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A GENERALIZATION OF ANALYTIC CONDITION 
FOR CONVEXITY IN ONE DIRECTION 

For 8 G [-7r/2,7r/2], 6 , & € C, < 1, < 1, we introduce the 
classes C(8,£ 1,^2) defined as follows: a function / regular in U = {z G C : 
\z\ < 1} of the form f(z) = z + anZn, z e U, belongs to C(6,£i,£2) if 

Re{e"(l - - hz)f'(z)} > 0 for 2 € U. 
If Ifjl = |£2| = 1, then the functions / G f° r ^ suitable choosen 
according to £1 and £2 are convex in the direction of the imaginary axis. For 
£1 = £2 = 0 the functions / G C(8,0,0) are of bounded boundary rotation. 
Some geometric properties of functions in 1,^2) are examined. There 
are given coefficient formulae and estimates in the class C(<5,£I,£2). 

0. Introduction 
In this paper there are considered subclasses C ( 8 , 8 G [—7r/2, TT/2], 
£2 € U, of close-to-convex functions. For each £1, £2 G U, ^ ji £2 

and 8 G (—tt/2, 7t/2) suitable choosen according to f j and £2 functions 
/ G C(8,£i,£2) have certain geometric property concerning to the way of 
mapping corresponding hyperbolic family of arcs with vertexes at l/£i and 
l/£2- Analogously, if = £2 = £o> then for suitable choosen 8 G (—7r/2,7r/2) 
functions / G C(8, Ço,Ço) have similar geometric property concerning to the 
way of mapping corresponding parabolic family of arcs with vertex at l/£o-
In the case when |£i| = |£2| = 1 or |£o| = 1, this geometric property proved 
in Section 2 and formulated in Corollary 2.1 is equivalent to the convex-
ity in the direction of the imaginary axis of f(U). Therefore the definition 
condition (1.2) of the class C(8, £i,£2) generalizes the well known Roberston 
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condition for convexity in one direction [10] proved finally by Royster and 
Ziegler [11]. 

In Section 4 there are found coefficient formulae and estimates in the 
class 

1. Preliminaries 
Let U = {z G C : < 1} denote the unit disk in the complex plane 

C, T = dU the unit circle and U = U U T. By P we denote the class of 
functions p of the form p(z) = 1 + PnZn, z € U, which are regular in 
U and have positive real part. 

A function / regular in U is called subordinate to a function F regular 
in U if F is univalent in U, /(0) = F(0) and f(U) C F{U). We write then 
f<F or f ( z ) < F(z), z e U. 

A function / regular in U with / (0) = / ' (0) - 1 = 0, is said to be 
starlike if Re{zf'(z)/f(z)} > 0 for z £ U, and is said to be convex if 
Re {1 + zf"(z)/f'(z)} > 0 for 2 € U. It is well known that every starlike 
and every convex function is univalent in U. 

D e f i n i t i o n 1.1. A function / of the form 
00 

(1-1) / (*) = * + 2 > n * B , z e u , 

71=2 

regular in U belongs to the class C(S,£1,62), f> € [—7r/2, 7t/2], f i , £2 G U, if 

(1.2) Re{eiS(l - - &*)/ ' (*)} > 0, z £ U. 
From (1.2) it follows that the assumption |£i| > 1 or (£2! > 1 implies 

that C{6,£x,6) = 0 for every 6 <E [-tt/2,tt/2]. 
If (1.2) holds in U and the left hand side of (1.2) is equal to zero at some 

point in U, then by the minimum principle for harmonic functions it vanishes 
identically in U. For this reason every function / in C(6, £1, £2) satisfy then 
the identity 

e i s ( l - ^ z ) ( l - ^ z ) f ' ( z ) = ai, zeU, a e R \ { 0 } . 

Thus by the normalization of / we see that 8 = —7t/2 and a = —1 or 6 = TT/2 
and a = 1. Therefore from the above we have 

R e m a r k 1.2. For every fixed £0 € U the classes C(—7t/2,£o>£o) and 
C(tt/2,£o>£o) contain only the function 

(1.3) f-*/2,(o,(o(z) = U/2,Zo,to(z) = 1 \ zi 
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For every fixed f 2 € U such that & ^ 6 the classes C ( - 7 r / 2 , 6 ) and 
C(n/2, £2) contain only the function 

(1.4) / _ „ / 2 i € l i i a ( z ) = U/2,^2(z) = l ^ l o g ^ l ^ , log 1 = 0, z G tf. 

