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COMPARISON OF CONVERGENCES 
FOR MULTIFUNCTIONS 

In this paper, we extend the concept of continuous convergence for single-
valued functions to multifunctions and compare it with topological conver-
gence in points, topological convergence in graphs, quasiuniform convergence 
and almost quasiuniform convergence. Relationships among these kinds of 
convergences are established and some of results from [3], [9], [11] and [14] 
are generalized. 

1. Introduction 
The concept of convergence of functions is indispensable in both analysis 

and topology. The purpose of this paper is to compare several types of 
convergences for multifunctions which have appeared in recent years. 

Let X and Y be two topological spaces. A subset A of X is said to be 
a-paracompact [1] if every open cover of A in X has a locally finite open 
covering refinement in X. Let {A{ : i £ D} be a net of subsets of X . A point 
x £ X is called a limit point [10], [13] of {Ai : i £ D}, denoted by x £ LiA{, 
if for every neighbourhood U of x there is io £ D such that Ai ft U / 0 for all 
i > ¿o- Furthermore, x £ X is called a cluster point [10], [13] of {Ai : i £ D}, 
denoted by a: £ LsAt, if for every neighbourhood U of x and every i £ D 
there is io £ D such that io > i and Ai0 fl U ^ 0. We say that {Ai : i £ D} 
topologically converges to A, denoted by LtAi = A, if LiAi = LsAi = A. 
Note that a net {XI : i £ D} is convergent to XQ, denoted by i ; —>• XQ, iff 
{{x{}Li £ D} is topologically convergent to {zo} when X is HausdorfF. 

By a multifunction (or multi-valued function) F:X —• Y, we mean a 
point to set correspondence from X into Y such that F(x) / 0 for each 
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point x e X. Recall that F:X Y is said to be upper (lower) semicon-
tinuous [10], [13], abbreviated by use (lsc), at a point x £ X if for each 
open subset V C Y satisfying F(x) C V (F(x) D V ± 0) there exists an 
open neighbourhood U of x such that F(U) C V (F(x') D V ± 0 for all 
x' £ U). The set Gr(F) = {(x,y) e X xY:x e X,y e ^ ( z )} is called the 
graph of F. Moreover, F: X —> Y is called point-compact (point-connected, 
point-paracompact) if for every x £ X the set F(x) is a compact (connected, 
a-paracompact) subset of Y. Throughout this paper, C(X,Y) (Cm(X,Y)) 
denotes the family of all continuous single-valued functions (continuous and 
point-compact multifunctions) from a topological space X into a topological 
space Y. 

In [11], Kowalczyk discussed two different types of convergences for mul-
tifunctions: topological convergence and graph convergence by means of 
topological convergence of subsets. We find that the concept of continuous 
convergence will enable us to compare these convergences. Thus, in Section 
2, we extend in a natural way this concept from the case of single-valued 
functions (see [9]) to the case of multifunctions and establish some charac-
terizations. In the next section, we compare continuous convergence with 
topological convergence and graph convergence. In the last section, multi-
functions whose range is a quasiuniform space are considered, and relation-
ships among quasiuniform convergence, almost quasiuniform convergence as 
well as all three kinds of convergences mentioned above are established. 

2. Continuous convergence for multifunctions 
Let X and Y be two topological spaces. Let Vo(X) stand for the collec-

tion of all nonempty subsets of X. For each nonempty open subset G C X, 
denote by G+ = V0(G) = {A £ V0(X):A C G} and by G~ = {A £ 
Vo(X): Afl G ^ 0}. The upper (lower) topology on Vo(X) is generated by 
{G+ : G is open in X} ( {G~ : G is open in X}) [10]. Recall that a net 
{Fi : i £ D} of multifunctions from X into Y converges pointwise to F 
[5], denoted by Fi F, if for each point x £ X the net {Fi(x) : i £ D} 
converges to F(x) with respect to both upper and lower topologies on Vo(Y). 

DEFINITION 2 . 1 . A net {Fi : i £ D} of multifunctions from X into Y is 
called 

(1) upper continuously convergent to F, denoted by Fi —>• F, if for 
each point x £ X and each net {x@ : (3 £ E} on X with xp —• x, the 
net {Fi(xp) : (i, ¡3) £ D X E} converges to F(x) with respect to the upper 
topology on Vo(Y). 

