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A GENERALIZATION OF ANALYTIC CONDITION
FOR CONVEXITY IN ONE DIRECTION

For § € [-7/2,%/2], &, & € C, [&4] < 1, [&] £ 1, we introduce the
classes C(4,£1,&;) defined as follows: a function f regularin U = {z € C:
|2| < 1} of the form f(z) = 24+ ) nr, an2", 2 € U, belongs to C(§,&;,&,) if

Re{e®(1 — &2)(1 = &2)f'(2)} > 0 for z € U.

If |&] = |&] = 1, then the functions f € C(,&1,&,) for § suitable choosen
according to &; and &, are convex in the direction of the imaginary axis. For
& = & = 0 the functions f € C(6,0,0) are of bounded boundary rotation.
Some geometric properties of functions in C(6,&;,&2) are examined. There
are given coefficient formulae and estimates in the class C(§,&;,&2).

0. Introduction

In this paper there are considered subclasses C(6,£1,£2), 6 € [-7/2,7/2],
€1, & € U, of close-to-convex functions. For each £1,& € U, & # &
and § € (—7/2,7/2) suitable choosen according to & and &, functions
f € C(6,&1,&2) have certain geometric property concerning to the way of
mapping corresponding hyperbolic family of arcs with vertexes at 1/¢; and
1/&;. Analogously, if & = & = &, then for suitable choosen é € (—7/2,7/2)
functions f € C(6,&o,&) have similar geometric property concerning to the
way of mapping corresponding parabolic family of arcs with vertex at 1/&.
In the case when |£;| = |&] = 1 or |&]| = 1, this geometric property proved
in Section 2 and formulated in Corollary 2.1 is equivalent to the convex-
ity in the direction of the imaginary axis of f(U). Therefore the definition
condition (1.2) of the class C(§,&;, &) generalizes the well known Roberston
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condition for convexity in one direction [10] proved finally by Royster and
Ziegler [11].
In Section 4 there are found coefficient formulae and estimates in the

class C(6,&1,&2).

1. Preliminaries

Let U = {# € C: |z| < 1} denote the unit disk in the complex plane
C, T = OU the unit circle and U = U UT. By P we denote the class of
functions p of the form p(z) = 1+ Y o, pn2z™, z € U, which are regular in
U and have positive real part.

A function f regular in U is called subordinate to a function F' regular
in U if F is univalent in U, f(0) = F(0) and f(U) C F(U). We write then
f<For f(z) < F(z), z€ U.

A function f regular in U with f(0) = f'(0) — 1 = 0, is said to be
starlike if Re{zf'(2)/f(2)} > 0 for z € U, and is said to be convex if
Re{l+ 2f"(2)/f'(z)} > 0 for z € U. It is well known that every starlike
and every convex function is univalent in U.

DEeriniTION 1.1. A function f of the form

(1.1) f(z):z—}-f:anz", z€eU,

n=2

regular in U belongs to the class C(6,£1,&;), 6 € [-n/2,7/2], &1, & € U, if
(1.2) Re{e¥(1 - £,2)(1 - &2)f(2)} >0, z € U.

From (1.2) it follows that the assumption [&] > 1 or |£2] > 1 implies
that C(6,&1,&2) = 0 for every 6 € [-n/2,7/2].

If (1.2) holds in U and the left hand side of (1.2) is equal to zero at some
point in U, then by the minimum principle for harmonic functions it vanishes
identically in U. For this reason every function f in C(§,&,&:) satisfy then
the identity

e’(1-b2)(1-&2)f' () =ai, z€U, acR\{0}
Thus by the normalization of f we see that § = —7/2anda= —1loré§ = /2

and a = 1. Therefore from the above we have

Remark 1.2. For every fixed & € U the classes C(~7/2,&,&) and
C(m/2,&,&) contain only the function

z
(1.3) f—7r/2,£o,£o(z) = fﬂ'/?yﬁo,&o(z) = 1 &2’ z€U.
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For every fixed &;, & € U such that & # &, the classes C(—7/2,£1,£2) and
C(w/2,€1,&2) contain only the function
1-¢

1 1<
(14) f_,,-/2’£1'£2(2’) = f7r/2151152(z) = -G log 1= 6227 IOgl =0, zeUl.

