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1. Introduction 
In their series of papers [6], P. Burmeister and B. Wojdylo thoroughly 

study some basic category theoretical concepts in five categories "which are 
likely to be the most natural ones when dealing with partial algebras" (loc. 
cit., Introduction). These categories have as objects all partial r-algebras, 
for a given similarity type r , and they differ in their morphisms. Two of 
them have as morphisms the two usual types of total homomorphisms: plain 
homomorphisms and closed homomorphisms. And the remaining three cate-
gories have as morphisms some special types of partial homomorphisms: quo-
morphisms (plain homomorphisms from a relative subalgebra), conformisms 
(closed homomorphisms from a weak subalgebra) and closed quomorphisms 
(closed homomorphisms from a relative subalgebra). Let these live categories 
be denoted, for a given similarity type r , by .Jjom(r), C-^om(r), £}uom(r), 
Conf(r) and <£-£hiotn(r), respectively. 

Recently, and through a work aimed at the generalization of graph gram-
mars to transformation systems of partial algebras (see the survey [2]), it 
has appeared that there are two more types of partial homomorphisms that 
may have some interest, at least from the point of view of their use in 
single-pushout [10] and single-pullback [3] hypergraph algebraic transfor-
mation systems, and that seem not to have been considered previously in 
the literature. Namely, there are what we shall call closed-domain quomor-
phisms (cd-quomorphisms for short), plain homomorphisms from a closed 
subalgebra, and what we shall call closed-domain closed quomorphisms (cdc-
quomorphisms for short), closed homomorphisms from a closed subalgebra 
(they are called "closed-domain quomorphic conformisms" in [2] and "par-
tial closed homomorphisms" in [14]). 

This work has been partially supported by the DGICyT under grant PB91-0334-C03-1. 
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We want to point out here that [2, Prop. 2.1] entails that cdc-quomor-
phisms are (as far as graph transformation goes) the right generalization 
to partial algebras of M. Lowe's partial homomorphisms for total alge-
bras [10, 11], which are the current basis of the Berlin approach to single-
pushout graph transformation; see [7] for a survey on this topic. These cdc-
quomorphisms can also be understood as the partial morphisms associated 
to closed homomorphisms, in the sense of [9]. 

As it is done in [2] for the categories considered therein, we study here 
the existence of limits and colimits in the categories £2)-£juom(r) and 
<KDC-£2uom(r) of partial r-algebras with cd-quomorphisms and cdc-quomor-
phisms, respectively, as morphisms. This study is also motivated by the fact 
that, in the context of algebraic transformation systems, the main features 
one asks to a category of "partial homomorphisms" are related to com-
pleteness and cocompleteness ([10, 8, 13]). It turns out that <£D(£-£)uom(r) 
is complete and cocomplete iff ^ all operations in r are unary (i.e., iff r 
is a graph structure in the sense of [10, 11]), while CS-£)uom(r) is never 
(even finitely) complete or cocomplete, unless there is no operation in the 
similarity type. 

So, this paper is to be understood as a sequel of [6] (and, in a single 
point, of [12], where the cartesian closedness of the categories considered in 
[6] is studied). Therefore, we shall make free use of the notations introduced 
in [6], and we shall even refer the reader, when possible or suitable, to proofs 
and examples from therein. There is one convention, not explicitly stated 
in [6], that shall be used systematically here, usually without any further 
mention: given a partial algebra denoted by a capital letter in boldface type 
(A, B, etc.), we shall always denote its universe by the same capital letter, 
but in slanted type (A, B, etc.). 

The similarity types considered in this paper, as in [6], are one-sorted 
and with all its operations Unitary, although there may be infinitely many 
such operations. Nevertheless, as it is also pointed out in loc. cit., all results 
generalize in an easy way to more general settings. 

We shall assume on the reader's side a working knowledge of the language 
of partial algebras, and we refer her/him to [4] or [5] for any concept not 
defined either here or in [6]. 

Acknowledgements. We acknowledge with thanks P. Burmeister and 
B. Wojdylo for making available to us a draft version of [6, Part III], as well 
as for several discussions on the partial homomorphisms considered herein. 
We are specially grateful to P. Burmeister, whose remarks on this note have 

if and only if 
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led to a significant improvement of it. The counterexamples for the unary 
case in the proofs of Propositions 7.(b) and 13.(b) are essentially due to him. 

2. M a i n r e su l t s 
Let T = be in the sequel a similarity type of partial algebras, 

with set of operations il. For every n G N, let i i ^ denote the set of operation 
symbols {</? € 0 | n v = n}. 

