

Adam Lecko

A GENERALIZATION OF ANALYTIC CONDITION
FOR CONVEXITY IN ONE DIRECTION

For $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \mathbf{C}$, $|\xi_1| \leq 1$, $|\xi_2| \leq 1$, we introduce the classes $\mathcal{C}(\delta, \xi_1, \xi_2)$ defined as follows: a function f regular in $U = \{z \in \mathbf{C} : |z| < 1\}$ of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $z \in U$, belongs to $\mathcal{C}(\delta, \xi_1, \xi_2)$ if

$$\operatorname{Re}\{e^{i\delta}(1 - \xi_1 z)(1 - \xi_2 z)f'(z)\} \geq 0 \text{ for } z \in U.$$

If $|\xi_1| = |\xi_2| = 1$, then the functions $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for δ suitable choosen according to ξ_1 and ξ_2 are convex in the direction of the imaginary axis. For $\xi_1 = \xi_2 = 0$ the functions $f \in \mathcal{C}(\delta, 0, 0)$ are of bounded boundary rotation. Some geometric properties of functions in $\mathcal{C}(\delta, \xi_1, \xi_2)$ are examined. There are given coefficient formulae and estimates in the class $\mathcal{C}(\delta, \xi_1, \xi_2)$.

0. Introduction

In this paper there are considered subclasses $\mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$, of close-to-convex functions. For each $\xi_1, \xi_2 \in \overline{U}$, $\xi_1 \neq \xi_2$ and $\delta \in (-\pi/2, \pi/2)$ suitable choosen according to ξ_1 and ξ_2 functions $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ have certain geometric property concerning to the way of mapping corresponding hyperbolic family of arcs with vertexes at $1/\xi_1$ and $1/\xi_2$. Analogously, if $\xi_1 = \xi_2 = \xi_0$, then for suitable choosen $\delta \in (-\pi/2, \pi/2)$ functions $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$ have similar geometric property concerning to the way of mapping corresponding parabolic family of arcs with vertex at $1/\xi_0$. In the case when $|\xi_1| = |\xi_2| = 1$ or $|\xi_0| = 1$, this geometric property proved in Section 2 and formulated in Corollary 2.1 is equivalent to the convexity in the direction of the imaginary axis of $f(U)$. Therefore the definition condition (1.2) of the class $\mathcal{C}(\delta, \xi_1, \xi_2)$ generalizes the well known Roberston

1991 Mathematics Subject Classification: 30C45.

Key words and phrases: univalent functions, functions convex in the direction of the imaginary axis, close-to-convex functions.

condition for convexity in one direction [10] proved finally by Royster and Ziegler [11].

In Section 4 there are found coefficient formulae and estimates in the class $\mathcal{C}(\delta, \xi_1, \xi_2)$.

1. Preliminaries

Let $U = \{z \in \mathbf{C} : |z| < 1\}$ denote the unit disk in the complex plane \mathbf{C} , $T = \partial U$ the unit circle and $\overline{U} = U \cup T$. By P we denote the class of functions p of the form $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$, $z \in U$, which are regular in U and have positive real part.

A function f regular in U is called subordinate to a function F regular in U if F is univalent in U , $f(0) = F(0)$ and $f(U) \subset F(U)$. We write then $f \prec F$ or $f(z) \prec F(z)$, $z \in U$.

A function f regular in U with $f(0) = f'(0) - 1 = 0$, is said to be starlike if $\operatorname{Re}\{zf'(z)/f(z)\} > 0$ for $z \in U$, and is said to be convex if $\operatorname{Re}\{1 + zf''(z)/f'(z)\} > 0$ for $z \in U$. It is well known that every starlike and every convex function is univalent in U .

DEFINITION 1.1. A function f of the form

$$(1.1) \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U,$$

regular in U belongs to the class $\mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$, if

$$(1.2) \quad \operatorname{Re}\{e^{i\delta}(1 - \xi_1 z)(1 - \xi_2 z)f'(z)\} \geq 0, \quad z \in U.$$

From (1.2) it follows that the assumption $|\xi_1| > 1$ or $|\xi_2| > 1$ implies that $\mathcal{C}(\delta, \xi_1, \xi_2) = \emptyset$ for every $\delta \in [-\pi/2, \pi/2]$.

If (1.2) holds in U and the left hand side of (1.2) is equal to zero at some point in U , then by the minimum principle for harmonic functions it vanishes identically in U . For this reason every function f in $\mathcal{C}(\delta, \xi_1, \xi_2)$ satisfy then the identity

$$e^{i\delta}(1 - \xi_1 z)(1 - \xi_2 z)f'(z) \equiv ai, \quad z \in U, \quad a \in \mathbf{R} \setminus \{0\}.$$

Thus by the normalization of f we see that $\delta = -\pi/2$ and $a = -1$ or $\delta = \pi/2$ and $a = 1$. Therefore from the above we have

Remark 1.2. For every fixed $\xi_0 \in \overline{U}$ the classes $\mathcal{C}(-\pi/2, \xi_0, \xi_0)$ and $\mathcal{C}(\pi/2, \xi_0, \xi_0)$ contain only the function

$$(1.3) \quad f_{-\pi/2, \xi_0, \xi_0}(z) = f_{\pi/2, \xi_0, \xi_0}(z) = \frac{z}{1 - \xi_0 z}, \quad z \in U.$$

For every fixed $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$ the classes $\mathcal{C}(-\pi/2, \xi_1, \xi_2)$ and $\mathcal{C}(\pi/2, \xi_1, \xi_2)$ contain only the function

$$(1.4) \quad f_{-\pi/2, \xi_1, \xi_2}(z) = f_{\pi/2, \xi_1, \xi_2}(z) = \frac{1}{\xi_2 - \xi_1} \log \frac{1 - \xi_1 z}{1 - \xi_2 z}, \quad \log 1 = 0, \quad z \in U.$$

Setting

$$(1.5) \quad \xi_1 = \alpha e^{-i(\mu+\nu)}, \quad \xi_2 = \beta e^{-i(\mu-\nu)}, \quad \alpha, \beta \in [0, 1], \quad \mu, \nu \in [0, \pi],$$

we can rewrite (1.2) as

$$(1.6) \quad \operatorname{Re}\{e^{i\delta}(1 - (\alpha e^{-i\nu} + \beta e^{i\nu})e^{-i\mu}z + \alpha\beta e^{-2i\mu}z^2)f'(z)\} \geq 0, \quad z \in U.$$

Hence we can formulate the following:

DEFINITION 1.3. A function f of the form (1.1) regular in U belongs to the class $\mathcal{C}(\delta, \alpha, \beta, \mu, \nu)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha, \beta \in [0, 1]$, $\mu, \nu \in [0, \pi]$, if (1.6) is satisfied.

Of course, $\mathcal{C}(\delta, \xi_1, \xi_2) = \mathcal{C}(\delta, \alpha, \beta, \mu, \nu)$ for parameters described by (1.5).