Setting
(1.5) & = ae” ) g, = B~ =Y o 6€10,1], u,ve€]0,7],
we can rewrite (1.2) as
(1.6) Re{e’(1 - (ae™™ + fe*)e 2z + afe™?2%)f'(2)} >0, z€U.
Hence we can formulate the following:

DEFINITION 1.3. A function f of the form (1.1) regular in U belongs to
the class C(6, a, B, p,v), 6 € [-7/2,7/2], , 8 € [0,1], p,v € [0, 7], if (1.6)
is satisfied.

Of course, C(6, &1, &) = C(6, @, B, p, v) for parameters described by (1.5).

From (1.2) it follows that if f € C(6,&;,&2) for 6 € (—7/2,7/2), then

(1-62)(1-&2)f'(2) =¢(2), z€V,
where ¢ is a function regular in U, Req(z) > 0 for z € U and ¢(0) = €.

Thus there exists a function p € P such that ¢(z) = p(z)cosé + isind and
consequently

(1.7) €1~ &2)(1 - &2)f'(2) = p(2) cos§ + isind, z€U.

By (1.7) and by the fact that p(z) < (14 2)/(1 — 2), z € U, we see that
f€eC(6,&,&) for 6 € (—n /2,7 /2)if and only if

1+e—2i6
(1.8) (1-&2)(1-&)f'(z) < ———, z€l.
For each &;, & € U let us define the function

z
1.9 h(&,82;2) = , z€ U.

(1.9) (€1,&252) A-&90-67)
Hence and by (1.7) we have
(1.10) . z2f'(2) = e ¥ (p(2) cos 6 + isin 6)h(£y, €3 2), z€ UL

The inequality (1.6) with additional conditions on parameters 8, o, 3,
i, v, reduces to well known conditions for subclasses of univalent functions.

For « = § =1 and § = p — 7 /2 the inequality (1.6) is due to Robertson
[10] and characterizes the class C(p — 7/2,1,1, 4, v) as the subclass of the
class CV(¢) of functions convex in the direction of the imaginary axis. The
equivalence of analytic condition (1.6) for such choosen parameters and ge-
ometric definition of the class CV/(¢) have done Royster and Ziegler [11] (see
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also Burniak, Lewandowski, Pituch [1] and Koepf [5]). Directly, they proved
that
cviy= |J Clu-r/2,1,1,p,v).
p,vE[0,n]

In [3] Hengartner and Schober examined the subclasses C(0,1,1,
r/2,m/2),C(-7r/2,1,1,0,0) and C(~7/2,1,1,0, ) distinguished in CV (7).

If « = 8 = 0, then in view of (1.5) we have & = & = 0. For fixed
8 € (—7/2,7/2) the functions f € C(4,0,0) are called of bounded rotation
with argument é and are univalent in U. This criterium of univalence is due
to Noshiro [9] and Warshawski [12].

The classes C(u—7/2, a, o, 1, v) and their subclasses where investigated
in [6-7].

2. Geometric properties
In this section we deal with some geometric properties of the classes

C(6,&1,&) for 6 € (—7/2,7/2). .
Let us fix & and &; in U. We will consider the following cases:
1. & # 0 for every k € {1,2} and Re & # Reés.
2.0=¢§ #& and Reéy #0or 0 =& # & and Re s # 0.
3. LG =6L#0.
4.6 =£6=0.
1. Assume first that & # 0 for every & €~{1, 2} and Reé; # Ref;.

Let us consider the hyperbolic family I'4(&1,€2) of all circles 7 going
through the fixed points 1/&; and 1/&;. By I'n(&,£2) we denote the family of

entire circular arcs v obtained by the restriction of the circles ¥ € I'y(&y, &)
to the disk U.
1° Suppose now that

(2.1) Re& > Ref; and 0 < arg{&:/61} < «.

Observe that there exists an arc ¥° € fh(fl,fg) such that ¥°NU = {.
Let us parametrize each circle ¥ in I'y (&1, &2) as follows:
1/6 —1/& te'”
1—teim 7
T € (=70, m — 1], t € (—00, )],

(2.2) F=7,:12=2(t) =

where 79 € [0,7) is choosen in a such way in order to ¥° = ¥,,. Every circle
¥r € fh(fl,fz), T € (=70, T — 7o), achieve the points 1/£; and 1/&; for t = 0
and t = oo respectively.

We parametrize every arc v € I'h(£1,&:) also by (2.2), where 7 € 7 C
(=70, 7—T10]and t € J(7) C (—o00, 0o] for every fixed 7 € Z. Since parameter
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t has constant sign for all points z(t) lying either in the disk or outside of
the disk with the boundary of ¥,,, we see that J(7) C (0,00] or J(7) C
(—00,0) for each 7 € Z. But for each &1, & € U there exists 7., € Ih(£1,&2)
such that z,(to) = 0 for some t; € J(r1). By (2.2) and (2.1) we have
1 = arg{&2/&} € (0,7] and to = [€2/&1]. For this reason J(7) C (0, oo] for
every fixed 7 € 7.