(2) lower continuously convergent to F, denoted by Fi F, if for 
each point x £ X and each net {xp : (3 e E} on X with xp —>• x, the 
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net {FI(XP) : ( I , /3 ) e D X E ) converges to F(X) with respect to the lower 
topology on Vo(Y). 

(3) continuously convergent to F, denoted by F{ F, if both F{ ^ F 
and Fi ^ F. 

Obviously, continuous convergence defined above is a natural extension 
of the corresponding notion for single-valued functions in Frink [9], and it 
implies pointwise convergence. The following two fundamental lemmas are 
very important in the sequel. The proof of the second lemma is similar to 
that of the first one, so we omit it. 

L e m m a 2 . 2 . Let {Fi : i £ D} be a net of multifunctions from X into Y. 
Then the following statements are equivalent. 

(1) Fi ^ F. 
(2) For any point x £ X and any neighbourhood V of F(x) in Y and 

any net {xp : (3 £ E} on X with xp —• x, there exist io £ D and (3Q £ E 
such that Fi(xp) C V for all i > io and all (3 > f3o-

(3) For any point x £ X and any neighbourhood V of F(x) in Y: there 
exist a neighbourhood U of x and io £ D such that Fi(U) C V for all i > i0. 

P r o o f . The implication of (1) (2) is trivial. 
(2) =>> (3). If not, then there exist a point x £ X and a neighbourhood 

V of F(x) in Y such that for any neighbourhood U of x and any i £ D 
one can find A > i and a point xu,\ £ U with F\(xu,\) <t V. Thus for any 
given neighbourhood U of x, there exists a cofinal subset Du of D such 
that Fx(xUta) <t V for all A £ Dv. Let D0 = \Juetf(x)Du, where Af{x) 
is the family of all neighbourhoods of x ordered by inclusion. Obviously, 
DO is a cofinal subset of D and the net {xu,a : (U,X) £ AF(x) x DQ} is 
convergent to x. From (2), there exists a pair ( i / o ^ o ) £ Af(x) X Do such 
that F\(xu,\) C V for all (U, A) £ Af(x) X D0 whenever U C U0 and A > A0. 
This is a contradiction. 

(3) =S> (1). Fix x £ X and let {xp : (3 £ E} be a net on X such that 
xp x. From (3), for any neighbourhood V of F(x) in Y there exist a 
neighbourhood U of x and io £ D such that F{{U) C V for all i > io-
Since xp —y x, there exists (3Q £ E such that xp £ U for all f3 > ¡io- Hence 
Fi(xp) C V for all i > i0 and (3 > f30. 

L e m m a 2 . 3 . Let {Fi :i £ D} be a net of multifunctions from X into Y. 
Then the following statements are equivalent. 

( 1 ) F i 1££> F . 
(2) For any point x £ X and any open set V of Y with F(x) fl V ^ 0 

and any net {xp : f3 £ E} on X with xp x, there exist i0 £ D and (3o £ E 
such that Fi(xp) fl V ^ 0 for all i > io and (3 > flo-
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(3) For any point x G X and any open set V of Y with F(x) fl V ^ 0, 
there exist a neighbourhood U of x and io G D such that Fi(x') fl V ^ 0 
whenever x' G U and i > io-

3. Topological convergences in points and graphs 
Let {FI : i G D} be a net of multifunctions from X into Y. 
DEFINITION 3 . 1 . [11] A net {FI : i G D} is called 
(1) topologically convergent in points to F, denoted by F{ F, if 

LtFi(x) = F(x) for every point x £ X. 
(2) topologically convergent in graphs to F, denoted by Fi F, if 

LtGr(Fi) = Gr(F). 
R e m a r k : In [11], topological convergence in points and in graphs are 

called "topological convergence" and "graph convergence", respectively. In 
[2] and [3], topological convergence in graphs is also called "topological con-
vergence"; while, in [14] it is called " Hausdorff topological convergence of 
graphs". To avoid confusion, we rename these two types of convergences 
as in the above. Obviously, topological convergence in points and pointwise 
convergence are equivalent for single-valued functions when the range is a 
Hausdorff space. 