From (1.2) it follows that if $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for $\delta \in (-\pi/2, \pi/2)$, then

$$e^{i\delta}(1 - \xi_1 z)(1 - \xi_2 z)f'(z) = q(z), \quad z \in U,$$

where q is a function regular in U , $\operatorname{Re} q(z) > 0$ for $z \in U$ and $q(0) = e^{i\delta}$. Thus there exists a function $p \in P$ such that $q(z) = p(z) \cos \delta + i \sin \delta$ and consequently

$$(1.7) \quad e^{i\delta}(1 - \xi_1 z)(1 - \xi_2 z)f'(z) = p(z) \cos \delta + i \sin \delta, \quad z \in U.$$

By (1.7) and by the fact that $p(z) \prec (1+z)/(1-z)$, $z \in U$, we see that $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for $\delta \in (-\pi/2, \pi/2)$ if and only if

$$(1.8) \quad (1 - \xi_1 z)(1 - \xi_2 z)f'(z) \prec \frac{1 + e^{-2i\delta}z}{1 - z}, \quad z \in U.$$

For each $\xi_1, \xi_2 \in \overline{U}$ let us define the function

$$(1.9) \quad h(\xi_1, \xi_2; z) = \frac{z}{(1 - \xi_1 z)(1 - \xi_2 z)}, \quad z \in U.$$

Hence and by (1.7) we have

$$(1.10) \quad zf'(z) = e^{-i\delta}(p(z) \cos \delta + i \sin \delta)h(\xi_1, \xi_2; z), \quad z \in U.$$

The inequality (1.6) with additional conditions on parameters $\delta, \alpha, \beta, \mu, \nu$, reduces to well known conditions for subclasses of univalent functions.

For $\alpha = \beta = 1$ and $\delta = \mu - \pi/2$ the inequality (1.6) is due to Robertson [10] and characterizes the class $\mathcal{C}(\mu - \pi/2, 1, 1, \mu, \nu)$ as the subclass of the class $CV(i)$ of functions convex in the direction of the imaginary axis. The equivalence of analytic condition (1.6) for such chosen parameters and geometric definition of the class $CV(i)$ have done Royster and Ziegler [11] (see

also Burniak, Lewandowski, Pituch [1] and Koepf [5]). Directly, they proved that

$$CV(i) = \bigcup_{\mu, \nu \in [0, \pi]} C(\mu - \pi/2, 1, 1, \mu, \nu).$$

In [3] Hengartner and Schober examined the subclasses $C(0, 1, 1, \pi/2, \pi/2)$, $C(-\pi/2, 1, 1, 0, 0)$ and $C(-\pi/2, 1, 1, 0, \pi)$ distinguished in $CV(i)$.

If $\alpha = \beta = 0$, then in view of (1.5) we have $\xi_1 = \xi_2 = 0$. For fixed $\delta \in (-\pi/2, \pi/2)$ the functions $f \in \mathcal{C}(\delta, 0, 0)$ are called of bounded rotation with argument δ and are univalent in U . This criterium of univalence is due to Noshiro [9] and Warshawski [12].

The classes $C(\mu - \pi/2, \alpha, \alpha, \mu, \nu)$ and their subclasses where investigated in [6–7].

2. Geometric properties

In this section we deal with some geometric properties of the classes $\mathcal{C}(\delta, \xi_1, \xi_2)$ for $\delta \in (-\pi/2, \pi/2)$.

Let us fix ξ_1 and ξ_2 in \overline{U} . We will consider the following cases:

1. $\xi_k \neq 0$ for every $k \in \{1, 2\}$ and $\operatorname{Re} \xi_1 \neq \operatorname{Re} \xi_2$.
2. $0 = \xi_2 \neq \xi_1$ and $\operatorname{Re} \xi_1 \neq 0$ or $0 = \xi_1 \neq \xi_2$ and $\operatorname{Re} \xi_2 \neq 0$.
3. $\xi_1 = \xi_2 \neq 0$.
4. $\xi_1 = \xi_2 = 0$.

1. Assume first that $\xi_k \neq 0$ for every $k \in \{1, 2\}$ and $\operatorname{Re} \xi_2 \neq \operatorname{Re} \xi_1$.

Let us consider the hyperbolic family $\tilde{\Gamma}_h(\xi_1, \xi_2)$ of all circles $\tilde{\gamma}$ going through the fixed points $1/\xi_1$ and $1/\xi_2$. By $\Gamma_h(\xi_1, \xi_2)$ we denote the family of entire circular arcs γ obtained by the restriction of the circles $\tilde{\gamma} \in \tilde{\Gamma}_h(\xi_1, \xi_2)$ to the disk U .

1^o Suppose now that

$$(2.1) \quad \operatorname{Re} \xi_2 > \operatorname{Re} \xi_1 \text{ and } 0 < \arg\{\xi_2/\xi_1\} \leq \pi.$$

Observe that there exists an arc $\tilde{\gamma}^\circ \in \tilde{\Gamma}_h(\xi_1, \xi_2)$ such that $\tilde{\gamma}^\circ \cap U = \emptyset$. Let us parametrize each circle $\tilde{\gamma}$ in $\tilde{\Gamma}_h(\xi_1, \xi_2)$ as follows:

$$(2.2) \quad \tilde{\gamma} = \tilde{\gamma}_\tau : z = z_\tau(t) = \frac{1/\xi_1 - 1/\xi_2}{1 - t e^{i\tau}} t e^{i\tau},$$

$$\tau \in (-\tau_0, \pi - \tau_0], t \in (-\infty, \infty],$$

where $\tau_0 \in [0, \pi)$ is choosen in a such way in order to $\tilde{\gamma}^\circ = \tilde{\gamma}_{\tau_0}$. Every circle $\tilde{\gamma}_\tau \in \tilde{\Gamma}_h(\xi_1, \xi_2)$, $\tau \in (-\tau_0, \pi - \tau_0]$, achieve the points $1/\xi_1$ and $1/\xi_2$ for $t = 0$ and $t = \infty$ respectively.

We parametrize every arc $\gamma \in \Gamma_h(\xi_1, \xi_2)$ also by (2.2), where $\tau \in \mathcal{I} \subseteq (-\tau_0, \pi - \tau_0]$ and $t \in \mathcal{J}(\tau) \subseteq (-\infty, \infty]$ for every fixed $\tau \in \mathcal{I}$. Since parameter

t has constant sign for all points $z_\tau(t)$ lying either in the disk or outside of the disk with the boundary of $\tilde{\gamma}_{\tau_0}$, we see that $\mathcal{J}(\tau) \subseteq (0, \infty]$ or $\mathcal{J}(\tau) \subseteq (-\infty, 0)$ for each $\tau \in \mathcal{I}$. But for each $\xi_1, \xi_2 \in \overline{U}$ there exists $\gamma_{\tau_1} \in \Gamma_h(\xi_1, \xi_2)$ such that $z_{\tau_1}(t_0) = 0$ for some $t_1 \in \mathcal{J}(\tau_1)$. By (2.2) and (2.1) we have $\tau_1 = \arg\{\xi_2/\xi_1\} \in (0, \pi]$ and $t_0 = |\xi_2/\xi_1|$. For this reason $\mathcal{J}(\tau) \subseteq (0, \infty]$ for every fixed $\tau \in \mathcal{I}$.

