem 4.2. cannot
be dropped. Let X = Y = [0,+00). Topologize X by defining the basic
neighbourhood system for z = 0 as: B,(0) = {0} U {z € X : z > n} for all
n € N; and the basic neighbourhood system for z # 0 as: B,(z) = {2} for
alne N.Let Uy, = AY)U{(0,y):y€Y,y>n}foralln € N and U
be the quasiuniformity on Y generated by {U, : n € N}. Since T7(U~!) is
the discrete topology, (Y,U) is not small-set symmetric. Define a sequence
of multifunctions F, : X - Y (n € N) as

Fo(s) = {{z}, if z < m;

[n,+00), otherwise.

age
and F(z) = {z} for all z € X. Then F, = F, but F,, #/— F.
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Recall that in [4] a net {F; : i € D} of multifunctions from a topological
space X into a quasiuniform space (Y,U) is said to be convergent quasiuni-
formly to F, denoted by F; 2% F, if for each U € U there exists g € D
such that Fi(z) C U(F(z)) and F(z) C U~!(Fi(z)) for all z € X whenever
i > 1p.

THEOREM 4.4. Let {F; : i € D} be a net of multifunctions from a
topological space X into a quasiuniform space (Y,U). If F € Crn(X,Y) and
F; *5 F, then F; =5 F.

uce

Proof. (1) F; — F. Take an arbitrary z € X and let W be an open
neighbourhood of F(z) in Y. Since F(z) is compact then there exists U € U
such that F(z) C U%(F(z)) C W. By the upper continuity of F', there exists
an open neighbourhood G of z such that F(G) C U(F(z)). Since F; = F,
there exists 79 € D such that F;(z) C U(F(z)) for all z € X whenever 7 > 4.
The latter implies that

Fi(G)c U(F(G)) C U*(F(z)) c W

for all ¢ > 4y. Hence F; =5 F.

lee

(2) F; — F. Fix ¢ € X and let W be an open subset of ¥ with
F(z)NW # 0. Choose y € WNF(z) and U € U such that U?(y) C W. Since
F is Isc then there exists a neighbourhood G of z such that F(z)NU(y) # @
for all z € G. On the other hand, since F; —— F, there exists ig € D such
that F(z) C U™!(Fi(2)) for all z € X, whenever i > iy. For each z € G,
take p € F(2) N U(y). Then p € U~1(F;(z)) but this shows that

0 # Fi(2)nU(p) C Fi(2) N U%(y) C Fi(2) N W,
whenever ¢ > 1g. Therefore F; dee, .

CoRrOLLARY 4.5. Let {F; : i € D} be a net of multifunctions from a
topological space X into a small-set symmetric quastuniform space (Y,U).
IfFeCn(X,Y), then F; 5 F > F;, 55 F = F; 25 F,

EXAMPLE 4.6. The hypothesis of continuity of F in Theorem 4.4 cannot
be dropped. Let X = [0,+00) with the usual Euclidean topology. Let Y =
[0,400) and U, = A(Y)U{(0,y): y € Y,y > n} U {(y,0): y € Y} for all
n € N. Let U be the quasiuniformity on Y generated by {U, : n € N}.

Define
{0}, if x=0;
Fo(z) =< (0,2], ifz <m;

{0}, ifz>n.
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and

_ [ {0}, if x=0;
F(e) = {(O,x], if z £ 0.

cec
Then F, == F. But F is neither usc nor lsc and F, #— F.

DEFINITION 4.7. A family F of multifunctions from a topological space
X into a quasiuniform space (Y,) is called:

(1) upper quasi-equicontinuous at z € X if for each U € U, there exists
a neighbourhood G of = such that F(G) C U(F(z)) for all F € F.

(2) lower quasi-equicontinuous at x € X if for each U € U, there exists
a neighbourhood G of z such that F(2)NU(y) # 0 forall Fe F,z€ G
and y € F(zx).

We say that F is quasi-equicontinuous at ¢ € X if it is both upper
and lower quasi-equicontinuous at # € X. Moreover, F is called quasi-
equicontinuous if it is quasi-equicontinuous at every point & € X. The fol-
lowing result is a consequence of Corollary 4.5 and the remark in section 4
of [5].