Setting 

(1.5) = « e " i ( / i + t / ) , a,(3 e [0,1], / ^ g [ 0 , T T ] , 

we can rewrite (1.2) as 

(1.6) R e { c < f i ( l - ( a e - , v + ^ c , v ) e - < ' 1 z + a ^ c - 2 , ' ' i « 2 ) / ' ( z ) } > 0 , z e U. 

Hence we can formulate the following: 

D E F I N I T I O N 1 .3 . A function / of the form ( 1 . 1 ) regular in U belongs to 
the class C(6, a, (3, p, v), 6 G [—tt/2, tt/2], a , 0 G [0,1], /x, i/ e [0, tt], if (1.6) 
is satisfied. 

Of course, C ( S , — C(6,a,f3,fi,u){oT parameters described by (1.5). 
From (1.2) it follows that if / € C(<?,6,6) for 6 G (-TT/2, TT/2), then 

e i \ l - Z 1 z ) ( l - t 2 z ) f X z ) = q(z), z G U, 

where q is a function regular in U, Reg(z) > 0 for z £ U and q(0) = elS. 
Thus there exists a function p G P such that q(z) = p(z) cos 6 + i sin 8 and 
consequently 

(1.7) e i 5 ( l - £ i 2 ) ( l - & * ) / ' ( * ) = p(z)cos£ + i s i n z e U. 

By (1.7) and by the fact that p(z) -< (1 + z)/( 1 — z), z G U, we see that 
/ € C{6,£for 6 G (-TT/2, TT/2) if and only if 

( 1 . 8 ) ( i - ^ z ) ( i - ( 2 z ) f ( z ) < 1 + e ' 2 t S \ z e U . 
1 — z 

For each , £2 G U let us define the function 

Hence and by (1.7) we have 
(1.10) z f ' ( z ) = e-iS(p(z)cos6 + ism6)h(Z1,t2-,z), z G U. 

The inequality (1.6) with additional conditions on parameters 6, a , 
//, v, reduces to well known conditions for subclasses of univalent functions. 

For a = /? = 1 and S = /z — 7r/2 the inequality (1.6) is due to Robertson 
[10] and characterizes the class C(fi - 7r/2,1, as the subclass of the 
class CV(i) of functions convex in the direction of the imaginary axis. The 
equivalence of analytic condition (1.6) for such choosen parameters and ge-
ometric definition of the class CV{i) have done Royster and Ziegler [11] (see 
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also Burniak, Lewandowski, Pituch [1] and Koepf [5]). Directly, they proved 
that 

CV(i)= U C(/J, — 7 r / 2 , 1 , l , f j , , f ) . 
n, i/e[0,ir] 

In [3] Hengartner and Schober examined the subclasses C(0,1,1, 
7r/2,7r/2), C(—x/2, 1,1,0,0) and C(-7r/2,1,1,0, tt) distinguished in CV(i). 

If a = (3 = 0, then in view of (1.5) we have 6 = £2 = 0. For fixed 
6 G (-7r/2,7r/2) the functions / G C(6,0,0) are called of bounded rotation 
with argument S and are univalent in U. This criterium of univalence is due 
to Noshiro [9] and Warshawski [12]. 

The classes C(fi — ir/2,a,a,fi,u) and their subclasses where investigated 
in [6-7]. 

2. Geometric properties 
In this section we deal with some geometric properties of the classes 

Let us fix 6 and 6 in U. We will consider the following cases: 

1. & 4- 0 for every k G {1 ,2} and Re 6 ^ Re 6 -
2. 0 = 6 ? 6 and Reft + 0 or 0 = 6 ^ 6 and R e 6 + 0. 
3. 6 = 6 ^ 0. 
4. 6 = 6 = 0. 
1. Assume first that 6 0 for every A; G {1,2} and R e 6 R e 6 -
Let us consider the hyperbolic family A ( 6 > 6 ) °f all circles 7 going 

through the fixed points 1 / 6 and 1/6- By A ( 6 , £2) we denote the family of 
entire circular arcs 7 obtained by the restriction of the circles 7 G 
to the disk U. 

1° Suppose now that 

(2.1) R e 6 > Reft and 0 < a r g { 6 / 6 ) < 

Observe that there exists an arc 7 0 G -T/i(6>6) s u c h that 7 0 fi U = 0. 
Let us parametrize each circle 7 in / h ( 6 > 6 ) a s follows: 

t G (-r0 ,7r - r0], t G (-00,00], 
where To G [0,7r) is choosen in a such way in order to 7 0 = 7r0 • Every circle 
IT £ A ( 6 > 6 ) > r S (—ro,7r —ro], achieve the points 1 / 6 and 1 / 6 for i = 0 
and t — 00 respectively. 