Let A = (A, q) and B = (B, be two partial T-algebras 
(partial algebras of similarity type r ) , let / : A —• B be a partial mapping 
with domain D, and let D be the relative subalgebra of A supported on D. 

We shall say that / is a closed-domain quomorphism, cd-quomorphism 
for short, when D is a closed subalgebra of A and / : D —> B is a (plain) 
homomorphism. In other words, when it satisfies the following condition: 

for every <p G 0 and a G DUv, if a G dom «¿>A then <pA(a) G B, f(a) G 
dom <pB and ^ B ( / ( a ) ) = f(<pA(a))-

In particular, if <p0 G and if tpA is defined then tpfr G D, y>B is defined 
and f(<p£) = 

We shall say that / is a closed-domain closed quomorphism, cdc-quomor-
phism for short, when D is a closed subalgebra of A and / : D —»• B a closed 
homomorphism. In other words, when it satisfies the following condition: 

for every (p G ii and a G D , a G dom<^A iff / ( a ) G dom<^B; and then 
</>A(a) G D and <^B(/(a)) = f(<pA(a)). 

In particular, if G then < i s defined iff (¿>B is defined, and then 
<pfeD and f(cp£) = <p$. 

It is straightforward to prove that cd-quomorphisms (resp. cdc-quo-
morphisms) are closed under composition and that the identity is a 
cd-quomorphism (resp. a cdc-quomorphism). Let <£D-Ouom(r) and 
£S)C-£)uom(r) be the categories with objects all partial T-algebras and with 
morphisms the cd-quomorphisms and the cdc-quomorphisms, respectively. 

The rest of this paper is devoted to establish the main properties of these 
categories. 

P R O P O S I T I O N 1 ( I somorph i sms ) . The isomorphisms in £S)C-£}uom(R) 
and in £S)-£juom(r) are the bijective closed homomorphisms. 

P r o o f . Any invertible partial homomorphism (of any kind) has to be 
totally defined, as well as its inverse, and therefore the isomorphisms in 
<£D£-£}uom(r) and <£D-Ouom(r) are exactly the isomorphisms in ^om( r ) . • 

P R O P O S I T I O N 2 ( M o n o m o r p h i s m s ) . a) The monomorphisms in 
<£DC-£}uom(r) are the injective closed homomorphisms. 
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b) The monomorphisms in <£D-£}uom(r) are the injective (plain) homo-
morphisms. 

P r o o f , a) Any injective closed homomorphism is a monomorphism in 
C3D£-£3uom(r). Conversely, on one hand the proof given in [6, Prop. 2] for 
closed quomorphisms (with a slight change: with the notations therein, one 
must take now the domain of h\, instead of the whole term algebra, as source 
algebra of h\ and hshows that any monomorphism in C3)C-£juom(r) has 
to be totally defined, i.e. a closed homomorphism. And, on the other hand, 
from loc. cit. we also know that a non-injective closed homomorphism cannot 
be a monomorphism in <£-.£) om(r), and therefore neither in <KD<£-£}uom(r). 

b) A proof similar to the previous one applies. • 

PROPOSITION 3 (Epimorphisms). a) A cdc-quomorphism f : A —>• B 
is an epimorphism in C2)C-£juom(r) i f f it is surjective. 

b) A cd-quomorphism f : A —*• B is an epimorphism in C2)-£}uom(r) i f f 
for every subset X C f(A) there is at most one closed subset Bx of B such 
that Bxnf(A) = X. 

P r o o f , a) The proof of the closed quomorphisms case in [6, Prop. 3] 
can be used here without any change, because the closed quomorphisms hi 
and h2 used therein to prove that if / is not surjective then it cannot be an 
epimorphism, are cdc-quomorphisms if / is so. 

b) As to the direct implication, assume that there exist two different 
closed subsets C\ and C2 of B such that C\ n f(A) = C2 fl f(A). Let 
gi : B —• B, i = 1,2, be the identity on C{. Such g\ and <jf2 are two different 
cd-quomorphisms such that gi of = g2 o f . Therefore / is not an epimorphic 
cd- quomor phism. 