By (2.1) we have Re {1/(§; — £1)} > 0 and therefore we set

(2.3) § = arg

1
A € (-7/2,7/2).

From (2.2) it follows that
(- &) te”

@4 (-6m)0-60) = Pl

Consequently, since t € J(7) is positive, we see by (1.2), (2.2) and (2.4) that
for every function f € C(4,&,€2), where 6 is given by (2.3), and for every
arc v, € I'n(é1,&2) holds

(25) - Re f(=:(1)
= re{ & (Lor Gl . )

_ 62 - 51 eiT '
- Re { 6162 (1 _ te“’)2 f (z‘r(t))}

_1 1 (-6} tem }
Tt Re { &£-&6 &&  (1-teim)? f(ax(®)

= L Re{e"(1 - 12, ()(1 — Ea2: (1)) (2 (1))} > 0,

112 — &|
rel, teJ(r).

If # < arg{€2/&1} < 27, then we parametrize circles ¥ € fh(fl,fz) also
by (2.2) but now we set 7 € (v — 79,27 — 7o) where 7g is choosen in the
interval [r,27). In the same manner as in the above we deduce that (2.5) is
satisfied for this case.

20 If Re ¢, < Refy, then repeating exactly considerations from Part 1°,
with &) in place of £, and vice versa, we have that (2.5) holds also.

In consequence, from (2.5) it follows that every arc v, € In(&,&:) is
mapped by every function f € C(6,£1,€2), for § given by (2.3), onto an
analytic arc f(y,) which has with every vertical line at most one common
point.
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In the case when |£1| = |€2| = 1 the above geometric property implies
convexity in the direction of the imaginary axis of the domain f(U) (see [3]).
2. Let 0 = & # & and Re&; # 0. Let us set

_ Jarg{1/6:}, if arg{1/£:1} € (—7/2,7/2)
(2.6) 6= { arg{l/fi} -z, if arg{l/ﬁi} € (r/2,37/2).

Let us consider the degenerate hyperbolic family Iy n(€1,0) of all lines ¥
going through the fixed point 1/&;. By I'x(£1,0) we denote the family of
entire segments 4 obtained by the restriction of the lines ¥ € I,(&1,0) to
the disk U. N

If arg {1/£1} € (—7/2,7/2), then we parametrize the family I',(&,0) as
follows:

(27)  F=F: 2= a(l) = Eilu —tie™), 1€ (0,x], t € (—o00,00].

The family I';(€1,0) will be also parametrized by (2.7), where by an easy
computation of the equation |2.(t)] = 1, we obtain 7 € (70,7 — 715), 7o =
arccos(a?), and t € (to(7),t1(r)), where to(7) = —sint — y/a? — cos?(7),
t1(1) = —sin7 + /a? — cos?(T).

Since t € (to(7),t:1(7)) is negative for each T € (19,7 — 79), by (2.7) and
(1.2) we deduce that for every function f € C(4,&1,0), where § is given by
(2.6), and for every arc 7, € I',(£1,0 holds

(2.8) % Re f(2:(1)) = Re {% (211-(1 - tie”)) f’(z.,(t))}

)
- 'tlTlll Re {e“u — &2 (1)) f'(zT(t))} >0

for t € (to(7),t1(7)).

If arg{1/&} € (7/2,37/2), then we parametrize the family fh(El, 0) also
by (2.7) but now we set 7 € (w,2x]. Hence, every arc v € I4(£1,0) is also
parametrized by (2.7), where 7 € (7 4 75,27 — 70) and t € (to(7),#1(7)).
Since now t € (to(7),t1(7)) is positive for each 7 € (747,27 —75), it follows
that (2.8) is satisfied for é given by (2.6).

Repeating the above considerations with &; in place of & and vice versa,
we see that (2.8) is also true for the case 0 = & # £, and Reé; # 0.