It is pointed out in [11] that the notions of topological convergence in 
points and topological convergence in graphs are for multifunctions inde-
pendent, even when the domain is a metric space. Now we will establish 
relationships between continuous convergence and topological convergence 
in graphs. 

T H E O R E M 3 . 2 . Let {Fi : i G D} be a net of multifunctions from X 
into Y. 

(1) IfFi F then Gr(F) C LiGr(Fi). 
(2) IfY is a Hausdorff space and F is a point-paracompact multifunction 

such that F i ^ F then LsGr(Fi) C Gr(F). 
P r o o f . (1) Take an arbitrary pair (xo,yo) G Gr(F) and let U and V be 

neighbourhoods of XO and YO respectively. Since F(XQ) fl V ^ 0 then there 
exist a neighbourhood G of A;o and io G D such that F{(x) FL V ^ 0 for all 
x G G and all i > ¿o• Hence (U X V)N Gr{F{) ^ 0 for all i > io which implies 
that (zo,2/o) G LiGr(Fi). 

(2) Suppose that (xo,yo) G LsGr(Fi) \Gr(F). Then in particular yo 
F(xo). Since Y is a Hausdorff space, then for every point y £ F(x0) there 
exist disjoint open subsets Vy and Wy containing y and yo, respectively. 
The family {Vy : y G -F(xo)} forms an open cover of F(x0). By a-para-
compactness of F(xo), there is a locally finite open cover V = {C/A : A G A} 
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of F{xo) which refines {Vy : y € F(x0)}. Therefore there exists an open 
neighbourhood W0 of y0 such that W0 intersects only finitely many members 
Ux1, UXi,..., U\n of V. So we may choose finitely many points 3/1,3/2, • ••, yn of 
F (z 0 ) such that UXh C VVk for each k, 1 < k < n. Put W = Wonf lX = i Wyu) 
and V = UAGA Observe that W is an open neighbourhood of y0 disjoint 
with V and F(x0) C V. Since Fj F there exist a neighbourhood G 
of x and i0 £ D such that Fi(G) C V for all i > i0. Now G x W is a 
neighbourhood of (x0,2/o) in X x Y and (G x W) n Gr(Fi) = 0 for all 
i > ¿0. This contradicts the fact that (x0,2/o) £ LsGr(Fi). Thus, LsGr(Fi) C 
Gr(F). 

C O R O L L A R Y 3 . 3 . Let {Fi : i € D} be a net of multifunctions from X 
into a Hausdorff space Y and let F be a point-paracompact multifunction. 
If Fi F, then Fi F. 

C O R O L L A R Y 3 . 4 . [9] Let { f i : i E D} be a net of functions from X into 
a Hausdorff space Y. If fi f , then fi / . 

By a similar proof to that one of Theorem 3.2 we can get the following 
result. 

T H E O R E M 3 . 5 . Let {Fi : i € D} be a net of multifunctions from X 
into a Hausdorff space Y and let F be a point-paracompact multifunction. 
If Fi-^F then Fi p. 

Following [6], a space X is called rimcompact if for each point x £ X and 
each neighbourhood U of x there exists a neighbouhood V of x such that 
the boundary Fr(V) of V is compact and V U Fr{V) C U. It is well-known 
that rimcompact Hausdorff spaces are regular. 

T H E O R E M 3 . 6 . LetX be a locally connected space andY be a rimcompact 
space. Let {Fi : i G D} C Cm(X,Y) be a net such that all Fi are point-
connected. If Fi F and F is point-compact multifunction, then Fi F. 

P r o o f . (1) We shall prove first that Fi F. If not, then there exist 
a point x 6 X and a neighbourhood V' of F(x) in Y such that for any 
neighbourhood U of x, there is a cofinal subset DJJ of D satisfying Fi(U) fl 
(Y — V') / 0 for all i € Du- Since Y is rimcompact then for every point 
y G F(x) there exists a neighbourhood Vy of y such that Fr(Vy) is compact 
and Vy U Fr(Vy) C V . The family {Int(Vy) : y 6 F(ar)} forms an open 
cover of F(x). Thus there are finitely many points ... ,yn € F(x) 
such that F(x) C U L i Vyk • Put V = U L i vyk