Conversely, assume that for every subset X C f(A) there is at most one 
closed subset of B intersecting f(A) in X , and let <71, <72 : B —• C be two cd-
quomorphisms of partial r-algebras such that giof = g2 o f . Then dom and 
dom <72 are closed subsets of B such that (domgi) fl f (A) = (dom£f2) D f (A) 
and therefore domg\ — d o m M o r e o v e r , {b € dom <71 = dom <72 | 9\{b) = 
<72(6)} is a closed subset of B (cf. [4, Prop. 3.5.3]) whose intersection with 
f(A) is again (dom gi) fl f(A). Therefore {b G dom 51 = dom gi | gi(b) = 
g2(b)} = dom<7i and thus g\ = g2. u 

R e m a r k . Every surjective cd-quomorphism is epimorphic, and every 
epimorphic cd-quomorphism is dense in the sense of [4, Prop. 3.6.1] and [6, 
Prop. 3], but it is easy to produce examples showing that these implications 
are strict. 

PROPOSITION 4 (Terminal object), a) <EDC-£}uom(r) has a terminal 
object i f f = 0 ; and if it exists then it is the empty algebra. 
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b) C3)-£Juom(r) has a terminal object i f f = 0; and if it exists then 
it is the empty algebra. 

P r o o f , a) Assume that tp0 G ft*0* and that T is a terminal algebra in 
<£D<£-£2uom(r). Then ip j has to be defined (in order to accept a cdc-quo-
morphism from an algebra A with ^ defined) as well as undefined (in 
order to accept a cdc-quomorphism from an algebra B with undefined). 
This shows that if <£DC-£}uom(r) has terminal object then = 0. And 
it is clear that if = 0 then the empty algebra is a terminal object in 
C2)C-£Juom(r). 

b) Assume again that (po € and that T is a terminal algebra in 
C3?-£luom(r). Let A be a partial r-algebra with carrier A = {a, 6}, with 

= a and with all other operations discrete. T being terminal, <PQ 
has to be defined, say ip^ = t £ T. But then there are (at least) two 
cd-quomorphisms hi,h,2 : A — T ; namely, hi with dom/ii = {a} and 
hi(a) = t, and hi with dom/12 = {a,6} and /12(a) = /i2(&) = t- This shows 
that if <£D-£}uotn(r) has terminal object then = 0. As before, the con-
verse implication is straightforward. • 

P R O P O S I T I O N 5 (Initial object), a) €3?C-£}uom(7-) has an initial object 
i f f S l ^ = 0; and if it exists then it is the empty algebra. 

b) CS)-£juom(r) has always an initial object, and it is the empty algebra. 

P r o o f . The proof of (a) is similar to that of point (a) in the last Propo-
sition, and (b) is straightforward. • 

COROLLARY 6 (Zero object), a) CD<£-£}uom(R) has a zero object i f f 
0; and if it exists then it is the empty algebra. 

b) £33-£3uom(r) has a zero object i f f C l = 0; and if it exists then it is 
the empty algebra. • 

Since we have already dealt with terminal objects (Proposition 4), in the 
next proposition we only study the existence of products of families with 
non-empty index set. 

P R O P O S I T I O N 7 (Products (of non-empty families)). 
a) €S)C-£}uom(r) has all products of non-empty families of algebras i f f 

0, = And then, 
a product of a family of algebras is given by the con-

struction described in [6, Thm. 2] of a product for them in Conf(r), replacing 
everywhere in it "morphism" by cdc-quomorphism. 

b) CS)-£}uom(r) has all products of non-empty families of algebras i f f 
ft = ft<°). And, in this case, a product of a family (A¿),-g/ of partial r-
algebras ( / ^ 0) is obtained in the following way. Let (A*,(pr, : A* —• 
Ai)i£i) be the product (described in [6, Thm. 2]) of the family of universes 



142 R. A lber ich , M. Moya, F. Rossel lo , L. Sas tre 

(Ai)i£i in the category of sets with partial mappings. For every tp £ set 

a* _ / (<t>A" )«eI if VAi defined for every i 6 / 
^ \ undefined otherwise. 

Then the partial r-algebra A* = {A*, (ipA*)ipeu) defined in this way, 
together with the projections pri, i £ I , is the product of (At-),-gj in 
C2)-Ouom(r). 

P r o o f , a) When f ^ 0 for n = 0 or n > 2, the arguments in the 
proof of [6, Thm. 2] for closed homomorphisms can be used to show that 
there cannot exist the products in CS)C-£Juom(r) of the partial r-algebras 
A and B considered therein (in the case n > 2, one must replace in that 
proof P by the intersection of the domains of the projections). 