We parametrize every arc 7 G -T/i(6>6) also by (2.2), where r f I C 
(—tq, 7T —To] and f G I7(t) C (—00, 00] for every fixed r G T. Since parameter 
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t has constant sign for all points zT(t) lying either in the disk or outside of 
the disk with the boundary of 7To, we see that J(T) C (0,oo] or J(T) C 
(-oo,0) for each r € I . But for each £1, 6 G U there exists 7Tl G 1 ,6) 
such that zTl(t0) = 0 for some fi G J(TI). By (2.2) and (2.1) we have 
7"! = a rg{6 /6} € (0, tt] and t0 = 16/61- For this reason J(T) C (0,oo] for 
every fixed r G X. 

By (2.1) we have Re {1/(6 - 6 ) } > 0 a n ( l therefore we set 

(2.3) «5 = arg 6 ( - t / 2 , tt/2). 

From (2.2) it follows that 

(2.4) (1 - 6^(*))(1 - 6 ^ ( 0 ) - ( 1 • 

Consequently, since t G J{T) is positive, we see by (1.2), (2.2) and (2.4) that 
for every function / G C(S,6>6)> where 6 is given by (2.3), and for every 
arc 7 t € A ( 6 , 6 ) holds 

( 2 . 5 ) ± R e f ( z T ( t ) ) 

_ l n r 1 ( 6 - 6 ) 2 <e'T f f , 
- I R e \ 6 - 6 6 6 (1 

1 Re{ei5(l - 6*T(i))(l - h z r ( W ( z T ( t ) ) } > 0, 
'16 - 61 

r 6 I , TE J{T). 

If 7r < a rg{6 /6} 5; 271", then we parametrize circles 7 G / \ ( 6 ) 6 ) also 
by (2.2) but now we set r G (x — TQ,2T — To] where ro is choosen in the 
interval [7r,27r). In the same manner as in the above we deduce that (2.5) is 
satisfied for this case. 

2° If Re 6 < Re 6 ) then repeating exactly considerations from Part 1°, 
with 6 in place of 6 and vice versa, we have that (2.5) holds also. 

In consequence, from (2.5) it follows that every arc 7T £ J \ ( 6 > 6 ) is 
mapped by every function / £ C(S, 616)> for <5 given by (2.3), onto an 
analytic arc f{")T) which has with every vertical line at most one common 
point. 
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In the case when |£i| = [£21 = 1 the above geometric property implies 
convexity in the direction of the imaginary axis of the domain f ( U ) (see [3]). 

2. Let 0 = £2 ^ 6 and Re£ a 0. Let us set 

f a r g i l / 6 ) , if a r g { l / £ i } G (-7r/2,7r/2) 
^ d - \ a r g { l / e i } - 7 r , if a r g { l / 6 } € (tt/2,3tt/2). 

Let us consider the degenerate hyperbolic family / / i (£ i ,0 ) of all lines 7 
going through the fixed point 1 / f i . By we denote the family of 
entire segments 7 obtained by the restriction of the lines 7 G A ( £ i , 0 ) to 
the disk U . 

If a r g { l / £ i ) G (—7t/2,tt/2), then we parametrize the family A ( £ i , 0 ) as 
follows: 

(2.7) 7 = 7 t : z = z T ( t ) = -?-(l - i iV T ) , r G (0, tt], f G ( - 0 0 , ooj. 

The family //>(£ 1,0) will be also parametrized by (2.7), where by an easy 
computation of the equation \ z T ( t ) \ = 1 , we obtain r £ (to,tt — to), tq — 
arccos(a 2 ) , and t G ( t 0 ( r ) , t i ( r ) ) , where t 0 ( T ) = - s i n r - y / a 2 - cos 2 ( r ) , 
i i ( r ) = — sin t + y / a 2 — cos 2 (r ) . 

Since t G ( t o ( r ) , t i ( T ) ) is negative for each r € (ro, 7r - 7o), by (2.7) and 
(1.2) we deduce that for every function / G £1,0), where S is given by 
(2.6), and for every arc 7T G / \ ( £ i , 0 holds 

(2.8) 1 Re /(*,(<)) = Re { A ( 1 ( 1 _ t i e " ) } f ' ( z T ( t ) ) } 

= R e | - i t V V ' M < ) ) } 

= ~ W \ R e { e i 6 ( 1 ~ 6 * T ( i ) ) / , ( Z T ( 1 ) ) } > 0 

f o r i € ( i 0 ( r ) , / i ( r ) ) . 
If a r g { l / £ i } G ( t / 2 , 3 t / 2 ) , then we parametrize the family i \ ( £ i , 0) also 

by (2.7) but now we set r G (7r,27r]. Hence, every arc 7 G is also 
parametrized by (2.7), where r G (jt + to,27t — ro) and t G (io(?") ; M r ) ) -
Since now t G ( t o ( r ) , t i ( T ) ) is positive for each r G (tt + to, 2tt — t q ) , it follows 
that (2.8) is satisfied for 6 given by (2.6). 