By (2.1) we have $\operatorname{Re}\{1/(\xi_2 - \xi_1)\} > 0$ and therefore we set

$$(2.3) \quad \delta = \arg \frac{1}{\xi_2 - \xi_1} \in (-\pi/2, \pi/2).$$

From (2.2) it follows that

$$(2.4) \quad (1 - \xi_1 z_\tau(t))(1 - \xi_2 z_\tau(t)) = \frac{(\xi_2 - \xi_1)^2}{\xi_1 \xi_2} \frac{te^{i\tau}}{(1 - te^{i\tau})^2}.$$

Consequently, since $t \in \mathcal{J}(\tau)$ is positive, we see by (1.2), (2.2) and (2.4) that for every function $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, where δ is given by (2.3), and for every arc $\gamma_\tau \in \Gamma_h(\xi_1, \xi_2)$ holds

$$\begin{aligned} (2.5) \quad & \frac{d}{dt} \operatorname{Re} f(z_\tau(t)) \\ &= \operatorname{Re} \left\{ \frac{d}{dt} \left(\frac{1/\xi_1 - (1/\xi_2)te^{i\tau}}{1 - te^{i\tau}} \right) f'(z_\tau(t)) \right\} \\ &= \operatorname{Re} \left\{ \frac{\xi_2 - \xi_1}{\xi_1 \xi_2} \frac{e^{i\tau}}{(1 - te^{i\tau})^2} f'(z_\tau(t)) \right\} \\ &= \frac{1}{t} \operatorname{Re} \left\{ \frac{1}{\xi_2 - \xi_1} \frac{(\xi_2 - \xi_1)^2}{\xi_1 \xi_2} \frac{te^{i\tau}}{(1 - te^{i\tau})^2} f'(z_\tau(t)) \right\} \\ &= \frac{1}{t|\xi_2 - \xi_1|} \operatorname{Re} \{ e^{i\delta} (1 - \xi_1 z_\tau(t))(1 - \xi_2 z_\tau(t)) f'(z_\tau(t)) \} > 0, \\ & \quad \tau \in \mathcal{I}, t \in \mathcal{J}(\tau). \end{aligned}$$

If $\pi < \arg\{\xi_2/\xi_1\} \leq 2\pi$, then we parametrize circles $\tilde{\gamma} \in \tilde{\Gamma}_h(\xi_1, \xi_2)$ also by (2.2) but now we set $\tau \in (\pi - \tau_0, 2\pi - \tau_0]$ where τ_0 is chosen in the interval $[\pi, 2\pi]$. In the same manner as in the above we deduce that (2.5) is satisfied for this case.

2⁰ If $\operatorname{Re} \xi_2 < \operatorname{Re} \xi_1$, then repeating exactly considerations from Part 1⁰, with ξ_1 in place of ξ_2 and vice versa, we have that (2.5) holds also.

In consequence, from (2.5) it follows that every arc $\gamma_\tau \in \Gamma_h(\xi_1, \xi_2)$ is mapped by every function $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, for δ given by (2.3), onto an analytic arc $f(\gamma_\tau)$ which has with every vertical line at most one common point.

In the case when $|\xi_1| = |\xi_2| = 1$ the above geometric property implies convexity in the direction of the imaginary axis of the domain $f(U)$ (see [3]).

2. Let $0 = \xi_2 \neq \xi_1$ and $\operatorname{Re} \xi_1 \neq 0$. Let us set

$$(2.6) \quad \delta = \begin{cases} \arg\{1/\xi_1\}, & \text{if } \arg\{1/\xi_1\} \in (-\pi/2, \pi/2) \\ \arg\{1/\xi_1\} - \pi, & \text{if } \arg\{1/\xi_1\} \in (\pi/2, 3\pi/2). \end{cases}$$

Let us consider the degenerate hyperbolic family $\tilde{\Gamma}_h(\xi_1, 0)$ of all lines $\tilde{\gamma}$ going through the fixed point $1/\xi_1$. By $\Gamma_h(\xi_1, 0)$ we denote the family of entire segments γ obtained by the restriction of the lines $\tilde{\gamma} \in \tilde{\Gamma}_h(\xi_1, 0)$ to the disk U .

If $\arg\{1/\xi_1\} \in (-\pi/2, \pi/2)$, then we parametrize the family $\tilde{\Gamma}_h(\xi_1, 0)$ as follows:

$$(2.7) \quad \tilde{\gamma} = \tilde{\gamma}_\tau : z = z_\tau(t) = \frac{1}{\xi_1}(1 - tie^{i\tau}), \quad \tau \in (0, \pi], \quad t \in (-\infty, \infty].$$

The family $\Gamma_h(\xi_1, 0)$ will be also parametrized by (2.7), where by an easy computation of the equation $|z_\tau(t)| = 1$, we obtain $\tau \in (\tau_0, \pi - \tau_0)$, $\tau_0 = \arccos(\alpha^2)$, and $t \in (t_0(\tau), t_1(\tau))$, where $t_0(\tau) = -\sin \tau - \sqrt{\alpha^2 - \cos^2(\tau)}$, $t_1(\tau) = -\sin \tau + \sqrt{\alpha^2 - \cos^2(\tau)}$.

Since $t \in (t_0(\tau), t_1(\tau))$ is negative for each $\tau \in (\tau_0, \pi - \tau_0)$, by (2.7) and (1.2) we deduce that for every function $f \in \mathcal{C}(\delta, \xi_1, 0)$, where δ is given by (2.6), and for every arc $\gamma_\tau \in \Gamma_h(\xi_1, 0)$ holds

$$(2.8) \quad \begin{aligned} \frac{d}{dt} \operatorname{Re} f(z_\tau(t)) &= \operatorname{Re} \left\{ \frac{d}{dt} \left(\frac{1}{\xi_1}(1 - tie^{i\tau}) \right) f'(z_\tau(t)) \right\} \\ &= \operatorname{Re} \left\{ -\frac{1}{\xi_1} ie^{i\tau} f'(z_\tau(t)) \right\} \\ &= -\frac{1}{t|\xi_1|} \operatorname{Re} \left\{ e^{i\delta} (1 - \xi_1 z_\tau(t)) f'(z_\tau(t)) \right\} > 0 \end{aligned}$$

for $t \in (t_0(\tau), t_1(\tau))$.

If $\arg\{1/\xi_1\} \in (\pi/2, 3\pi/2)$, then we parametrize the family $\tilde{\Gamma}_h(\xi_1, 0)$ also by (2.7) but now we set $\tau \in (\pi, 2\pi]$. Hence, every arc $\gamma \in \Gamma_h(\xi_1, 0)$ is also parametrized by (2.7), where $\tau \in (\pi + \tau_0, 2\pi - \tau_0)$ and $t \in (t_0(\tau), t_1(\tau))$. Since now $t \in (t_0(\tau), t_1(\tau))$ is positive for each $\tau \in (\pi + \tau_0, 2\pi - \tau_0)$, it follows that (2.8) is satisfied for δ given by (2.6).