3. Let us assume that & = & = & # 0. By (1.5) we first set & =
ae”#, a € (0,1], u € [0,7],i.e v = 0. Fix 0 € [u+arcsin @, p+m —arcsin o]\
{21 £ 7 /2}. From this, 2u — 6 € [p + arcsina — 7, — arcsina] \ {£7/2} C
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(—m,m)\ {£7/2}. Let us set
2u—0+m, if2u—0¢€ (-7, —7/2)
1) 2u - 0, if2u—0€(-7/2,7/2)
2u—0—m, if2u—6¢€(n/2,m).
We consider now the parabolic family I »(0,&) of all circles ¥ containing

fixed point 1/& and tangent at 1/&; to the line having the direction 6. Let
us denote by I,(8,&) the family of entire circular arcs y which are the

restrictions of the circles 7 € fp(ﬂ,fo) to the disk U.
We parametrize the family I'p(8, &) as follows:
(2.10)  F=Fr:2=2.(t) = er(1 4 €)ie?® + 1/¢,
T € (—00,00), t€[0,2n),

(2.9)

where ¢ = 1 or ¢ = —1. Let every arc 7, € I},(0,&) be also parametrized
by (2.10) where 7 € T C (—o0,00) and t € J(7) C [0,27) for every fixed
7 € Z. Since the line of the direction # has no common points with the disk
U we see that Z C (—0,0) or Z C (0, 00).

Assume now that 2u — 8 € (-7, —7/2)U (7/2,7). We set then ¢ = -1
in (2.10). By (2.10) we see that the open halfline {z,(0): 7 € (—00,0)} and
the disk U lie in the same halfplane which has the line of the direction # as
its boundary. In consequence, Z C (—00,0).

From (2.10) it follows that

(2.11) (1 - &ozr(1))* = —4€577 cos®(/2)e™e?™.

Therefore, for every arc v, € I',(6, &) and for every function f € C(8, £, &),
where § is given by (2.9), we conclude from (2.10), (2.11), (1.2) and from
the fact that 7 € 7 is negative that

(212) L Re f(z()

= Re { o714+ €9ie + 1) (ar(0)}
= e {ree (21 (0) )
= re{ (g ) (46 ot (D) (2, 0) )

47€2 cos?(t/2)

~1 i 2 o
= T eonqym) Rete (= oz () (1)} > 0, t € ().

In the case when 2u — 0 € (—7/2,7/2), we set ¢ = 1 in (2.10). For
this reason the open halfline {z,(0) : 7 € (0,00)} and the disk U lie in
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the same halfplane which has the line of the direction 8 as the boundary.
Consequently, Z C (0, 00). On account of this, (2.12) is also satisfied for this
case.

The same inequality (2.12) can be drawn for & = —ae™*, a € (0,1],
p € [0, 7], i.e. for v = 7, by similar considerations to that above.

4. Let & = & = 0 and 6§ € (—7/2,7/2) be arbitrary. Let us take into
account the family I',(6, 0) of the entire segments y parametrized as follows:

v =9z = 2,(t) = €t + i),
TE (—1, 1), te (—to,to), to=vV1-12
(I'5(8,0) is the subfamily of the degenerate parabolic family fp(é,O) which

contains all lines of the direction §).
For every arc v, € I',(6,0) and for every function f € C(6,0,0) by (2.13)
and (1.2) we have

(2.14) %Re f(z:(t)) = Re {€? f'(2:(t))} > 0, t € (~to, to)-

Finally, the inequalities (2.5), (2.8),(2.12) and (2.14) may be summarized
geometrically by saying that

COROLLARY 2.1. 1. Every function f € C(6,£1,£2), for fized &, & € U
such that Re& # Re&, and for § € (—7 /2,7 /2) suitable choosen according
to & and & maps a certain hyperbolic family of circular arcs lying in the
disk U and dependent on £ and & onto the family of analytic arcs each of
them have with every vertical line at most one common point.

2. Every function f € C(6,&,&) for fized & € U and § € (—7/2,7/2)
suitable choosen according to &y and fized direction 6 € [0,27) maps a certain
parabolic family of circular arcs lying in the disk U and dependent on 6 and
&o onto the family of analytic arcs each of them have with every vertical line
at most one common point.

THEOREM 2.2. If f € C(6,£1,&), 6§ € [-7/2,%/2), &, & € U, then f is
univalent in U.

Proof. By the fact that [£1] < 1 and |&2] < 1 it follows from (1.9) that

Zh'(fl,fz;z)} _ 1—§162°

Re{ h(&1,&2;2) _Re(l—flz)(l"‘fzz)
_ 1 1+§1Z 1+§22
—§Re{1_£lz+1f522}>0, zeU.

Hence the function h({y,&2;2), z € U, is starlike and univalent in U for
every fixed &, & € U.