Repeating the above considerations with £1 in place of £2 and vice versa, 
we see that (2.8) is also true for the case 0 = / ^ and Re £2 0. 

3. Let us assume that ^ = (2 = (0 / 0. By (1.5) we first set £0 = 
a G (0,1], / J , G [0,7r],i.e v = 0. Fix 0 G [//+arcsin a , f i + w — arcsin a ] \ 

{2 f i ± 7t/2}. From this, 2 f i — 6 G [ n + arcsin a — i r , f j , — arcsin a] \ { ±7r /2 } C 
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(-71-, it) \ {±7r/2}. Let us set 
' 2 f i - e + w, if 2 /Z-0G (-7T, - x / 2 ) 

(2.9) 6 = l 2 n - 0 , \i 2/J, — 0 £ (—7r/2, 7T/2) 
[ 2/U — 0 — 7T, if 2 f i - 0 £ (tt/2, tt). 

We consider now the parabolic family rp(0,£o) of all circles 7 containing 
fixed point l/£0 and tangent at l /£0 to the line having the direction 0. Let 
us denote by rp(0,£0) the family of entire circular arcs 7 which are the 
restrictions of the circles 7 G rp(9, £0) to the disk U. 

We parametrize the family rp(0,£0) as follows: 
(2.10) 7 = 7t : * = *t(0 = cr(l + e")te i9 + l/£0 , 

r e (-00,00), t G [0,27r), 
where c = l o r c = — 1 . Let every arc 7T G rp(0,£0) be also parametrized 
by (2.10) where r C (-00,00) and / G J(t) C [0,27t) for every fixed 
r G I . Since the line of the direction 0 has no common points with the disk 
U we see that X C (—00,0) or X C (0,00). 

Assume now that 2/z — 0 G (— i t , —it/2) U (7t/2, it). We set then c = —1 
in (2.10). By (2.10) we see that the open halfline {zT(0) : r G (-00,0)} and 
the disk U lie in the same halfplane which has the line of the direction 0 as 
its boundary. In consequence, X C (—00,0). 

From (2.10) it follows that 

(2.11) (1 - £02t(*))2 = -4£0
2r2 c o s \ t / 2 ) e i t e l i e . 

Therefore, for every arc 7 r G rp(0, £0) and for every function / G C(S, £0, £0), 
where 8 is given by (2.9), we conclude from (2.10), (2.11), (1.2) and from 
the fact that r G X is negative that 

(2.12) A R e / ( z T ( 0 ) 

= Re | l ( - r ( l + + l/fo)/(*r(<))} 

= R e | Tei9euf'(zT(t))} 

= R e { ( 4 ^ c o s ^ 2 ) ) 

Re{e w ( l - C o z T ( t ) ) 2 f ' ( z T ( t ) ) } > 0, t G J(r). 4|^0 |2rcos2(i/2) 
In the case when 2/i — 0 6 {—it/2,it/2), we set c = 1 in (2.10). For 

this reason the open halfline {zT(0) : r G (0,00)} and the disk U lie in 
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the same halfplane which has the line of the direction 0 as the boundary. 
Consequently, X C (0, oo). On account of this, (2.12) is also satisfied for this 
case. 

The same inequality (2.12) can be drawn for £0 = - a e - 1 ' 1 , a £ (0,1], 
¡1 € [0,7r], i.e. for v = tt, by similar considerations to that above. 

4. Let ^ = £2 = 0 and 6 6 (—7T/2, TT/2) be arbitrary. Let us take into 
account the family rp(S, 0) of the entire segments 7 parametrized as follows: 

7 = 7T : 2 = zT(t) = eiS(t + ¿r), 

r € ( - 1 , 1 ) , < € ( - f o , i o ) , <0 = \ / l - r 2 

(rp(S, 0) is the subfamily of the degenerate parabolic family rp(6,0) which 
contains all lines of the direction S). 

For every arc 7T € rp(6,0) and for every function / G C(6,0,0) by (2.13) 
and (1.2) we have 

(2.14) ± R e f ( z T ( t ) ) = R e { e i S f ' ( z T ( t ) ) } > 0, t € ( - f 0 , f o ) . 