Repeating the above considerations with ξ_1 in place of ξ_2 and vice versa, we see that (2.8) is also true for the case $0 = \xi_1 \neq \xi_2$ and $\operatorname{Re} \xi_2 \neq 0$.

3. Let us assume that $\xi_1 = \xi_2 = \xi_0 \neq 0$. By (1.5) we first set $\xi_0 = \alpha e^{-i\mu}$, $\alpha \in (0, 1]$, $\mu \in [0, \pi]$, i.e. $\nu = 0$. Fix $\theta \in [\mu + \arcsin \alpha, \mu + \pi - \arcsin \alpha] \setminus \{2\mu \pm \pi/2\}$. From this, $2\mu - \theta \in [\mu + \arcsin \alpha - \pi, \mu - \arcsin \alpha] \setminus \{\pm\pi/2\} \subset$

$(-\pi, \pi) \setminus \{\pm\pi/2\}$. Let us set

$$(2.9) \quad \delta = \begin{cases} 2\mu - \theta + \pi, & \text{if } 2\mu - \theta \in (-\pi, -\pi/2) \\ 2\mu - \theta, & \text{if } 2\mu - \theta \in (-\pi/2, \pi/2) \\ 2\mu - \theta - \pi, & \text{if } 2\mu - \theta \in (\pi/2, \pi). \end{cases}$$

We consider now the parabolic family $\tilde{\Gamma}_p(\theta, \xi_0)$ of all circles $\tilde{\gamma}$ containing fixed point $1/\xi_0$ and tangent at $1/\xi_0$ to the line having the direction θ . Let us denote by $\Gamma_p(\theta, \xi_0)$ the family of entire circular arcs γ which are the restrictions of the circles $\tilde{\gamma} \in \tilde{\Gamma}_p(\theta, \xi_0)$ to the disk U .

We parametrize the family $\tilde{\Gamma}_p(\theta, \xi_0)$ as follows:

$$(2.10) \quad \tilde{\gamma} = \tilde{\gamma}_\tau : z = z_\tau(t) = c\tau(1 + e^{it})ie^{i\theta} + 1/\xi_0, \quad \tau \in (-\infty, \infty), \quad t \in [0, 2\pi),$$

where $c = 1$ or $c = -1$. Let every arc $\gamma_\tau \in \Gamma_p(\theta, \xi_0)$ be also parametrized by (2.10) where $\tau \in \mathcal{I} \subseteq (-\infty, \infty)$ and $t \in \mathcal{J}(\tau) \subseteq [0, 2\pi)$ for every fixed $\tau \in \mathcal{I}$. Since the line of the direction θ has no common points with the disk U we see that $\mathcal{I} \subseteq (-\infty, 0)$ or $\mathcal{I} \subseteq (0, \infty)$.

Assume now that $2\mu - \theta \in (-\pi, -\pi/2) \cup (\pi/2, \pi)$. We set then $c = -1$ in (2.10). By (2.10) we see that the open halfline $\{z_\tau(0) : \tau \in (-\infty, 0)\}$ and the disk U lie in the same halfplane which has the line of the direction θ as its boundary. In consequence, $\mathcal{I} \subseteq (-\infty, 0)$.

From (2.10) it follows that

$$(2.11) \quad (1 - \xi_0 z_\tau(t))^2 = -4\xi_0^2 \tau^2 \cos^2(t/2) e^{it} e^{2i\theta}.$$

Therefore, for every arc $\gamma_\tau \in \Gamma_p(\theta, \xi_0)$ and for every function $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$, where δ is given by (2.9), we conclude from (2.10), (2.11), (1.2) and from the fact that $\tau \in \mathcal{I}$ is negative that

$$\begin{aligned} (2.12) \quad & \frac{d}{dt} \operatorname{Re} f(z_\tau(t)) \\ &= \operatorname{Re} \left\{ \frac{d}{dt} (-\tau(1 + e^{it})ie^{i\theta} + 1/\xi_0) f(z_\tau(t)) \right\} \\ &= \operatorname{Re} \left\{ \tau e^{i\theta} e^{it} f'(z_\tau(t)) \right\} \\ &= \operatorname{Re} \left\{ \left(\frac{-e^{-i(\theta+\delta)}}{4\tau \xi_0^2 \cos^2(t/2)} \right) e^{i\delta} (-4\xi_0^2 \tau^2 \cos^2(t/2) e^{it} e^{2i\theta}) f'(z_\tau(t)) \right\} \\ &= \frac{-1}{4|\xi_0|^2 \tau \cos^2(t/2)} \operatorname{Re} \{ e^{i\delta} (1 - \xi_0 z_\tau(t))^2 f'(z_\tau(t)) \} > 0, \quad t \in \mathcal{J}(\tau). \end{aligned}$$

In the case when $2\mu - \theta \in (-\pi/2, \pi/2)$, we set $c = 1$ in (2.10). For this reason the open halfline $\{z_\tau(0) : \tau \in (0, \infty)\}$ and the disk U lie in

the same halfplane which has the line of the direction θ as the boundary. Consequently, $\mathcal{I} \subseteq (0, \infty)$. On account of this, (2.12) is also satisfied for this case.

The same inequality (2.12) can be drawn for $\xi_0 = -\alpha e^{-i\mu}$, $\alpha \in (0, 1]$, $\mu \in [0, \pi]$, i.e. for $\nu = \pi$, by similar considerations to that above.

4. Let $\xi_1 = \xi_2 = 0$ and $\delta \in (-\pi/2, \pi/2)$ be arbitrary. Let us take into account the family $\Gamma_p(\delta, 0)$ of the entire segments γ parametrized as follows:

$$(2.13) \quad \begin{aligned} \gamma &= \gamma_\tau : z = z_\tau(t) = e^{i\delta}(t + i\tau), \\ \tau &\in (-1, 1), \quad t \in (-t_0, t_0), \quad t_0 = \sqrt{1 - \tau^2} \end{aligned}$$

($\Gamma_p(\delta, 0)$ is the subfamily of the degenerate parabolic family $\tilde{\Gamma}_p(\delta, 0)$ which contains all lines of the direction δ).

For every arc $\gamma_\tau \in \Gamma_p(\delta, 0)$ and for every function $f \in \mathcal{C}(\delta, 0, 0)$ by (2.13) and (1.2) we have

$$(2.14) \quad \frac{d}{dt} \operatorname{Re} f(z_\tau(t)) = \operatorname{Re} \{ e^{i\delta} f'(z_\tau(t)) \} > 0, \quad t \in (-t_0, t_0).$$

Finally, the inequalities (2.5), (2.8), (2.12) and (2.14) may be summarized geometrically by saying that

COROLLARY 2.1. 1. Every function $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, for fixed $\xi_1, \xi_2 \in \overline{U}$ such that $\operatorname{Re} \xi_1 \neq \operatorname{Re} \xi_2$ and for $\delta \in (-\pi/2, \pi/2)$ suitable choosen according to ξ_1 and ξ_2 maps a certain hyperbolic family of circular arcs lying in the disk U and dependent on ξ_1 and ξ_2 onto the family of analytic arcs each of them have with every vertical line at most one common point.