(2.13)
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For each & € U the function f_r/; ¢, ¢, defined by (1.3) is evidently con-
vex and univalent in U. Therefore, by Remark 1.2 the classes C(—7/2, &, &)
and C(r/2,&o,&o) contain only univalent functions.

For every &, & € U such that & # & by (1.4) holds

f—7r/2y§1,52(z) = S &%ﬂ)’du, zeU.
0
In consequence, by Alexander’s Theorem ([2], vol. I, p. 115), the function
f-r/2,61,6, i5 convex and univalent in U. Hence, and on account of Remark
1.2 the classes C(—7/2,&,&2) and C(7/2,£1,€,) contain only univalent func-
tions.
Let us assume now that § € (-7 /2,7/2). By this, for every function

f € C(6,&1,&2) holds
!
R ”—zﬂl}zReewl— 2)(1-62)f'(2)} >0, ze U.
et ZEELd — Re(e (1 - 1)1 - 2207 ()
Hence it follows that f is close-to-convex and univalent in U (see [4], [2, vol.
II, p. 51]).

Putting p.(2) = (L +¢2)/(1 —€z), e € T, z € U, to (1.7) we see that for
each § € (-7/2,71/2), &, & € U, the function fs¢, ¢,(€;2), where ¢ € T is
fixed and z € U, being the solution of the equation
14+ e %z

1-£2)(1-6&2)(1-¢€2)’

(2.15) fo61,62(852) = (

belongs to the class C(4, &1, &2).
For each é§ € [-7/2,7/2] we obtain from (2.15) by a simple integration
the following

COROLLARY 2.3. 1. If £, &6 €U, &1 £ &, e €T ande £ &, i =1, 2,
then

(2.16) f5,£11£2(6;z) = e_w{f
1

1 ({26i6+£e‘i6
- & & —
_Gel e - )) ___ Zecosd _ } _
g log(1 — & 2) (6_&)(6_62)10g(1 €z)¢, logl =0, z€ U.
2. IfE €T, & €U, &4 # &, c€T ande =&, then

e~ { 2f1zcosé  Lel 4 e 1-§2
2.17 2(€132) = 1 )
logl =0, z€ U.

f&eT, &1el, &£ &, €T ande = &, then fo, ¢,(62;2) is of
the form (2.17) with & in place of &2 and vice versa.

log(1 ~ &22)
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3.If& e U, e €T and € # &, then

{(é-oeié + €€—i6)

-6

z 2¢ cosé 1—§0z}
b

€
(2.18)  fsgoen(e52)= 16z | fo—e B ez

§o—¢
logl =0, z€ U.
4. If &, € € T and € = &, then

. z—ifoe P2 siné
(2.19) Jo.60.60(€032) = (-G 7€ U.

3. Coefflicient formulae and estimates

In this section we deal with coefficient formulae and estimates for func-
tions in the class C(6,&,€2).

For each 6 € [-7/2,7/2], @, B € [0,1] and v € [0, 7] let us introduce

C'Sya,ﬁ(l/) = U C(é’avﬂva V)a Cﬁ,cx,,@ = U C((S,Oz,ﬂ,ﬂ,ll).

;I,G[O,ﬂ'] ©,v€[0,7]

It is easy to check that for each &, & € U such that & # £ the function
(1.9) is of the form

(3.1) h(&1,€2;2) = z + Z Anz™, 2z€ U,

n=2
where
B f{l _ f; B Breinv — qre—inv
& - & Bet — ae~

For each & € U we have

eTHn=Dr n =23, ...

(32) A,

(3.3) (o, €o; 2) = m =z+ ;n 2l z e UL

Let M[0,2x] denote the set of real-valued nondecreasing functions m =
m(t), t € [0,27], such that Sg" dm(t) = 2x.

THEOREM 3.1. If f € C(6,6,&) for 6 € [-7/2,7/2], &1, & € U such
that & # &2, and f is of the form (1.1), then for n = 2,3,..., holds

n—1
(e-—i(n—l)t + EAke—i(n—k)t)dm(t),

2m —
0 k=2

A, e ¥cosé
(3.4) a, = Y + T S

where m € M[0,27] and Ay are given by (3.2).
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If f € C(6,&0,%), 6 € [-7/2,7/2], & € U, and f is of the form (1.1),
then

27

n-1
(35) an =€l 4 e " cosé § cos é S ( —i(n-1)t +Zk§(l)c—1e—z(n—k)t)dm(t)’
0 k=2

n=273,...,mée M[0,2r].