COROLLARY 4.8. Let F be a family of quasi-equicontinuous and point-
compact multifunctions from a compact space X into a small-set symmetric
quasiuniform space (Y,U). If {F, F; : ¢ € D} C F, then the following state-
ments are equivalent:

(1) F; 25 F,

(2) F; = F,

(3) F; & F.

Our next result is a generalization of Theorem 2 of Beer [3] and Theorem
3 of Kowalczyk [11].

THEOREM 4.9. Let {F; : i € D} be a net of multifunctions from a
topological space X into a regular topological space Y and assume that {F; :
t € D} is U-upper quasi-equicontinuous with respect to some compatible

locally symmetric quasiuniformityld on'Y. Then
gte

(1) F; P if and only if F; — F.
(2) If F; 2% F and F is point-compact, then F; Ly

Proof. (1) “=”. Suppose that F; P! F. Then Gr(F) = Ugzex{z} X
F(z) = U ex{z} x LiFi(z) C LiGr(F;), so it is sufficient to prove that
LsGr(F;) € Gr(F). To do this, fix (z,y) € LsGr(F;) and let W be any
neighbourhood of y in Y. Let ¢/ be a compatible locally symmetric quasi-
uniformity on Y such that {F; : ¢ € D} is U-upper quasi-equicontinuous.
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Choose a symmetric V € U such that V?(y) C W. Then there exists a neigh-
bourhood G of z such that for all 7 € D we have F;(G) C V(Fj(z)). Since
(z,y) € LsGr(F;) then there is a cofinal subset E of D such that (GXxV(y))N
Gr(F;) # 0 for all j € E. Pick what z; € G and y; € V(y) N Fj(z;). Then
y; € V(y) N V(Fj(z)) which implies that § # Fj(z)nV?(y) C Fi(z)nW
for all j € E. Thus y € LsF;(z) = F(z) and (z,y) C Gr(F).

“«”. Suppose that F; 9% F. Fix z € X. Then for any point y €

LsF;(z), we have (z,y) € LsGr(F;) = Gr(F) which implies that LsFj(z) C
F(z). Now we have to show that F(z) C LiFi(z). Let i be chosen as in the
above. Fix y € F(z) and let W be an arbitrary neighbourhood of y in Y.
Then there exists a symmetric V € U such that V2(y) C W. By upper quasi-
equicontinuity of {F; : ¢ € D}, there exists a neighbourhood G of = such that
for all i € D we have F;(G) C V(Fi(z)). Since (z,y) € Gr(F) = LiGr(F;)
then there exists ig € D such that (GxV (y))NGr(F;) # @ for all ¢ > 45. Thus
we can choose (z;,¥;) € (G X V(y)) N Gr(F;) for each ¢ > g which implies
that y; € Fi(z;) C V(Fi(z)). Therefore @ # F;(z)NV(y;) C Fi(z)nV?(y) C
F;(z) N W whenever ¢ > 49, i.e., y € LiFi(z).
(2) It is similar to the first part of the proof of (1), so we omit it.

CoROLLARY 4.10. [3] Let {f,} be a pointwise equicontinuous sequence

from a metric space X into a metric space Y. If { f,} is pointwise convergent
gte

to a continuous function f, then f, —

COROLLARY 4.11.[11] Let Y be a completely regular space and U be any
compatible uniformity on Y. Let {F; : i € D} be a net of multifunctions
from a space X into (Y,U).

(1) If {F; : ¢ € D} is U-upper equicontinuous and F; e, F, then
F, 25 F.

(2) If {F; : i € D} is U-upper equicontinuous at ¢ € X and F; s F,

then LtF;(z) = F(z).

COROLLARY 4.12. Let {F; : i € D} be a net of multifunctions from a
locally connected topological space X into a rimcompact Hausdorff topological
space Y. If {F; : i € D} isU-upper quasi-equicontinuous with respect to some
compatible locally symmetric quasiuniformity U on Y, then the following
statements are equivalent:

(1) 5 F

gtc

(3) FiiF;

pte

(4) F; S F.
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