2. Every function $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$ for fixed $\xi_0 \in \overline{U}$ and $\delta \in (-\pi/2, \pi/2)$ suitable choosen according to ξ_0 and fixed direction $\theta \in [0, 2\pi)$ maps a certain parabolic family of circular arcs lying in the disk U and dependent on θ and ξ_0 onto the family of analytic arcs each of them have with every vertical line at most one common point.

THEOREM 2.2. If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$, then f is univalent in U .

Proof. By the fact that $|\xi_1| \leq 1$ and $|\xi_2| \leq 1$ it follows from (1.9) that

$$\begin{aligned} \operatorname{Re} \left\{ \frac{zh'(\xi_1, \xi_2; z)}{h(\xi_1, \xi_2; z)} \right\} &= \operatorname{Re} \frac{1 - \xi_1 \xi_2 z^2}{(1 - \xi_1 z)(1 - \xi_2 z)} \\ &= \frac{1}{2} \operatorname{Re} \left\{ \frac{1 + \xi_1 z}{1 - \xi_1 z} + \frac{1 + \xi_2 z}{1 - \xi_2 z} \right\} > 0, \quad z \in U. \end{aligned}$$

Hence the function $h(\xi_1, \xi_2; z)$, $z \in U$, is starlike and univalent in U for every fixed $\xi_1, \xi_2 \in \overline{U}$.

For each $\xi_0 \in \overline{U}$ the function $f_{-\pi/2, \xi_0, \xi_0}$ defined by (1.3) is evidently convex and univalent in U . Therefore, by Remark 1.2 the classes $\mathcal{C}(-\pi/2, \xi_0, \xi_0)$ and $\mathcal{C}(\pi/2, \xi_0, \xi_0)$ contain only univalent functions.

For every $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$ by (1.4) holds

$$f_{-\pi/2, \xi_1, \xi_2}(z) = \int_0^z \frac{h(\xi_1, \xi_2; u)}{u} du, \quad z \in U.$$

In consequence, by Alexander's Theorem ([2], vol. I, p. 115), the function $f_{-\pi/2, \xi_1, \xi_2}$ is convex and univalent in U . Hence, and on account of Remark 1.2 the classes $\mathcal{C}(-\pi/2, \xi_1, \xi_2)$ and $\mathcal{C}(\pi/2, \xi_1, \xi_2)$ contain only univalent functions.

Let us assume now that $\delta \in (-\pi/2, \pi/2)$. By this, for every function $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ holds

$$\operatorname{Re} \left\{ e^{i\delta} \frac{zf'(z)}{h(\xi_1, \xi_2; z)} \right\} = \operatorname{Re} \{ e^{i\delta} (1 - \xi_1 z)(1 - \xi_2 z) f'(z) \} > 0, \quad z \in U.$$

Hence it follows that f is close-to-convex and univalent in U (see [4], [2, vol. II, p. 51]).

Putting $p_\varepsilon(z) = (1 + \varepsilon z)/(1 - \varepsilon z)$, $\varepsilon \in T$, $z \in U$, to (1.7) we see that for each $\delta \in (-\pi/2, \pi/2)$, $\xi_1, \xi_2 \in \overline{U}$, the function $f_{\delta, \xi_1, \xi_2}(\varepsilon; z)$, where $\varepsilon \in T$ is fixed and $z \in U$, being the solution of the equation

$$(2.15) \quad f'_{\delta, \xi_1, \xi_2}(\varepsilon; z) = \frac{1 + e^{-2i\delta} \varepsilon z}{(1 - \xi_1 z)(1 - \xi_2 z)(1 - \varepsilon z)},$$

belongs to the class $\mathcal{C}(\delta, \xi_1, \xi_2)$.

For each $\delta \in [-\pi/2, \pi/2]$ we obtain from (2.15) by a simple integration the following

COROLLARY 2.3. 1. *If $\xi_1, \xi_2 \in \overline{U}$, $\xi_1 \neq \xi_2$, $\varepsilon \in T$ and $\varepsilon \neq \xi_i$, $i = 1, 2$, then*

$$(2.16) \quad f_{\delta, \xi_1, \xi_2}(\varepsilon; z) = e^{-i\delta} \left\{ \frac{1}{\xi_1 - \xi_2} \left(\frac{\xi_2 e^{i\delta} + \varepsilon e^{-i\delta}}{\xi_2 - \varepsilon} \log(1 - \xi_2 z) - \frac{\xi_1 e^{i\delta} + \varepsilon e^{-i\delta}}{\xi_1 - \varepsilon} \log(1 - \xi_1 z) \right) \right\} - \frac{2\varepsilon \cos \delta}{(\varepsilon - \xi_1)(\varepsilon - \xi_2)} \log(1 - \varepsilon z), \quad \log 1 = 0, \quad z \in U.$$

2. If $\xi_1 \in T$, $\xi_2 \in \overline{U}$, $\xi_1 \neq \xi_2$, $\varepsilon \in T$ and $\varepsilon = \xi_1$, then

$$(2.17) \quad f_{\delta, \xi_1, \xi_2}(\xi_1; z) = \frac{e^{-i\delta}}{\xi_1 - \xi_2} \left\{ \frac{2\xi_1 z \cos \delta}{1 - \xi_1 z} + \frac{\xi_2 e^{i\delta} + \xi_1 e^{-i\delta}}{\xi_1 - \xi_2} \log \frac{1 - \xi_1 z}{1 - \xi_2 z} \right\},$$

$\log 1 = 0$, $z \in U$.

If $\xi_2 \in T$, $\xi_1 \in \overline{U}$, $\xi_1 \neq \xi_2$, $\varepsilon \in T$ and $\varepsilon = \xi_2$, then $f_{\delta, \xi_1, \xi_2}(\xi_2; z)$ is of the form (2.17) with ξ_1 in place of ξ_2 and vice versa.

3. If $\xi_0 \in \overline{U}$, $\varepsilon \in T$ and $\varepsilon \neq \xi_0$, then

$$(2.18) \quad f_{\delta, \xi_0, \xi_0}(\varepsilon; z) = \frac{e^{-i\delta}}{\xi_0 - \varepsilon} \left\{ (\xi_0 e^{i\delta} + \varepsilon e^{-i\delta}) \frac{z}{1 - \xi_0 z} + \frac{2\varepsilon \cos \delta}{\xi_0 - \varepsilon} \log \frac{1 - \xi_0 z}{1 - \varepsilon z} \right\},$$

$\log 1 = 0$, $z \in U$.

4. If ξ_0 , $\varepsilon \in T$ and $\varepsilon = \xi_0$, then

$$(2.19) \quad f_{\delta, \xi_0, \xi_0}(\xi_0; z) = \frac{z - i\xi_0 e^{-i\delta} z^2 \sin \delta}{(1 - \xi_0 z)^2}, \quad z \in U.$$

3. Coefficient formulae and estimates

In this section we deal with coefficient formulae and estimates for functions in the class $\mathcal{C}(\delta, \xi_1, \xi_2)$.