Finally, the inequalities (2.5), (2.8), (2.12) and (2.14) may be summarized 
geometrically by saying that 

COROLLARY 2 . 1 . 1. Every function f e C ( i , £ i , 6 ) , for fixed £1 , £2 € U 
such that Re£i / Re £2 and for S € (—x/2, 7t/2) suitable choosen according 
to £1 and £2 maps a certain hyperbolic family of circular arcs lying in the 
disk U and dependent on £1 and £2 onto the family of analytic arcs each of 
them have with every vertical line at most one common point. 

2. Every function f £ C(6,£o,£o) for fixed £0 € U and 6 € (—7T/2, TT/2) 
suitable choosen according to £0 and fixed direction 6 € [0, 27t) maps a certain 
parabolic family of circular arcs lying in the disk U and dependent on 0 and 
£0 onto the family of analytic arcs each of them have with every vertical line 
at most one common point. 

T H E O R E M 2 . 2 . I f f e C(6,{u 6 ) , 6 € [ - ? r / 2 , TT/2], V, then f is 
univalent in U. 

P r o o f . By the fact that |£i| < 1 and | 6 | < 1 it follows from (1.9) that 

- _ 1 - 6 

I Kluix*) J ( i - € i * ) ( i - 6 * ) 

Hence the function h(£i,f2;z), 2 € U, is starlike and univalent in U for 
every fixed £1, £2 € U. 
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For each £0 € U the function /_,r/2,i0,io defined by (1.3) is evidently con-
vex and univalent in U . Therefore, by Remark 1.2 the classes C(-7 t /2 ,£ 0 , £O) 
and C ( v / 2 , { o , t o ) contain only univalent functions. 

For every 6 , 6 G F such that 6 / 6 by (1.4) holds 

f - r / 2 , h , b ( z ) = J du> 2 e U -
0 u 

In consequence, by Alexander's Theorem ([2], vol. I, p. 115), the function 
/ - i r / 2 . € c o n v e x and univalent in U . Hence, and on account of Remark 
I.2 the classes C(-tt/2, 6 , 6 ) and C(tt/2, 6 , 6 ) contain only univalent func-
tions. 

Let us assume now that £ € (—7t/2, t t /2) . By this, for every function 
/ G £ ( ¿ , 6 , 6 ) holds 

Re { e ' \ ^ 2 > . z ) } = » « { « " ( I ~ - 6 * ) / ' ( * ) } > 0, z € U . 

Hence it follows that / is close-to-convex and univalent in U (see [4], [2, vol. 
II, p. 51]). 

Putting p e ( z ) = ( l + e z ) / ( l - e z ) , e G T, z e U , to (1.7) we see that for 
each 6 G (—7t/2,t t /2) , 6 , 6 € U, the function /«.^.^(e; z), where e € T is 
fixed and z £ U , being the solution of the equation 

1 - I - e - 2 i S £ z 

(2-15) f U u ^ * ) = ( i _ f i z ) ( i _ 6 z ) ( i 

belongs to the class C(<5,6>6)-
For each <5 G [—tt/2, 7t/2] we obtain from (2.15) by a simple integration 

the following 

C O R O L L A R Y 2 . 3 . 1. / / 6 , 6 G U , 6 / £ G T a n d e / 6 , I = 1 , 2 , 
then 

( 2 . 1 6 ) / , l { l l i a ( e ; * ) = l°g(l - & * ) 

l o g ( i - 6 * ) ) ) - ( g _ ~ £ * ) } , log 1 = 0, z e U . 
iS t co—i6 6 ^ + ee 

i i - e 

2. / / 6 G T, 6 G If, 6 / 6 , £ G T a n d e = 6 , iAen 

/ ^ ^ / 2 6 z cos 6 , + 1 - 6 ^ ) 
(2-17) W 6 ; z ) = — l o g ^ ) , 

log 1 = 0, z G U. _ 
I f 6 G T, 6 G U , 6 / 6 , e G T and £ = fc, fAen / 5 , i l l i 2 ( 6 ; * ) w o/ 

i/ie /orm (2.17) un'i/i 6 p/ace o / 6 aici wfce v e r s a . 
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3. If£o £ U, £ £ T and e £0, then 

( , 1 8 ) w < : „ = + + l o g ! = § } , 

log 1 = 0, 2 £ u. 
4. If to, e £ T and £ = £o? then 

z — i£oe~tSz2 sin <5 
(2.19) fs,ç0,e0((o; z) = — — , Z e U. 

3. Coefficient formulae and estimates 
In this section we deal with coefficient formulae and estimates for func-

tions in the class C(6, ^1,^2)-
For each 6 G [—7r/2,7r/2], a, ¡3 G [0,1] and v G [0,7r] let us introduce 

Cs,aAv)= U C'(<5>a>/3>/x>I/)> cs,a,l3 = U C(6,a,0,n,v). 