So, in order that all (binary) products exist it must happen = i^1) . 
And in this CctSG, Sl proof similar to the one for conformisms in loc. cit. 
shows that the same construction (taking as morphisms the cdc-quomor-
phisms) yields the product of a non-empty family of partial r-algebras in 
CDC-Quom (r) . 

b) Let us consider first the case i i ^ ^ 0, for some n > 1; as usual 
(in [6]), we shall assume without any loss of generality that O^1) ^ 0. So, 
let ip £ i^1) , and consider a partial r-algebra A with carrier A = {a, b} 
and with all operations discrete except ipA, which is given by <fiA(a) = b. 
Assume that the product P of A and A exists in C!D-£5uom(r), together 
with projections pi,p2 P —1• A. 

The family of cd-quomorphisms / i , / 2 : A -» A with / i = 0 and f2 — 
Id a entails the existence of an element x € P such that p\(x) is undefined 
and p2(x) = a, and moreover such that pi(<£P(a;)) is again undefined and 
P2( iPP(x)) = b. On the other hand, the family of cd-quomorphisms gi,g% : 
A —>• A, given by gi(b) = b and — Wa, entails now the existence of an 
element y € P such that pi(y) is undefined and p2{y) = a, and moreover 
such that pi(<pp(y)) = P2(<PP(y)) = b. 

In particular, there must exist two different elements x,y £ P such that 
Pi(x) and pi(y) are undefined and p2(x) = p2(y) = a. But then there exist 
two different cd-quomorphisms A —> P corresponding to the family of cd-
quomorphisms hi,h2 : A A given by hi = 0 and h2(b) = a. Namely, 
h, h! : A —> P with h(a) and h'(a) undefined, and with h{b) = x and 
h'(b) = y. This shows that the product of two copies of A in CS)-£}uom(r) 
cannot exist in this case. 

Now let us consider the case ft = Given a non-empty family of 
partial r-algebras (A¿)ig/, let A* be defined as in the statement. For every 
partial r-algebra C and for every family of cd-quomorphisms f\ : C —» A,-, 
i 6 / , there exists a unique partial mapping / : C A* such that / , = p r j o / 
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for every i £ I: namely, the one with dom / = U j g J /« a n (* ^ c e f 
and Ic = {i e I | c e dom /¿} then / ( c ) = ( f i (c)) i € / e 6 A*. 

Since dom / f is closed for every i £ I and all operations in r are nullary, 
dom / is a closed subset of C. Moreover, if <p € is such that <pc is defined 
then it belongs to dom fi for every i € I and therefore <pAi is defined for 
every i € I , which entails that (pA* is defined and f(<pc) = . Therefore, 
/ is a cd-quomorphism. 

Since the (partial) projections pri : A* —• A, are clearly cd-quomor-
phisms A* —A,-, i £ I , we finally conclude that A*, together with the pro-
jections pri, t € / , is in this case the product of (A¿)j€ / in £2>-£}uom(r). • 

Combining Propositions 4 and 7 we obtain the following. 

C O R O L L A R Y 8 ( P r o d u c t s ) , a) C3?C-£Juom(R) has all products i f f CI = 
fid). 

b) <£D-£2uom(r) has never all products (unless fi = 0). 

C O R O L L A R Y 9 ( C a r t e s i a n Closedness ) . CS)£-£juom(r) and 
C2)-£5uom(r) are never cartesian closed. 

P r o o f . In order that C2)-£}uom(r) is cartesian, it must happen that 
fi = 0, and in order that <£2X£-£}uom(r) is cartesian it must happen that 
fi = fid). 

Therefore, when one of these categories is cartesian, it has a zero 
object as well as non-zero objects, and therefore it cannot be cartesian closed 
(see for instance [1, Ex. 27A]). • 

P R O P O S I T I O N 10 ( C o p r o d u c t s ) . a) C2)£-£Juom(R) has all coproducts 
i f f CI = fid). 

And, in this case, a coproduct of a family of algebras is given 
by its coproduct in ^ o m ( r ) described in [4, §4-3]. 

b) C2>-£}uom(r) has all coproducts i f f either fi(0) = 0 or fi(n) = 0 for 
every n > 2. And, in this case, a coproduct of a family of algebras is given 
again by its coproduct in i o m ( r ) . 

P r o o f , a) In the case fi(") 0 for n = 0 or n > 2, an argument similar 
to the one used for closed homomorphisms in the proof of [6, Thm. 2d] 
shows that there do not exist all coproducts of pairs of partial algebras in 
C2)C-£juom(r). 