Proof. 1. From (1.4) we have that for each &, & € U such that & # &
holds f!  , o ¢, (2) = h(é1,€2;2)/2, 2z € U. Therefore (3.1) and (3.2) yields
that the coe c1ents of the functions f_r/s ¢, ¢, and fr/2¢, ¢, are of the form
(8.4) for § = —n/2 and é§ = /2, respectively.

In the same manner, from (1.3) it follows that for each & € U holds
FLn/2.60,60(2) = (&0, 605 2)/2, z € U, which gives in view of (3.3) that the
coefficients of the functions f_r/2.¢0.¢, and fr2.¢,,¢, are of the form (3.5)
for § = —7/2 and § = w/2, respectively.

2. Let now f be of the form (1.1) and f € C(6,&1,&;) for fixed & €
(=m/2,m/2), €1, €2 € U such that & # &. Then there exists p € P of the
form p(z) = 1+ 3 pe; Pn2™, z € U, such that (1.10) is satisfied. Hence using
(3.1) we obtain

(3.6) z+ i na,z" = (z + i Anz") (1 +e ¥ cosd f: pnz").
n=2 n=2 n=1

Comparing coefficients in (3.6) we get

2a3 = Ay + pre " cosé, . ..,
n—1

(3.7) na, = A, + e cos 6(pn-1 + z Agpr-k), n=2,3,...
k=2

Using well known formulae

B Mﬂ

S e""dm(t), neN, me M|0,2x],
0

for the coefficients p,, of the functions p € P (see [2], vol. I, p. 96), we have
by (3.7),

e~ cos§ —iln— ot
na, = A, + — S (e (n=1)t 4 Z Ape 4 k)‘)dm(t)
0 k=2
n=2,3,..., m€ M[0,2r]. This gives (3.4).
3. For any function f € C(6,&0,&), 6 € (—7/2,7/2), & € U, we argue
similar to Part 2 using now (1.10) and (3.3). Consequently we get
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n—1
(3.8) na,=n 3'1 +eib cos6(pn_1 + Z kg{;-lpn_k), n=23,...
k=2
Hence we obtain (3.5).
This completes the proof of the theorem.

Let now [£;| = |&] = @ € [0,1]. If & # &, then taking into account (1.5)
we see that o € (0,1] and v € (0, 7). For this reason and by (3.2) we have

(3.9) A = gn-le-iln—1)u sin v
" sin v
If¢& =& # 0, then v = 0 or v = 7 in (1.5). Thus by (3.9) and Theorem 3.1

we get the following

CoroLLARY 3.2. If f € C(b,a,a,u,v), 6 € [-7/2,7[2], @ € [0,1], pu €
[0,7], v € (0,7), and f is of the form (1.1), then
1 (sin Y ne1g=i(n—l)u e " cosé

3.10 = -
( ) an n \ siny T

27 n .
x | (v 4 3 SNV ko1 —i(k=1)u —i(n-k)t dm(2)

0 k=2 sin v ,
n=23,...,mée M[0,2r].

Iff € C(&,a,a,p,O), b€ [—71'/2,7!'/2], a€ [0’1]3 ke [O,ﬂ-], and f is Of
the form (1.1), then
(3.11) @, = o™ lemHnLk

+6—i5 cos 2{ (e_i(n—l)t + "z—:l kak—le—i(k—l)u.e—i(n—k)t)dm(t)
™ ’
0 k=2
n=2,3,...,m¢€ M[0,2r].

Iff € C(6,a,a,u,7r), 6 € [—71'/2,7!'/2], o€ [Oa1]7 TS [O’W]’ and f i8 Of
the form (1.1), then
(3.12)  an = (-1)"lanlemin-Du

e~ cos§ T ; ot . )
+ S (e—z(n—l)t + Z(_1)k+lkak—le—z(k—l)ue—t(n—k)t)dm(t)’
™m0 k=2
n=2,3,...,mée€ M[0,2r].

Setting 6 = 4 — 7/2 and @ = 1 into formulae (3.10) - (3.12) we obtain
fomulae for the coefficients in the class C(p — 7/2,1,1, u,v). Setting @ = 0
into (3.10)-(3.12) we get formulae for the coefficients in the class C($,0,0).