It is easy to check that for each £1, £2 £ U such that £1 / £2 the function 
(1.9) is of the form 

00 

(3.1) h(t1,faz) = z+Y,AnZn, zeU, 
n=2 

where 
en tn anoints -„n^ — ini/ 

(3.2) An = ^~—= I . ~a e . e-«"-»*, n = 2 ,3 , . . . 

For each £0 G U we have 
00 

(3.3) * .2 =-? + V n f f - 1 * " , zeu. 

Let M[0,27t] denote the set of real-valued nondecreasing functions m = 
m(t), t £ [0,2ît], such that dm(t) = 2tt. 

Theorem 3 . 1 . If f £ C ( S , ( I , & ) for S G [—tt /2 , t t /2] , £1, £> G U such 
that £1 ^ £2> anrf / & 0/ i/ie /orm (1.1), then for n = 2 ,3 , . . . , /io/cte 

(3.4) an = — + ^ ^ T f e - ^ " 1 ) 4 + £ A ^ M dm(t), 
n
 ™ ¡ V ¡ fe / 

where m G Af[0,27r] and Ak are given by (3.2). 
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If f G <5 G [- j t /2 ,7t /2] , f 0 € U, and f is of the form (1.1), 
then 

(3.5) a„ = a " 1 + T + E 
0 fc=2 

n = 2 , 3 , . . . , m € M[0,2tt]. 

P r o o f . 1. From (1.4) we have that for each £2 G ^ such that £2 
holds = h { l u i r , z ) l z , z € i/. Therefore (3.1) and (3.2) yields 
that the coefficients of the functions /_7r/2,i1,i2

 a n ( l f 17/2,^^2 a r e °f the form 
(3.4) for S = —7t/2 and = tt/2, respectively. 

In the same manner, from (1.3) it follows that for each £0 G i/ holds 
/ i , r /2 £0(2) = z)/z, z £ U, which gives in view of (3.3) that the 
coefficients of the functions f—w/2^0Ao ftr/2,£0.£o a r e the form (3.5) 
for S = — 7t/2 and <5 = 7r/2, respectively. 

2. Let now / be of the form (1.1) and / G C(<5, £1,^2) for fixed 6 G 
(-7t /2,7t /2) , £1, £2 6 U such that £1 ± £>• Then there exists p e P o f the 
form p(z) = 1 + X ^ i PnZn? z £ U, such that (1.10) is satisfied. Hence using 
(3.1) we obtain 

00 00 00 

(3.6) z + £ nanzn = ( z + Anzn) ( l + e~is cos i £ p n z " ) . 
n=2 n=2 n=l 

Comparing coefficients in (3.6) we get 

2 a 2 = A2 + Pie~'s c o s . . . , 

n—1 
(3.7) nan = An + e~'s cos ¿(p„_i + n = 2 , 3 , . . . 

k=2 

Using well known formulae 

1 27r 
pn = - \ e~intdm(t), ne N , mGM[0,2?r] , 

7T J 
0 

for the coefficients pn of the functions p € P (see [2], vol. I, p. 96), we have 
by (3.7), 

nan = An +e~^C°S<?2f (e-^-D« + J ^ - ^ d m W 

0 k=2 

n = 2, 3 , . . . , m G Af [0, 2tt], This gives (3.4). 
3. For any function / G C(<$,£0,£o), <5 G (—tt/2, tt/2), £0 G we argue 

similar to Part 2 using now (1.10) and (3.3). Consequently we get 
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71—1 
(3.8) na n = < 0 n - 1 + e - i f i c o s i ( p n _ i + 2 ^ o f c _ 1 P n - f c ) , » = 2 , 3 , . . . 

k=2 

Hence we obtain (3.5) . 
This completes the proof of the theorem. 

Let now = |£2| = a € [0,1]. If fi ^ £2, then taking into account (1 .5) 
we see that a € (0 ,1] and v € (0 , : r ) . For this reason and by (3.2) we have 

(3.9) = 
sini/ 

If & = £2 ^ 0, then v = 0 or v = TT in (1.5) . Thus by (3.9) and Theorem 3.1 
we get the following 

COROLLARY 3.2. If f £ C(S,a,a,fi, v), è e [-w/2,w/2], a e [0,1], /x € 
[0,7r], v € (0 , t t ) , and f is of the form (1.1) , then 

(3.10) an = i f e V - V « » - ^ + e~^COS* 
n \ sin v tt 

n = 2 , 3 , . . . , m e M[0,2?r]. 