For each $\delta \in [-\pi/2, \pi/2]$, $\alpha, \beta \in [0, 1]$ and $\nu \in [0, \pi]$ let us introduce

$$C_{\delta, \alpha, \beta}(\nu) = \bigcup_{\mu \in [0, \pi]} C(\delta, \alpha, \beta, \mu, \nu), \quad C_{\delta, \alpha, \beta} = \bigcup_{\mu, \nu \in [0, \pi]} C(\delta, \alpha, \beta, \mu, \nu).$$

It is easy to check that for each $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$ the function (1.9) is of the form

$$(3.1) \quad h(\xi_1, \xi_2; z) = z + \sum_{n=2}^{\infty} A_n z^n, \quad z \in U,$$

where

$$(3.2) \quad A_n = \frac{\xi_1^n - \xi_2^n}{\xi_1 - \xi_2} = \frac{\beta^n e^{in\nu} - \alpha^n e^{-in\nu}}{\beta e^{i\nu} - \alpha e^{-i\nu}} e^{-i(n-1)\mu}, \quad n = 2, 3, \dots$$

For each $\xi_0 \in \overline{U}$ we have

$$(3.3) \quad h(\xi_0, \xi_0; z) = \frac{z}{(1 - \xi_0 z)^2} = z + \sum_{n=2}^{\infty} n \xi_0^{n-1} z^n, \quad z \in U.$$

Let $M[0, 2\pi]$ denote the set of real-valued nondecreasing functions $m = m(t)$, $t \in [0, 2\pi]$, such that $\int_0^{2\pi} dm(t) = 2\pi$.

THEOREM 3.1. *If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$, and f is of the form (1.1), then for $n = 2, 3, \dots$, holds*

$$(3.4) \quad a_n = \frac{A_n}{n} + \frac{e^{-i\delta} \cos \delta}{\pi n} \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} A_k e^{-i(n-k)t} \right) dm(t),$$

where $m \in M[0, 2\pi]$ and A_k are given by (3.2).

If $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_0 \in \overline{U}$, and f is of the form (1.1), then

$$(3.5) \quad a_n = \xi_0^{n-1} + \frac{e^{-i\delta} \cos \delta}{\pi n} \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} k \xi_0^{k-1} e^{-i(n-k)t} \right) dm(t),$$

$n = 2, 3, \dots, m \in M[0, 2\pi]$.

Proof. 1. From (1.4) we have that for each $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$ holds $f'_{-\pi/2, \xi_1, \xi_2}(z) = h(\xi_1, \xi_2; z)/z$, $z \in U$. Therefore (3.1) and (3.2) yields that the coefficients of the functions $f_{-\pi/2, \xi_1, \xi_2}$ and $f_{\pi/2, \xi_1, \xi_2}$ are of the form (3.4) for $\delta = -\pi/2$ and $\delta = \pi/2$, respectively.

In the same manner, from (1.3) it follows that for each $\xi_0 \in \overline{U}$ holds $f'_{-\pi/2, \xi_0, \xi_0}(z) = h(\xi_0, \xi_0; z)/z$, $z \in U$, which gives in view of (3.3) that the coefficients of the functions $f_{-\pi/2, \xi_0, \xi_0}$ and $f_{\pi/2, \xi_0, \xi_0}$ are of the form (3.5) for $\delta = -\pi/2$ and $\delta = \pi/2$, respectively.

2. Let now f be of the form (1.1) and $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for fixed $\delta \in (-\pi/2, \pi/2)$, $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$. Then there exists $p \in P$ of the form $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$, $z \in U$, such that (1.10) is satisfied. Hence using (3.1) we obtain

$$(3.6) \quad z + \sum_{n=2}^{\infty} n a_n z^n = \left(z + \sum_{n=2}^{\infty} A_n z^n \right) \left(1 + e^{-i\delta} \cos \delta \sum_{n=1}^{\infty} p_n z^n \right).$$

Comparing coefficients in (3.6) we get

$$(3.7) \quad \begin{aligned} 2a_2 &= A_2 + p_1 e^{-i\delta} \cos \delta, \dots, \\ n a_n &= A_n + e^{-i\delta} \cos \delta (p_{n-1} + \sum_{k=2}^{n-1} A_k p_{n-k}), \quad n = 2, 3, \dots \end{aligned}$$

Using well known formulae

$$p_n = \frac{1}{\pi} \int_0^{2\pi} e^{-int} dm(t), \quad n \in \mathbb{N}, \quad m \in M[0, 2\pi],$$

for the coefficients p_n of the functions $p \in P$ (see [2], vol. I, p. 96), we have by (3.7),

$$n a_n = A_n + \frac{e^{-i\delta} \cos \delta}{\pi} \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} A_k e^{-i(n-k)t} \right) dm(t)$$

$n = 2, 3, \dots, m \in M[0, 2\pi]$. This gives (3.4).

3. For any function $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$, $\delta \in (-\pi/2, \pi/2)$, $\xi_0 \in \overline{U}$, we argue similar to Part 2 using now (1.10) and (3.3). Consequently we get

$$(3.8) \quad na_n = n\xi_0^{n-1} + e^{-i\delta} \cos \delta \left(p_{n-1} + \sum_{k=2}^{n-1} k\xi_0^{k-1} p_{n-k} \right), \quad n = 2, 3, \dots$$

Hence we obtain (3.5).

This completes the proof of the theorem.

Let now $|\xi_1| = |\xi_2| = \alpha \in [0, 1]$. If $\xi_1 \neq \xi_2$, then taking into account (1.5) we see that $\alpha \in (0, 1]$ and $\nu \in (0, \pi)$. For this reason and by (3.2) we have

$$(3.9) \quad A_n = \alpha^{n-1} e^{-i(n-1)\mu} \frac{\sin n\nu}{\sin \nu}.$$

If $\xi_1 = \xi_2 \neq 0$, then $\nu = 0$ or $\nu = \pi$ in (1.5). Thus by (3.9) and Theorem 3.1 we get the following

COROLLARY 3.2. *If $f \in C(\delta, \alpha, \alpha, \mu, \nu)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, $\mu \in [0, \pi]$, $\nu \in (0, \pi)$, and f is of the form (1.1), then*

$$(3.10) \quad a_n = \frac{1}{n} \left(\frac{\sin n\nu}{\sin \nu} \alpha^{n-1} e^{-i(n-1)\mu} + \frac{e^{-i\delta} \cos \delta}{\pi} \right. \\ \left. \times \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} \frac{\sin k\nu}{\sin \nu} \alpha^{k-1} e^{-i(k-1)\mu} e^{-i(n-k)t} \right) dm(t) \right),$$

$n = 2, 3, \dots, m \in M[0, 2\pi]$.

If $f \in C(\delta, \alpha, \alpha, \mu, 0)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, $\mu \in [0, \pi]$, and f is of the form (1.1), then

$$(3.11) \quad a_n = \alpha^{n-1} e^{-i(n-1)\mu} \\ + \frac{e^{-i\delta} \cos \delta}{\pi n} \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} k\alpha^{k-1} e^{-i(k-1)\mu} e^{-i(n-k)t} \right) dm(t),$$

$n = 2, 3, \dots, m \in M[0, 2\pi]$.