Especially, putting v = 7 /2 into the formula (3.10) it follows the follow-

ing
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COROLLARY 3.3. If f € C(6,a,a,u,7/2), 6§ € [-7/2,7/2], o € [0,1],
p € [0,7], and f is of the form (1.1), then

e cosd —i(2k-1)t
Qk = — Q57— €
2k~ (S) (
k . .
+ Z((_l)jﬂa?(]’-l)e~2(J'—l)iue—t(Zk—(h-l))f)) dm(t),
j=2
1 b2k —2kip , € C0S8
G2k41 = m((-l) atem M Y
27 ' k
% S (e—2kit + Z(_1)j+1a2(j-1)e—Z(j—l)iue—Z(k—j+1)it) dm(t)),
0 j=2

k€N, me M[0,2r).

As a consequence of Theorem 3.1 we can find the set of variability of the
system (a2, a3) of the coeflicients of the functions f in C(6, &1, &2).

COROLLARY 3.4. The region V3 of values of the system (a3, a3) of the
coefficients of the functions f € C(6,61,&), § € (-n/2,7/2), &, & € U,
of the form (1.1) is the closed convez hull of the curve whose equation is
following

wy = e e cos b + %(fl + &),

1 L L
ws = 5(26‘2”6_“s cos 6+2e e (£ 4+ £,) cos 6+£F + 6,6, +€2), t € [0,27).

Using results obtained above we will find now coefficient estimates in
C(6,&1,&2). From Theorem 3.1 it follows immediately

THEOREM 3.5. If f € C(6,&1,&;) for 6 € [-7/2,7/2), &, & € U such
that & # &, and f is of the form (1.1), then

n-1
1 n n
(313) lanl < g (165 - 651+ 20058 Y lef ~ ), m=23,...
1 2 k=1

Iff € C(6a£0’€0)5 b€ [—77/2’“'/2], b € U, and f is of the form (1'1)7
then

- 1= nfto]" + (n = Dl6ol"
(3.14) mns{ ol 4 Zeosd gl el £

14 (n—1)cosé, for |&] = 1,

n=23,...
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Estimates (3.13)-(3.14) are not sharp in general. They are sharp only for
some systems of parameters §, & and & or for some coeflicients. Trivially,
on account of Remark 1.2 and (3.1) - (3.3) the bounds (3.13)-(3.14) are
sharp for 6§ = £7/2.

Estimates (3.14) are sharp for § = 0 and for each & € U. In this case,
setting & = |&ole*®, ¢ € [0,27), we get in view of (3.8) that the equality in
(3.14) is attained when p, = 2¢~""% for all n = 2,3,... For this reason the
extremal function is of the form (2.18) or (2.19) for ¢ = e~¢.

By the same argument as the above the bound (3.13) is sharp for § =
0, & = 0 and for each & € U, & # 0 (or for & = 0 and for each & €
U, & # 0). By (3.2) we get A, = 771 If now & = |]€, ¢ € [0,27),
then (3.7) yields that the extremal function is of the form (2.16) or (2.17)
for £ = e™%¥.

For & = & = 0 we obtain from (3.14) the following

CoRroLLARY 3.6. If f € C(6,0,0), é € [-7/2,7/2], and f is of the form
(1.1), then

2
(3.15) lan| < ;cosb', n=23,...

The case § = 0 in (3.15) was proved by MacGregor [8]. From (3.8) it
follows immediately that bounds (3.15) are sharp for all § € [-n/2,7/2].
Equality is realized by the function (2.18) for o = 0 and ¢ = 1.

From Theorem 3.5 we have the following estimate of the second coeffi-
cient in the class C(4, €, &) which is sharp for all §, & and &,.

COROLLARY 3.7. If f € C(6,61,&), 6 € [-n/2,7/2], &1, 6 € U, and f
is of the form (1.1), then

1
(316) I(Z2l S —'61 + fg' + cos 6.

By (3.2) we have Ay = £ 4+ & = |& + &e®, ¢ € [0,27). Then by
(3.7) equality in (3.16) is realized when p; = 2¢*(¥+%), For this reason the
extremal function for the estimate (3.16) is according to & and &; one of
the form (2.16)-(2.19) for ¢ = ei(¥+5),

From Corollary 3.2 we get estimates of the coefficients in the class
C(8,&1,&2), where || = [&] = a € [0,1], especially for & = —&. We
formulate these results for the classes Cs o o(¥).

COROLLARY 3.8. If f € Cs,0,4(v), é € [-7/2,7/2], a € [0,1], v € (0, ),
and f is of the form (1.1), then
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a™” 1+2cos¢5(1+2 k_1>),
n=23,...

If v = 0 or v = 7, then the estimates in the classes Cs 4 o(0) and
Cs,a,a(m) reduce to (3.14), where |&| = a € [0,1].