Now, when fi = 
fid) it is straightforward to show that the usual "disjoint 

union" construction [4, Constr. 4.3.4.(a)] yields the coproduct of any non-
empty family of partial algebras in <£2X£-£}uom(r). Since <£D<£-£}uom(r) has 
also an initial object in this case (Proposition 5), we conclude that it has all 
coproducts. 

b) Let us consider first the case 
when fi<°) 0 and fi(n) ^ 0 for some 

n > 2; as usual, we restrict ourselves to the case n = 2. So, let <¿>0 € 
and if 6 fi(2). 
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Let A be a partial r-algebra with carrier A = {ao)®i?
a?flo)ai} a n d 

with all operations discrete except <po and cp, which are defined as follows: 
<p£ = a0 and <pA(a0,a0) = a i , (pA(a0,a) = a'0 and <^A(ai,a) = a j . Let B 
be a partial r-algebra with carrier B — {6} and with all operations discrete 
except (po and <p, which are given by = b and <p>B(b,b) = b. Assume 
that the coproduct C of A and B exists in CS)-£juom(r), together with the 
natural injections (cd-quomorphisms) l\ : A —»• C and Li : B —> C. 

Since there is a (total) homomorphism from A to B, both t \ and £2 would 
be totally defined, and then it should happen that ^1(00) = ^I(GI) = (b) 
and ¿i(a'0) = lx(ai). 

But now consider the partial r-algebra D with carrier D = {d,do,di} 
and all operations discrete except ipo and ip, which are given by (f^ — d and 
¡pD(d,d) = d. Then the mappings f : A D, given by /(ao) = / ( a 1) = d, 
f(a'0) = do and f(a[) = d\, and g : B —> D, given by g{b) = d, are 
cd-quomorphisms / : A —» D and g : B —• D and they would induce a 
cd-quomorphism h : C —• D such that h(£i(a'0)) ^ h^i^a^)). This yields a 
contradiction and therefore the coproduct C cannot exist. 

Let us consider now the remaining cases. Since £©-£}uom(r) has always 
an initial object (Proposition 5), we shall only consider here coproducts of 
non-empty families. So, let (A¿) ! e / be in the sequel a non-empty family 
of partial r-algebras, and let Ai, together with homomorphisms l{ : 
Ai —>• ®,-g/Af, i G I, denote their coproduct in i jom(r). Let B be any 
partial r-algebra and let fi : A< —• B, i G I, be a family of cd-quomorphisms. 
For every i G I , let D j be the closed subalgebra of A; supported on dom/ j . 
The total homomorphisms /,• : D j —> B induce a total homomorphism 

In the case 
= 0, we have that ® , g / D j is a closed subalgebra of 

Aj . Therefore / yields a cd-quomorphism / : Ai B such that 
/ o £i = fi for every i G I. And any cd-quomorphism / ' : A j —• B 
such that foli = fi for every i G / must have ® j e / D j as domain (because 
^ J~1(dom/') = d o m / j for every i G I ) and then such / ' must be equal to 
/ . Therefore, if ft = then A j is indeed a coproduct of (A¿), e / in 
£0-£}uom(r) too. 

In the case ^ 0, ® i g J D ; turns out again to be a closed subalgebra 
of Ai, but this fact is now not as straightforward as before, and we 
prove it in a Claim below. Knowing this claim to be true, one can continue 
the proof in this case as in the previous one, obtaining again that ® i € / At-
is a coproduct of (A,-)je/ in <CD-£luom(r). 

C L A I M . Let r be a similarity type of algebras with Q, = fiW U fi^1), let 
( A j ) ^ / be a non-empty family of partial r-algebras, and for every i G I 
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let D j be a closed subalgebra of A j . Then © ¿ e i D j is a closed subalgebra of 
0 i e / A j . 

P r o o f (of t h e C l a i m ) . If i l ( 0 ) = 0 then this is clear. Assume now 
0 and let r ' be the similarity type obtained from r by removing the 

operation symbols in For every i e I, let A[ and D- denote respectively 
the r'-reducts of A j and Dj . Then ® i e / D - is a closed r'-subalgebra of 

© ¿ 6 / A ' -
Now let 0 (resp. 0O) denote the congruence on ©,- e / A- (resp. on © i e / D •) 

generated by 

X = { ( ( < # f v M ^ ' i ) ) I Vo € i i ( 0 ) is defined both in A j and A j } 

(resp. by 

Xq = {((vo'ifyivfi'j)) I <fo G i i ( 0 ) is defined both in D j and D,-}). 