If f € C ( t f , a , a , / i , 0 ) , <5 E [—TT/2, TT/2], a G [0,1], fi G [0, TT], and f is of 
the form (1.1), then 

(3 .11) an = « " - ' e ' ^ - 1 ' " 
—iS s "—I 

+ e ™ S ( e - ^ - ^ + ^ k a ^ e - ^ K - ^ - ^ d m i t ) , 

0 k=2 
n = 2 , 3 , . . . , m G M[0,2TT]. 

/ / / G C(«5 ,a ,a , / i ,7r ) , <5 e [—7t/2, 7r/2], a G [0,1], n € [0, tt], and f is of 
the form (1.1), i/&en 

(3.12) an = ( - 1 )n+l a n- l e - i (n - l )M 

—¿(5 c n—1 

0 Jfe=2 

n = 2 , 3 , . . . , m G Af[0,2ir]. 

Setting è — fi — tt/2 and a = 1 into formulae (3.10) - (3.12) we obtain 
fomulae for the coefficients in the class C([i — 7 r / 2 , 1 , 1 , / i , u). Setting a = 0 
into (3 .10) - (3 .12) we get formulae for the coefficients in the class C(S,0,0). 

Especially, putting 1/ = 7T/2 into the formula (3.10) it follows the follow-
ing 
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C o r o l l a r y 3.3. I f f € C(6,a,a,p, tt/2), 6 e [--tt/2, tt/2], a e [0,1], 
fj, e [0,7r], and / is o/i/ae /orm (1.1), then 

— iS c - cos 0 J 
°2fc = - 2fe7T 

0 

k 

j=2 

27r fc \ 

0 j=2 ' 

Jfc G N, m e M[0,2TT]. 
As a consequence of Theorem 3.1 we can find the set of variability of the 

system (02,03) of the coefficients of the functions / in C(6, £1, £2)-
C o r o l l a r y 3.4. The region V3 of values of the system (02,03) of the 

coefficients of the functions f £ C ( S , £ à £ (—7r/2, tt/2), £1,62 € U, 
of the form (1.1) is the closed convex hull of the curve whose equation is 
following 

w3 = l(2e-2ite-iêcos6 + 2e-ite-iS(t1+Ç2)cos6+ei+fâ2 + &), t € [0,2*]. 

Using results obtained above we will find now coefficient estimates in 
C(6, £2)- From Theorem 3.1 it follows immediately 

T h e o r e m 3.5. If f e for 6 <= [-tt/2,t/2], 6 G Û such 
that / £2* Qnd f is of the form (1.1), then 

1 7 1 - 1 

(3.13) K 1 < ^ _ 6 | n ( | f l - ff | + 2cos S j ^ lei - £2fc|), » = 2,3,. . . 

If f € C(i,Îo,Îo), S e [-7t/2,7t/2], £ 0 G U, and f is of the form (1.1), 

then 

f . r j n - i 1 o ^ l - r c l f r r ' + i r c - W 1
 f o r | f n M l 

(3.14) |on| < \ + 2 c o s 5 (i _ | f o|)2 n ' f o r Ifol t 1 

I l + ( n - l ) c o s i , for|f0| = l, 

n = 2,3, . . . 
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Estimates (3.13)-(3.14) are not sharp in general. They are sharp only for 
some systems of parameters 6, £1 and £2 or for some coefficients. Trivially, 
on account of Remark 1.2 and (3.1) - (3.3) the bounds (3.13)-(3.14) are 
sharp for S = ±7r/2. 

Est imates (3.14) are sharp for 6 = 0 and for each £0 6 U. In this case, 
sett ing £0 = | fo |e Î V , V £ [0? 2?r), we get in view of (3.8) tha t the equality in 
(3.14) is a t ta ined when pn = 2e~tn<p for all n - 2 , 3 , . . . For this reason the 
extremal function is of the form (2.18) or (2.19) for e = e~tv. 

By the same argument as the above the bound (3.13) is sharp for 6 = 
0, £2 = 0 and for each (1 G f / , (1 ^ 0 (or for = 0 and for each £2 6 
Û , 6 + 0). By (3.2) we get An = tf"1. If now 6 = <P 6 [0,2*) , 
then (3.7) yields tha t the extremal function is of the form (2.16) or (2.17) 
for £ = e~iv. 

For = £2 = 0 we obtain from (3.14) the following 

C o r o l l a r y 3 . 6 . I f f e C(6,0,0), 6 G [ - t t / 2 , t t / 2 ] , and f is of the form 
(1.1), then 

2 
(3.15) | a n | < — c o s t f , n = 2 , 3 , . . . 

n 

The case S = 0 in (3.15) was proved by MacGregor [8]. From (3.8) it 
follows immediately tha t bounds (3.15) are sharp for all S G [—7r/2,7r/2]. 
Equali ty is realized by the function (2.18) for £0 = 0 and £ = 1. 