 a n d observe that Fr(V) C 
U L i Fr(vVk )• 14 i s easy to see that Fr(V) is compact and VU Fr(V) C V'. 
Therefore F^U) D (Y - V) ? 0 for all i e Dv. 
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Let J\fc(x) be the family of all connected neighbourhoods of a; ordered by 
inclusion. Since X is locally connected, J\fc(x) is a base of the neighbourhood 
system Af(x) of x. Let U G Nc(x). Since Fi F then there exists ¿1 G D 
such that (U X V)nGr(Fi) ± 0 whenever i > Let D'v - {i £ D : i > ¿1}. 
Then D'JJ is a cofinal subset of D such that for each i G D'v, we have both 
Fi(U)r\V £ 0 and Fi(U)n(Y-V) ± 0. From Theorem 7.4.4 in [10] the sets 
Fi{U) are connected for all i G D'v. This implies that Fi(U) n Fr(V) / 0. 
For each i G D[j choose points Xi^u G U and yitu G Fi(xitu) fl Fr(V). Thus, 
we get a net {yi,u '• i S D[j} C Fr(V). Let yu G Fr(V) be a cluster point 
of {yi,u '• i € •£>[/}• Then {yu : U € A/"c(a;)} is also a net in Fr(V) and hence 
it has a cluster point y G Fr(V). 

We will show that (x ,y ) G LsGr(Fi). To see this, let G and W be any 
open neighbourhoods of x and y respectively. Since X is locally connected 
and y is a cluster point of {yu • U G A/"c(a;)} then we can choose U G Nc(x) 
such that x G U C G and yu G W. Thus, for any given i G D, there 
exists a A G D'v such that A > i and y \ tu £ W. From the definitions of 
x\,u and y\,u, we have ( x \ , u , yx,u) G Gr(F\) C\(G X W). This implies that 
(x,y) G LsGr(Fi). Since F{ ^ F, then (x,y) G Gr(F), i.e., y G F(x) C V. 
But this contradicts with the fact that y G Fr(V). Therefore Fi F. 

(2) Fi F. If not, one can find a point x G X and an open subset 
V1 of Y with F(x) f l V ' / i such that for each neighbourhood U of x there 
exists a cofinal subset Du of D satisfying Fi(x'i v ) C (Y— V') for some point 
x\ u G U, whenever i G Du- Let y0 G F(x) fl V'. Since Y is rimcompact 
then there exists a neighbourhood V of y0 such that Fr(V) is compact and 
V U Fr(V) C V'. Thus, for any given neighbourhood U of x there exists a 
cofinal subset Dv of D such that F{(U) n ( 7 - V) ± 0 for all i G Dv. The 
rest of the proof is similar to that of (1). 

C O R R O L A R Y 3 . 7 . [ 1 4 ] Let X be a locally connected space and Y be a 
rimcompact space. If { f i : i G D} is a net in C(X,Y) and f G C(X, Y) 
such that fi / , then fi / . 

As an immediate corollary of Theorems 3.5 and 3.6, we can establish 
the following relationship between topological convergence in points and 
topological convergence in graphs. 

C O R O L L A R Y 3 . 8 . Assume that X is a locally connected space and Y is 
a rimcompact space. Let {Fi : i G D} C Cm(X,Y) be a net such that each 
Fi is point-connected. If F{ F and F is a point-compact multifunction 
then Fi ^ F. 
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THEOREM 3.9. Let {Fi : i e D} be a net of multifunctions from X into 

a regular space Y. If Fi F and F is a point-paracompact multifunction 

then F is continuous. 

P r o o f . (1) F is use. Fix x G X and an open neighbourhood V of F(x) 

in Y. Since Y is regular than for each point y G F(x), there exists an open 
subset Uy such that y G Uy C Uy C V. The sets {Uy : y € F(x)} form 
an open cover of F(x). By a-paracompactness of F(x) there exists a locally 
finite open cover V = {VA : A G A } of F(x), which refines {Uy : y G 
Then we have 

F(x)c ( J FAC ( J VAC ( J VAC ( J TTyCV. 
AGA AGA AEA yeF(x) 

Since Fi F, by Lemma 2.2., there are ¿o G D and a neighbourhood G 

of x such that Fi(G) C UAGA ^ all i > ¿o- By Theorem 3.5 we have 

Fj F and thus we have 

* v ) c n D ^ c u i c 

ieD j>i AGA 

for all x' G G. Hence F is use. 
(2) F is lsc. Fix x G X and an open subset V of Y with F(x) f l F / 0 . 