Since every D j is a closed subalgebra of the corresponding A¿, we have that 
X = X0, and since © ¿ e J D ' - is a closed r'-subalgebra of © i 6 / A-, it finally 
turns out that, except for the diagonal pairs, 0 — 9Q (and, in particular, 
if 3 € U i e i ^ ' i ^ e n [x]g = [ar]flo and if x £ | J i e I D [ then [x]g = { x } ) and 
( 0 t e / D i ) / s o i s a c l o s e d "r'-subalgebra of ( © ¿ e i AJ)/«. 

Recall now that © ¿ e / A j is obtained from (©¿e/A^)/e by adding the 
operations in in the following way: a nullary operation (p0 is defined 
in © j £ / A j when it is defined in some Aj , and in this case </>®'e/A' = 
[((y^ , i)]e. And, of course, the same for © j G / D j . But then <^®ie/A' is defined 
iff v5®^1 5 ' ) and they are the same. This finishes the proof that ® i £ j D j is 
a closed subalgebra of © ¿ 6 7 Aj , and the proof of the Proposition. • 

PROPOSITION 11 (Equalizers), a) £X)C-£juom(r) has all equalizers iff 
ft = u fit1). Moreover, if SI = 

then an equalizer of a family (/j : 
A —> B ) j e / of cdc-quomorphisms is the same as its equalizer in <£-£}uom(r) 
described in [6, Thm. 3] while if il^1) ^ 0 then an equalizer of ( / j : 
A —> B ) j e / is given by the same construction as the one for its equalizer in 
<£-£}uom(r) when all operations in ii are unary, as described in loc. cit. 

b) CS)-£Juom(r) has always all equalizers, and they are given by the 
corresponding equalizers in £}uom(r) described in [6, Thm. 3]. 

The constructions in Theorems 3 and 3d and the corresponding Lemmas in [6], 
concerning equalizers and coequalizers, are given only for two morphisms, but, as it is 
pointed out therein, they are easily generalized to arbitrary families of morphisms. We 
shall refer in the sequel to these generalizations, rather than to the constructions actually 
displayed in loc. cit. 
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P r o o f , a) Let us consider first the case ft = Let T = ( f i : A —»• 
B ) j £ / be a family of cdc-quomorphisms between two partial r-algebras. 
Then all nullary operations defined in A belong to 

C = j a € P | dom fi | /¿(a) = fj(a) for every i, j G / } U (A - ( J dom , 
¿6/ »€/ 

(actually, they belong to the first set in this union) making the relative 
subalgebra C of A supported on C to be closed. And then a proof similar 
to the one for <£-£}uom(r) in [6, Thm. 3] shows that the inclusion of C into 
A is the equalizer of T in <££)<£-£}uom(r). 

In the case Q = i2<°) l l i i ^ , with i^1) ^ 0, let again T = (/,• : A B ) i 6 , 
be a family of cdc-quomorphisms between two partial r-algebras and let 

E = {a e A | there are no t 6 F({z}, T2t[g(r)) and i,j G I 
such that a G d o m t A and 

t A ( a ) G (dom f U d o m / , ) - {x £ (dom/,• n dom/j) | /¿(ar) = fj(x)}}. 

As it is shown in the proof of [6, Th. 3], E is a closed subset of A , and then 
an argument combining the arguments for closed quomorphisms in the pure 
nullary and pure unary cases in loc. cit. shows that the inclusion in A of its 
closed subalgebra E supported on E is the equalizer of T in £S)C-£juom(r). 

Finally, in the case ^ 0 for some n > 2, the example given in loc. 
cit. to show that in this case the equalizer of two closed quomorphisms need 
not exist can also be used to show that the equalizer of two cdc-quomor-
phisms need not exist either (the closed quomorphisms considered therein 
are actually cdc-quomorphisms). 

b) The proof is essentially the same as the one for quomorphisms in loc. 
cit. m 

Since a category is complete, i.e. it has all limits, iff it has all products 
and all equalizers [1, Th. 12 .3 ] , summarizing Corollary 8 and Proposition 11 
we obtain: 

COROLLARY 12 ( C o m p l e t e n e s s ) , a) CS)C-£iuom(r) is complete i f f i l = 

b) C2>-£juom(r) is never complete, unless 0 = 0 . « 

P R O P O S I T I O N 1 3 (Coequa l ize r s ) . a) CS)C-£3uom(r) has all coequalizers 
i f f Q = il^1). Moreover, in this case a coequalizer of a non-empty family 
T = ( f i : A — B ) ! e / of cdc-quomorphisms is obtained as follows. Let 
9( J7)' be the least equivalence relation on B containing all pairs of the form 
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(/¿(a), fj(a)) with a G dom/j n dom/ j , i,j G Let 