From Theorem 3.5 we have the following estimate of the second coeffi-
cient in the class C(S, £^£2) which is sharp for all 6, £1 and £2 . 

C o r o l l a r y 3 . 7 . I f f G C(S,( 1 , 6 ) , S € [—?r/2, t t / 2 ] , £1, £ 2 € Û, and f 
is of the form (1.1), then 

(3.16) \a2\ < I | £ 1 + £ 2 | + Cos£. 

By (3.2) we have A2 = & + 6 = 16 + f G [0,2tt). Then by 
(3.7) equality in (3.16) is realized when pi = 2el<-v+s\ For this reason the 
extremal function for the est imate (3.16) is according to £1 and £2 one of 
the form (2.16)-(2.19) for £ = 

From Corollary 3.2 we get estimates of the coefficients in the class 
C(£ ,£ i ,£ 2 ) , where = |£2 | = a € [0,1], especially for £1 = - £ 2 . We 
formulate these results for the classes Cs,a,a(v). 

C o r o l l a r y 3.8. I f f G CB,a,a{v), à € [—tt/2, tt/2], a G [0,1], v G (0,7r), 
and f is of the form (1.1), then 
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sin nv 
sm v 

. n - l a + 2 cos 8 ( 1 + Y^ 
k=2 

sin kv 
sin v 

a k-1 

n = 2 , 3 , . . . 

If v = 0 or v — 7r, then the estimates in the classes Ci i a > Q(0) and 
C s , a , a M reduce to (3.14), where |ft| = « £ [0,1]. 

From (3.14) and (3.17) it follows that (3.14) give estimates in the classes 
Cs,a,a- Putting 8 = fi — tt/2 into (3.14) and (3.17) we get estimates in 
the classes C(/i — ir/2,a,a,fi,v). Especially, for a = 1 we have bounds of 
the coefficients in the classes C(fi — 7t/2, 1, thus in the class CV(i) 
(Robertson [10], Royster and Ziegler [11]). Using a Lemma due to Gronwall 
and (3.17) Robertson examined also an asymptotic bound for |a„|. He proved 
that 

— . . „ 4 sin a . 
l i m \an\ < — , v G (0,7r), n—KX> 7T Sin V 

where an are the coefficients of functions in the class CV(i). 
From (3.13) and (3.14) we deduce 

C o r o l l a r y 3.9. 1. I f f G C(6,f i , f t ) , <5 G [-tt/2, tt/2], ft G T, ft G tf 
(or ft G T and £1 G ¿7), and f is of the form (1.1), then 

-p—. 2 cos 8 
lim o„ < t- - r . 

„-•oo | f t - f t | 

2. /// G C ( £ , f t , 6 ) , <5 e [-7r/2,7T/2], ft, ft G U, and f is of the form 
( 1 . 1 ) , then 

lim \an\ = 0. 
n—* oo 

3. / / / G CO1», ft, ft), i G [ - 7 r / 2 , 7 r / 2 ] , ft G U, and f is of the form (1.1), 
then 

lim |an| = 0. 
n—• 00 

Setting v = 7t/2 we obtain from Corollary 3.8 the following 

C o r o l l a r y 3.10. I f f G C i l 0 l 0 ( j r/2) , <5 G [ - t t / 2 , t t / 2 ] , q g [0,1], and f 
is of the form (1.1), then, /or a// fc G N, 

1 — a2fc 

(3.18) |a2*| < cos<$, for a G [0,1) 

(3.19) |a2*+i| < < 

(1 — a2)k 
^ cos 8, for a = 1, 

' 2 cos <5 + (1 - 2 cos 8)a2k - a2( f c + 1) 
(1 — a2)(2k + 1) 

2 k cos 8 + 1 
2k + 1 ' 

, /or a G [0,1) 

for a = 1. 
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The case a = 1 in (3.18) - (3.19) is due to Hengartner and Schober [3]. 
Estimates (3.18) are sharp. For a € (0,1) the function (2.16) for = 

a, £2 = —a (// = 7r/2 in (1.5)) and e = 1, is extremal. For a = 0 the function 
(2.18) for £o = 0 and e — 1 is extremal. For a = 1 the function (2.17) for 
1̂ = 1, £2 = — 1 and £ = 1 is extremal. 

From (3.19) we get the sharp bound for the third coefficient <23 for all 
a e [0 ,1] , 

M < ^(2cos£ + a 2 ) . 

The extremal function is one of the form (2.16)-(2.18) for e = e"5/2. 
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