Choose a point y G F(x) n V and a closed neighbourhood W of y such that 

W C V. Since Fi F, by Lemma 2.3, there exist a neighbourhood G of 
x and i0€D such that Fi(x') fl W ^ 0 for all x' G G, whenever i > io. We 
claim that F(x') fl V ^ 0 for all x' G G. If not, then there exists a point 
x" G G such that F(x") n V = 0. Thus F(x") c Y - V c Y - W . Using 
the fact that F, F, there exists ix G D such that Fi(x") C Y - W 

for all i > ¿i. So Fi(x") fl W = 0 whenever i > io and i > ¿i which is a 
contradiction. Therefore F is lsc. 

CORROLARY 3.10. [9] Let { f i : i G D} be a net of functions from X into 

a regular space Y. If fi f , then f is continuous. 

4. Convergence of multifunctions into quasiuniform spaces 
Let (Y,M) be a quasiuniform space [7]. The conjugate quasiuniformity of 

U is denoted by U~ x . Moreover, T(jU) and T(ZY _1 ) will denote topologies on 
Y induced by U and U~l, respectively. Recall that ( Y , U ) is said to be locally 

symmetric [7] if for each U G ZV and each point y €Y there is a symmetric 
V G U such that V2(y) C U(y). It is well-known that a topological space Y 

can admit a compatible locally symmetric quasiuniformity if and only if it 
is regular. Finally, (Y,M) is called small-set symmetric [8] provided that for 
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each U &U and each open set A C Y we have A C U(A). It was shown in 
[12] that (Y,K) is small-set symmetric if and only if T{U~r) C T(U). 

DEFINITION 4.1. [5] Let X be a topological space and ( Y , M ) be a qua-
siuniform space. A net {Fi : i G D} of multifunctions from X into (Y,U) 
is said to be convergent almost quasiuniformly to F, denoted by Fi — F , 

if for each U G U and each point x G X there exists io G D such that for 
each i > io, there is a neighbourhood Gi of x such that Fi(z) C U(F(z)) 

a n d F(z) C U~\Fi(z)) f o r a l l * G G{. 

T H E O R E M 4 . 2 . Let {Fi : i G D} be a net of multifunctions from a 

topological space X into a small-set symmetric quasiuniform space (Y,U). 

If F € C m ( X , Y ) and F{ F, then Fi ^ F. 

P r o o f . For any x G X and any U £ U, choose V € U with V2 C U. 
Since (Y, l t ) is small-set symmetric and { I n t ( V ( y ) I"1 V~1(y)) : y G -^(a;)} is 
an open cover of F(x) then there is a finite set {y\, j/2, • • •, Vn} C F(x) such 
that F(x) C U L i ( V i y k ^ V - ^ y k ) ) . Since Fi -2+ F then there exist i0 G D 

and a neighbourhood G\ of x such that for all i > i0, Fi{G\) C Ufc=i V(Vk) 
and Fi(z) D V(yk) ± 0 for all 2 G G\ and all k, 1 < k < n. Furthermore, by 
continuity of F, there exists a neighbourhood Gi of x such that i^G^) C 
U L i V^iVk) a n d F(z) n V # 0 f o r a l l * G G 2 a n d a l l k, 1 < k < n. 

For any point z £ G = G\C\ G2 we have 

w * ) c ( J c v 2 ( F ( z » c w ^ ) ) 
k=i 

and 

F(z) C ( J V-\yk) C V'1 o V~\Fi{z)) C U~\Fi{z)), 

k= 1 

whenever i > io- This implies that F,- F. 