B(F) = [b G B | I J / f 1 ([&]*(*•)') C f j d o m / i } , 
¿e/ ¿e/ 

let D(T) be the greatest closed subset of B contained in B(T) and let finally 
9(T)q be the restriction of 9(F)' to D(T). Then 9(T)0 turns out to be a 
closed congruence on the relative subalgebra D ( J r ) o/B supported on D(T), 
and the natural homomorphism natg^0 : B D(F)/e(r)0 is a coequalizer 
of T in <£D£-£2uom(r). 

b) <£2)-£}uom(r) has never all coequalizers, unless Q, = 0. 

P r o o f , a) Let us consider first the case when f̂ ™) 0 for some n > 2, 
and as usual we restrict ourselves to the case n = 2. So, let (p G let A 
be a discrete r-algebra with universe A = {01 ,02} and let B be a partial r-
algebra with carrier B = {£>1, ¿»i, £>2} and with all operations discrete except 
ipB, which is given by <pB(bi,b[) '= b2. Let / : A —> B be the cdc-quo-
morphism given by f(ai) = 61 and /((J2) = b2, and let g : A — B be the 
cdc-quomorphism given by g(a\) — b\. Assume that the coequalizer of / 
and g in (£DC-£iuom(r) exists, and that it is h : B C. Then it is clear 
that bi,b[ G dom/i and, since this domain has to be closed, b2 G domh too. 
But then h o f ^ h 0 g. So, such a coequalizer does not exist. 

Consider now the case when iî 0^ 0, and let ipo G Let A be a 
partial r-algebra with universe A = {a, a ' } and with all operations in 0. 
discrete except <po, which is given by ip^ = a, let B be a partial r-algebra 
with universe B = {6} and with all operations in 0 discrete except <¿>0 < 
which is given by <pB = 6. Let / : A —• B be the cdc-quomorphism given 
by f(a) = f(a') = 6, and let g : A —»• B be the cdc-quomorphism given by 
g(a) = b. Then there is no cdc-quomorphism h coequalizing / and g. 

So let us assume finally that fi = 
. From [6, Lemma 7.(i)] (for closed 

quomorphisms) we know that the restriction B(T) of 0(F)' to B(T) is a 
closed congruence on the relative subalgebra B( .F ) of B supported on B(T). 
Then, 9(F)0 is a closed congruence on D(.F) (the closed subalgebra of B 
supported on D(T)) and nat s (^ ) o : B -»• D ( T ) I 0 ( t ) o 

is a cdc-quomorphism. We must show now that it is the coequalizer of T . 
We split this proof into several steps. 

Let us first prove that D(T) is a union of 0(^r)-classes. To do that, notice 
that a standard construction shows that 

D(F) = {b € B(T) | 
For every t G F ( { z } , T5tl0(r)), if b G d o m t B then tB (&) G B(F)}. 
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So, let b G D(F) and b' G B{T) such that (6', 6) G 6{T). Then there exist 
h, • • • > fn, f { , • • • , fh € F and ax,..., an G A such that a,i G dom ft n dom // 
for every i = l , . . . , n and /i(oi) = b', f[(ai) = /¿+ 1(a i + i ) for every i = 
l , . . . , r a - 1, and f'n{an) = b. 

Let t G F({a;} ,T2tlg(r)) such that b' G domt B . If frfa) = b' G domt B 

then ai G domt A and f{(ai) G domt B . By induction we conclude that 
b G d o m t B . But, since b G it turns out that tB(&) G B(F). And since 
Oif) is a closed congruence on B(.F) , it implies that t B (6 ' ) G B(F). We 
conclude that b' G D(T). 

Therefore, D ( T ) is a union of 0(/")-classes, and it implies in particular 
that nati(^r)o o f t - natfl( :F)o o /_,-, i,j G I. 