If $f \in C(\delta, \alpha, \alpha, \mu, \pi)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, $\mu \in [0, \pi]$, and f is of the form (1.1), then

$$(3.12) \quad a_n = (-1)^{n+1} \alpha^{n-1} e^{-i(n-1)\mu} \\ + \frac{e^{-i\delta} \cos \delta}{\pi n} \int_0^{2\pi} \left(e^{-i(n-1)t} + \sum_{k=2}^{n-1} (-1)^{k+1} k\alpha^{k-1} e^{-i(k-1)\mu} e^{-i(n-k)t} \right) dm(t),$$

$n = 2, 3, \dots, m \in M[0, 2\pi]$.

Setting $\delta = \mu - \pi/2$ and $\alpha = 1$ into formulae (3.10) - (3.12) we obtain formulae for the coefficients in the class $C(\mu - \pi/2, 1, 1, \mu, \nu)$. Setting $\alpha = 0$ into (3.10)-(3.12) we get formulae for the coefficients in the class $C(\delta, 0, 0)$.

Especially, putting $\nu = \pi/2$ into the formula (3.10) it follows the following

COROLLARY 3.3. If $f \in C(\delta, \alpha, \alpha, \mu, \pi/2)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, $\mu \in [0, \pi]$, and f is of the form (1.1), then

$$a_{2k} = \frac{e^{-i\delta} \cos \delta}{2k\pi} \int_0^{2\pi} \left(e^{-i(2k-1)t} + \sum_{j=2}^k ((-1)^{j+1} \alpha^{2(j-1)} e^{-2(j-1)i\mu} e^{-i(2k-(2j-1))t}) \right) dm(t),$$

$$a_{2k+1} = \frac{1}{2k+1} \left((-1)^k \alpha^{2k} e^{-2ki\mu} + \frac{e^{-i\delta} \cos \delta}{\pi} \times \int_0^{2\pi} \left(e^{-2kit} + \sum_{j=2}^k (-1)^{j+1} \alpha^{2(j-1)} e^{-2(j-1)i\mu} e^{-2(k-j+1)it} \right) dm(t) \right),$$

$$k \in \mathbb{N}, m \in M[0, 2\pi].$$

As a consequence of Theorem 3.1 we can find the set of variability of the system (a_2, a_3) of the coefficients of the functions f in $\mathcal{C}(\delta, \xi_1, \xi_2)$.

COROLLARY 3.4. The region V_3 of values of the system (a_2, a_3) of the coefficients of the functions $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in (-\pi/2, \pi/2)$, $\xi_1, \xi_2 \in \overline{U}$, of the form (1.1) is the closed convex hull of the curve whose equation is following

$$w_2 = e^{-it} e^{-i\delta} \cos \delta + \frac{1}{2}(\xi_1 + \xi_2),$$

$$w_3 = \frac{1}{3}(2e^{-2it} e^{-i\delta} \cos \delta + 2e^{-it} e^{-i\delta} (\xi_1 + \xi_2) \cos \delta + \xi_1^2 + \xi_1 \xi_2 + \xi_2^2), \quad t \in [0, 2\pi].$$

Using results obtained above we will find now coefficient estimates in $\mathcal{C}(\delta, \xi_1, \xi_2)$. From Theorem 3.1 it follows immediately

THEOREM 3.5. If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$ for $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$ such that $\xi_1 \neq \xi_2$, and f is of the form (1.1), then

$$(3.13) \quad |a_n| \leq \frac{1}{|\xi_1 - \xi_2|^n} \left(|\xi_1^n - \xi_2^n| + 2 \cos \delta \sum_{k=1}^{n-1} |\xi_1^k - \xi_2^k| \right), \quad n = 2, 3, \dots$$

If $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_0 \in \overline{U}$, and f is of the form (1.1), then

$$(3.14) \quad |a_n| \leq \begin{cases} |\xi_0|^{n-1} + 2 \cos \delta \frac{1 - n|\xi_0|^{n-1} + (n-1)|\xi_0|^n}{(1 - |\xi_0|)^2 n}, & \text{for } |\xi_0| \neq 1 \\ 1 + (n-1) \cos \delta, & \text{for } |\xi_0| = 1, \end{cases}$$

$$n = 2, 3, \dots$$

Estimates (3.13)–(3.14) are not sharp in general. They are sharp only for some systems of parameters δ , ξ_1 and ξ_2 or for some coefficients. Trivially, on account of Remark 1.2 and (3.1) - (3.3) the bounds (3.13)–(3.14) are sharp for $\delta = \pm\pi/2$.

Estimates (3.14) are sharp for $\delta = 0$ and for each $\xi_0 \in \overline{U}$. In this case, setting $\xi_0 = |\xi_0|e^{i\varphi}$, $\varphi \in [0, 2\pi)$, we get in view of (3.8) that the equality in (3.14) is attained when $p_n = 2e^{-in\varphi}$ for all $n = 2, 3, \dots$. For this reason the extremal function is of the form (2.18) or (2.19) for $\varepsilon = e^{-i\varphi}$.

By the same argument as the above the bound (3.13) is sharp for $\delta = 0$, $\xi_2 = 0$ and for each $\xi_1 \in \overline{U}$, $\xi_1 \neq 0$ (or for $\xi_1 = 0$ and for each $\xi_2 \in \overline{U}$, $\xi_2 \neq 0$). By (3.2) we get $A_n = \xi_1^{n-1}$. If now $\xi_1 = |\xi_1|e^{i\varphi}$, $\varphi \in [0, 2\pi)$, then (3.7) yields that the extremal function is of the form (2.16) or (2.17) for $\varepsilon = e^{-i\varphi}$.

For $\xi_1 = \xi_2 = 0$ we obtain from (3.14) the following

COROLLARY 3.6. *If $f \in \mathcal{C}(\delta, 0, 0)$, $\delta \in [-\pi/2, \pi/2]$, and f is of the form (1.1), then*

$$(3.15) \quad |a_n| \leq \frac{2}{n} \cos \delta, \quad n = 2, 3, \dots$$

The case $\delta = 0$ in (3.15) was proved by MacGregor [8]. From (3.8) it follows immediately that bounds (3.15) are sharp for all $\delta \in [-\pi/2, \pi/2]$. Equality is realized by the function (2.18) for $\xi_0 = 0$ and $\varepsilon = 1$.

From Theorem 3.5 we have the following estimate of the second coefficient in the class $\mathcal{C}(\delta, \xi_1, \xi_2)$ which is sharp for all δ , ξ_1 and ξ_2 .

COROLLARY 3.7. *If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in \overline{U}$, and f is of the form (1.1), then*

$$(3.16) \quad |a_2| \leq \frac{1}{2}|\xi_1 + \xi_2| + \cos \delta.$$

By (3.2) we have $A_2 = \xi_1 + \xi_2 = |\xi_1 + \xi_2|e^{i\varphi}$, $\varphi \in [0, 2\pi)$. Then by (3.7) equality in (3.16) is realized when $p_1 = 2e^{i(\varphi+\delta)}$. For this reason the extremal function for the estimate (3.16) is according to ξ_1 and ξ_2 one of the form (2.16)–(2.19) for $\varepsilon = e^{i(\varphi+\delta)}$.