EXAMPLE 4.3. The small-set symmetry of (Y , l i ) in Theorem 4.2. cannot 
be dropped. Let X = Y = [0,+00). Topologize X by defining the basic 
neighbourhood system for x = 0 as: Bn{0) = {0 } U {x G X : x > n} for all 
n G N] and the basic neighbourhood system for x / 0 as: Bn{x) = {a;} for 
all n G N . Let U n = A ( Y ) U {(0, y) : y G Y, y > n} for all n G N and U 

be the quasiuniformity on Y generated by {Un : n G N}. Since T(U~l) is 
the discrete topology, ( Y , U ) is not small-set symmetric. Define a sequence 
of multifunctions Fn : X Y (n G N) as 

F _ / { x } > ifx<n-, 

\ [n, +00), otherwise. 
aqc 

and F(x) = { x } for aH x G X. Then Fn F, but Fn F. 
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Recall that in [4] a net {F; : i G D} of multifunctions from a topological 
space X into a quasiuniform space (Y,U ) is said to be convergent quasiuni-
formly to F, denoted by F{ F, if for each U € U there exists ¿0 G D 
such that Fi(x) C U{F(x)) and F(x) C ^ ( F ^ x ) ) for a U i e l whenever 
i > i0. 

THEOREM 4 . 4 . Let {Fi : i G D} be a net of multifunctions from a 
topological space X into a quasiuniform space (Y,H). If F G Cm(X,Y) and 
Fi F, then F{ ^ F. 

P r o o f . (1) Fi —>• F. Take an arbitrary x £ X and let W be an open 
neighbourhood of F(x) in Y. Since F(x) is compact then there exists U £14 
such that F(x) C U2(F(x)) C W. By the upper continuity of F, there exists 
an open neighbourhood G of x such that F(G) C U(F(x)). Since Fi —• F, 
there exists io G D such that Fi(z) C U(F(z)) for ail z € X whenever i > i0. 
The latter implies that 

Fi(G) C U(F(G)) C U\F(x)) C W 

for all i > io. Hence Fi F. 
(2) Fi F. Fix x G X and let W be an open subset of Y with 

F(x)f)W 0. Choose y G Wf)F(x) and U G U such that U2(y) C W. Since 
F is lsc then there exists a neighbourhood G of x such that F(z) fi U(y) / 0 
for all z G G. On the other hand, since Fi F, there exists io G D such 
that F(z) C for all z G X, whenever i > ¿o- For each z £ G, 
take p G F(z) n U(y). Then p G U'^iF^z)) but this shows that 

0 # Fi(z) n U(p) C Fi(z) n U\y) C Fi(z) n W, 

whenever i > i0. Therefore F{ -—• F. 

COROLLARY 4 . 5 . Let {Fi : i G D} be a net of multifunctions from a 
topological space X into a small-set symmetric quasiuniform space (Y,U). 
I f F G Cm(X,Y), then F{ ^ F =» Fi F =» Fi ^ F. 

EXAMPLE 4 . 6 . The hypothesis of continuity of F in Theorem 4 .4 cannot 
be dropped. Let X = [0, +oo) with the usual Euclidean topology. Let Y = 
[0, +oo) and Un = A(Y)U{(0,y) : y G Y,y > n} U { ( Y , 0 ) : y G Y} for all 
n G N. Let U be the quasiuniformity on Y generated by {Un : n G N}. 
Define 

'{0}, if x=0; 
Fn(x) = (0,x], if x < n; 

{0}, if x > n. 
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and 

F ( x ) - f { o k i f x = ° ; 
W ~ \ ( 0 , a : ] , i f x ^ O . 

Then Fn F. But F is neither use nor lsc and Fn -/—* F. 

DEFINITION 4 . 7 . A family T of multifunction from a topological space 
X into a quasiuniform space ( Y , U ) is called: 

(1) upper quasi-equicontinuous at x £ X if for each U £ Li, there exists 
a neighbourhood G of x such that F(G) C U(F(x)) for all F £ T. 

(2) lower quasi-equicontinuous at x £ X if for each U £ U, there exists 
a neighbourhood G of x such that F(z) n U(y) ± 0 for all F € T, z £ G 
and y £ F(x). 

We say that T is quasi-equicontinuous at x £ X if it is both upper 
and lower quasi-equicontinuous at £ £ X. Moreover, T is called quasi-
equicontinuous if it is quasi-equicontinuous at every point x £ X. The fol-
lowing result is a consequence of Corollary 4.5 and the remark in section 4 
of [5], 

COROLLARY 4 . 8 . Let J7 be a family of quasi-equicontinuous and point-
compact multifunctions from a compact space X into a small-set symmetric 
quasiuniform space (Y,U). If {F, F{ : i £ D} C T, then the following state-
ments are equivalent: 

( 1 ) Ft ^ F , 
(2) Ft F, 
(3) Fi F. 