From (3.14) and (3.17) it follows that (3.14) give estimates in the classes
Cs,o.o Putting § = g — 7/2 into (3.14) and (3.17) we get estimates in
the classes C(p — 7/2, o, a, p,v). Especially, for @ = 1 we have bounds of
the coefficients in the classes C(p — 7/2,1,1,u,v), thus in the class CV (%)
(Robertson [10], Royster and Ziegler [11]). Using a Lemma due to Gronwall
and (3.17) Robertson examined also an asymptotic bound for |a,|. He proved
that

sin nv sin kv

(317)  Jaal < 1(

n sin v

sin v

—_ 4 sin
Hm Ja,| <~
n—oo T s v

where a,, are the coefficients of functions in the class CV(3).

From (3.13) and (3.14) we deduce

COROLLARY 3.9. 1. If f € C(6,&1,62), § € [-n/2,7/2), &, €T, & €U
(or& €T and & € U), and f is of the form (1.1), then

T ] < 25250
nreo T

2. Iff € C(57€1,62)7 6 € [-—71'/2,7['/2], 517 62 € Ua and f is Of the form
(1.1), then

, v €(0,m),

lim |a,|=0.

3.If f €C(6,0,0), 6 € [-7/2,7/2), & € U, and f is of the form (1.1),
then

lim |a,|=0.
Setting v = 7/2 we obtain from Corollary 3.8 the following

CoroLrary 3.10. If f € Csa,a(7/2), 6 € [-7/2,7/2], @ €[0,1], and f
is of the form (1.1), then, for all k € N,

1 — o2k
1) ] < { .(.I_Tz)kcos 6, fora€|0,1)
cos 6, fora =1,
2eosd (1= 2eont)at 0D
(3-19) lazk1l < 9 o1 oss +(11_ a?)(2k + 1) ’ ’
2k cos§ + 1 fora=1.

2k+1
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The case @ = 1 in (3.18) - (3.19) is due to Hengartner and Schober [3].

Estimates (3.18) are sharp. For a € (0, 1) the function (2.16) for §; =
a, & = —a(p=7/2in (1.5)) and € = 1, is extremal. For o = 0 the function
(2.18) for &y = 0 and ¢ = 1 is extremal. For a = 1 the function (2.17) for
&1 =1, & = —1 and € = 1 is extremal.

From (3.19) we get the sharp bound for the third coefficient a3 for all

a € [0,1],
1
las| < 5(2c0s6 +a?).

The extremal function is one of the form (2.16)—(2.18) for £ = €*/2.

References

[1] Cz. Burniak, Z. Lewandowski, J. Pituch, Sur lapplication de la méthode ho-
motopique et d’un critére d’univalence dans la classe des fonctions convezes vers
{’aze imaginaire, Demonstratio Math. 16 (1983), 309-322.
[2] A.W.Goodman, Univalent Functions, Mariner Publishing Co., Tampa, Florida,
1983.
[3) W. Hengartner, G. Schober, On schlicht mappings to domain convez in one
direction, Comment. Math. Helv. 45 (1970), 303-314.
[4] W. Kaplan, Close-to-conves functions, Mich. Math. J. 1 (1952), 169-185.
[5] W. Koepf, Parallel accesible domains and domains that are conver in some direc-
tion, Pitman Research Notes Math. Ser. 262 (1992), 93-105.
[6] A. Lecko, Some subclasses of close-to-convex functions, Ann. Polon. Math. 58
(1993), 54-64.
[T} —, Generalized classes of functions convex in a given direction, Ber. Univ. Jyvaskyla
Math. Inst. 55 (1993), 121-130.
[8] T. H. MacGregor, Functions whose derivative has a positive real part, Trans.
Amer. Math. Soc. 104 (1962), 532-537.
[9) K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap.
(1) 2 (1934-1935), 129-155.
[10] M. S. Robertson, Analytic functions starlike in one direction, Amer. J. Math. 58
(1936), 465-472.
(111 W. C. Royster, M. Ziegler, Univalent functions convez in one direction, Publ.
Math. Debrecen 23 (1976), 339-345.
[12] S.Warschawski, On the higher derivatives at the boundary in conformal mapping,
Trans. Amer. Math. Soc. 38 (1935), 310-340.

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF RZESZOW
ul. W. Pola 2

35-959 RZESZOW, POLAND

E-mail: alecko@prz.rzeszow.pl

Received November 20, 1995.