From Corollary 3.2 we get estimates of the coefficients in the class $\mathcal{C}(\delta, \xi_1, \xi_2)$, where $|\xi_1| = |\xi_2| = \alpha \in [0, 1]$, especially for $\xi_1 = -\xi_2$. We formulate these results for the classes $C_{\delta, \alpha, \alpha}(\nu)$.

COROLLARY 3.8. *If $f \in C_{\delta, \alpha, \alpha}(\nu)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, $\nu \in (0, \pi)$, and f is of the form (1.1), then*

$$(3.17) \quad |a_n| \leq \frac{1}{n} \left(\left| \frac{\sin n\nu}{\sin \nu} \right| \alpha^{n-1} + 2 \cos \delta \left(1 + \sum_{k=2}^{n-1} \left| \frac{\sin k\nu}{\sin \nu} \right| \alpha^{k-1} \right) \right),$$

$n = 2, 3, \dots$

If $\nu = 0$ or $\nu = \pi$, then the estimates in the classes $C_{\delta, \alpha, \alpha}(0)$ and $C_{\delta, \alpha, \alpha}(\pi)$ reduce to (3.14), where $|\xi_0| = \alpha \in [0, 1]$.

From (3.14) and (3.17) it follows that (3.14) give estimates in the classes $C_{\delta, \alpha, \alpha}$. Putting $\delta = \mu - \pi/2$ into (3.14) and (3.17) we get estimates in the classes $C(\mu - \pi/2, \alpha, \alpha, \mu, \nu)$. Especially, for $\alpha = 1$ we have bounds of the coefficients in the classes $C(\mu - \pi/2, 1, 1, \mu, \nu)$, thus in the class $CV(i)$ (Robertson [10], Royster and Ziegler [11]). Using a Lemma due to Gronwall and (3.17) Robertson examined also an asymptotic bound for $|a_n|$. He proved that

$$\overline{\lim_{n \rightarrow \infty}} |a_n| \leq \frac{4 \sin \mu}{\pi \sin \nu}, \quad \nu \in (0, \pi),$$

where a_n are the coefficients of functions in the class $CV(i)$.

From (3.13) and (3.14) we deduce

COROLLARY 3.9. 1. *If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1 \in T$, $\xi_2 \in U$ (or $\xi_2 \in T$ and $\xi_1 \in U$), and f is of the form (1.1), then*

$$\overline{\lim_{n \rightarrow \infty}} |a_n| \leq \frac{2 \cos \delta}{|\xi_1 - \xi_2|}.$$

2. If $f \in \mathcal{C}(\delta, \xi_1, \xi_2)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_1, \xi_2 \in U$, and f is of the form (1.1), then

$$\lim_{n \rightarrow \infty} |a_n| = 0.$$

3. If $f \in \mathcal{C}(\delta, \xi_0, \xi_0)$, $\delta \in [-\pi/2, \pi/2]$, $\xi_0 \in U$, and f is of the form (1.1), then

$$\lim_{n \rightarrow \infty} |a_n| = 0.$$

Setting $\nu = \pi/2$ we obtain from Corollary 3.8 the following

COROLLARY 3.10. *If $f \in C_{\delta, \alpha, \alpha}(\pi/2)$, $\delta \in [-\pi/2, \pi/2]$, $\alpha \in [0, 1]$, and f is of the form (1.1), then, for all $k \in \mathbb{N}$,*

$$(3.18) \quad |a_{2k}| \leq \begin{cases} \frac{1 - \alpha^{2k}}{(1 - \alpha^2)k} \cos \delta, & \text{for } \alpha \in [0, 1) \\ \cos \delta, & \text{for } \alpha = 1, \end{cases}$$

$$(3.19) \quad |a_{2k+1}| \leq \begin{cases} \frac{2 \cos \delta + (1 - 2 \cos \delta) \alpha^{2k} - \alpha^{2(k+1)}}{(1 - \alpha^2)(2k+1)}, & \text{for } \alpha \in [0, 1) \\ \frac{2k \cos \delta + 1}{2k+1}, & \text{for } \alpha = 1. \end{cases}$$

The case $\alpha = 1$ in (3.18) - (3.19) is due to Hengartner and Schober [3].

Estimates (3.18) are sharp. For $\alpha \in (0, 1)$ the function (2.16) for $\xi_1 = \alpha$, $\xi_2 = -\alpha$ ($\mu = \pi/2$ in (1.5)) and $\varepsilon = 1$, is extremal. For $\alpha = 0$ the function (2.18) for $\xi_0 = 0$ and $\varepsilon = 1$ is extremal. For $\alpha = 1$ the function (2.17) for $\xi_1 = 1$, $\xi_2 = -1$ and $\varepsilon = 1$ is extremal.

From (3.19) we get the sharp bound for the third coefficient a_3 for all $\alpha \in [0, 1]$,

$$|a_3| \leq \frac{1}{3}(2 \cos \delta + \alpha^2).$$

The extremal function is one of the form (2.16)–(2.18) for $\varepsilon = e^{i\delta/2}$.

References

- [1] Cz. Burniak, Z. Lewandowski, J. Pituch, *Sur l'application de la méthode homotopique et d'un critère d'univalence dans la classe des fonctions convexes vers l'axe imaginaire*, Demonstratio Math. 16 (1983), 309–322.
- [2] A. W. Goodman, *Univalent Functions*, Mariner Publishing Co., Tampa, Florida, 1983.
- [3] W. Hengartner, G. Schober, *On schlicht mappings to domain convex in one direction*, Comment. Math. Helv. 45 (1970), 303–314.
- [4] W. Kaplan, *Close-to-convex functions*, Mich. Math. J. 1 (1952), 169–185.
- [5] W. Koepf, *Parallel accessible domains and domains that are convex in some direction*, Pitman Research Notes Math. Ser. 262 (1992), 93–105.
- [6] A. Lecko, *Some subclasses of close-to-convex functions*, Ann. Polon. Math. 58 (1993), 54–64.
- [7] —, *Generalized classes of functions convex in a given direction*, Ber. Univ. Jyväskylä Math. Inst. 55 (1993), 121–130.
- [8] T. H. Mac Gregor, *Functions whose derivative has a positive real part*, Trans. Amer. Math. Soc. 104 (1962), 532–537.
- [9] K. Noshiro, *On the theory of schlicht functions*, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934–1935), 129–155.
- [10] M. S. Robertson, *Analytic functions starlike in one direction*, Amer. J. Math. 58 (1936), 465–472.
- [11] W. C. Royster, M. Ziegler, *Univalent functions convex in one direction*, Publ. Math. Debrecen 23 (1976), 339–345.
- [12] S. Warschawski, *On the higher derivatives at the boundary in conformal mapping*, Trans. Amer. Math. Soc. 38 (1935), 310–340.

DEPARTMENT OF MATHEMATICS
 TECHNICAL UNIVERSITY OF RZESZÓW
 ul. W. Pola 2
 35-959 RZESZÓW, POLAND
 E-mail: alecko@prz.rzeszow.pl

Received November 20, 1995.