Our next result is a generalization of Theorem 2 of Beer [3] and Theorem 
3 of Kowalczyk [11]. 

T H E O R E M 4 . 9 . Let {Fi : i £ D} be a net of multifunctions from a 
topological space X into a regular topological space Y and assume that {Fi : 
i £ D} is U-upper quasi-equicontinuous with respect to some compatible 
locally symmetric quasiuniformity U onY. Then 

(1) Fi F if and only if F{ F. 
(2) I f F i - ^ F and F is point-compact, then Fi —• F. 

P r o o f . (1) Suppose that Fi F. Then Gr(F) = U ^ a - M * 
F(x) = UigA"^} x LiFi(x) C LiGr(Fi), so it is sufficient to prove that 
LsGr(Fi) C Gr(F). To do this, fix (x,y) £ LsGr(Fi) and let W be any 
neighbourhood of y in Y. Let U be a compatible locally symmetric quasi-
uniformity on Y such that {Fi : i £ D} is ¿/-upper quasi-equicontinuous. 
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Choose a symmetric V G U such that V2(y) C W. Then there exists a neigh-
bourhood G of x such that for all i G D we have Fi{G) C V(Fi(x)). Since 
(x,y) G LsGr(Fi) then there is a cofinal subset E of D such that (GxF(j/) )n 
Gr(Fj) ± 0 for all j G E. Pick what xj G G and yj G V(y) n Fj(xj). Then 
Vj G V{y) n V(Fj(x)) which implies tha t 0 ± Fj(x) fl V2{y) C Fj(x) n W 
for all j G E. Thus y G LsF^x) = F(x) and (x,y) C Gr(F). 

Suppose that Fi F. Fix x € X. Then for any point y G 
LsFi(x), we have (x,y) G LsGr(Fi) = Gr(F) which implies that LsFi(x) C 
F(x). Now we have to show that F(x) C LiFi(x). Let U be chosen as in the 
above. Fix y G F(x) and let W be an arbitrary neighbourhood of y in Y. 
Then there exists a symmetric V G U such that V2(y) C W. By upper quasi-
equicontinuity of {Fi : i G D}, there exists a neighbourhood G of x such that 
for all ie D we have F f (G) C V(Fi(x)). Since (x,y) G Gr(F) = LiGr(Fi) 
then there exists i0 G D such that ( G x V ( y ) ) i ~ ) G r ( F i ) ^ 0 for all i > iQ. Thus 
we can choose (Xi ,y i ) G (G X V(y)) fi Gr(Fi) for each i > io which implies 
tha t Vi G Fi(xi) C V(Fi(x)). Therefore 0 ^ F i ( x ) nF ( y j ) C Fi{x)nV2{y) C 
Fi(x) n W whenever i > io, i.e., y G LiFi(x). 

(2) It is similar to the first part of the proof of (1), so we omit it. 

C O R O L L A R Y 4 . 1 0 . [3] Let {/„} be a pointwise equicontinuous sequence 
from a metric space X into a metric space Y. I f { f n } is pointwise convergent 
to a continuous function / , then fn / . 

C O R O L L A R Y 4 . 1 1 . [ 1 1 ] Let Y be a completely regular space andU be any 
compatible uniformity on Y. Let {Fi : i G D} be a net of multifunctions 
from a space X into (Y,U). 

(1) If {Fi : i G D} is U-upper equicontinuous and Fi F, then 

Fi F. 
(2) If {Fi : i G D} is U-upper equicontinuous at x G X and Fi F, 

then LtFi(x) = F(x). 

C O R O L L A R Y 4 . 1 2 . Let {Fi : i G D} be a net of multifunctions from a 
locally connected topological space X into a rimcompact Hausdorff topological 
space Y. If{Fi : i G D} isU-upper quasi-equicontinuous with respect to some 
compatible locally symmetric quasiuniformity U on Y, then the following 
statements are equivalent: 

( 1 ) Fi 
pc 

F] 

( 2 ) Fi 
gtc• 

F; 
( 3 )Fi cc 

F] 

( 4 ) Fi 
ptc F. 
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