Now let h : B —»• C be another cdc-quomorphism coequalizing T. Then 
dom/i is a closed subset of B , and by [6, Lemma 8] it is a union of 6{T)-
classes. It implies on one hand that dom h C B ( f ) , and thus dom h C 
and on the other hand that 0{T)h := 0{T)o H (dom/i)2 is contained in ker h 
and that (dom h ) / i s a closed subset of 

Now, since ^(J7)^ C ker h, there is a closed homomorphism h : 
(dom h)/g(j?)h —> C yielding a cdc-quomorphism h, : ~D(T)o/$(f)0 —> C 
such that h — ho natg(^0 . The unicity of such h being clear, this achieves 
the proof that nat^(jF)0 : B —» D(J")/g(jF)0 is the coequalizer of (/¿)ie/ in 
C2?£-£Juom(r). 

b) Let us consider first the case when ti^ ^ 0 for some n > 1. As usual, 
we restrict ourselves to the case fiW i 0, so let ^ G i l W . 

Let A be a discrete algebra with carrier A = {a } , let B be a partial 
r-algebra with carrier B — {bi,b2,b'1,b2} and with all operations discrete 
except <pB, which is given by <pB(bi) — b[ and </>B(2>2) = b'2. Let f,g : A 
B be cd-quomorphisms given by /(a) = b\ and g(a) = b2, and assume 
that there exists the coequalizer h : B —> C of / and g. From the cd-
quomorphism p : B —> B given by p(b\) = p(&2) = b\ and p(b[) — p{b'2) = b[ 
we deduce that h is total, and since it must coequalize / and g it must 
also satisfy that h{b\) = ^(62) and h(b[) = h(b'2). But now let • : B —»• B 
be the cd-quomorphism given by the identity on the (closed) subalgebra of 
B supported on {b'i,b2}. It also coequalizes / and g, and it entails that 
h(b[) ^ h(b'2), which yields a contradiction. 

It remains to consider the case = i2(0) ^ 0. Let <p0 G , let A be 
a discrete algebra with carrier A = {a } , let B be a partial r-algebra with 
carrier B — {6} and with all operations discrete except ip0, which is given 
by </?B = b, let / : A —> B be the cd-quomorphism given by /(a) = b and let 
g : A —> B be the empty cd-quomorphism. Then there does not exist any cd-
quomorphism with source algebra B coequalizing / and g (because it should 
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be totally defined) and in particular there does not exist the coequalizer of 
/ and g. m 

R e m a r k : It is easy to produce examples showing that, in point (a) in 
the last Proposition, one has in general that D(T) ^ B(T). Therefore, the 
coequalizer of a family of cdc-quomorphisms in <£D£-£}uom(r) is in general 
different from their pushout in C-£Juom(r) or <£cmf(r). 

Since a category is cocomplete, i.e. it has all colimits, iff it has all coprod-
ucts and all coequalizers, summarizing Propositions 9 and 13 we obtain: 

C O R O L L A R Y 1 4 (Cocompleteness). a) <£2)<£-£Iuom(r) is cocomplete iff 

b) <£D-£}uom(r) is never cocomplete, unless Q, = 0. • 

Specific (and interesting) types of limits or colimits may exist in a cate-
gory even when it is not complete or cocomplete. In addition to the general 
results on completeness and cocompleteness given so far (Corollaries 12 and 
14), in the sequel we discuss the existence of pullbacks and pushouts of 
non-empty families of morphisms, as well as of inverse limits of non-empty 
inverse systems and direct limits of non-empty directed systems. 

P R O P O S I T I O N 15 (Pullbacks). a) C2)C-£}uom(r) has all pullbacks of 
non-empty families of morphisms with common target algebra iffVL = f U 
n«1) 

. Moreover, ifil = fid) then a pullback of such a family of cdc-quomor-
phisms is obtained by the usual combination of a product and an equalizer 
( c f [1, Prop. 11.11]), while in the general case a pullback of a family ( / ; : 
Bj —»• A)j-e/ of cdc-quomorphisms of r-algebras is obtained, grosso modo, 
by first computing the pullback (P ' , {pi : P ' — B - ) i e / ) of the family ( f i : 
B'j —> A')ie/ (A' and B^ the unary reducts of A and B r e s p . ) , and then 
defining in P ' the nullary operations (obtaining a r-algebra P ) in the only 
possible way so that the 'projections'pi : P ' —>• B ' become cdc-quomorphisms 
of r-algebras pi : P —• B j (see details in the proof). 

b) £2)-£3uom(r) has all pullbacks of non-empty families of morphisms 
with common target algebra iff il = 

Moreover, a pullback of such a 
family of cdc-quomorphisms is obtained in this case by the usual combination 
of a product and an equalizer. 

P r o o f , a) Assume first Q(n) ^ 0 for some n > 2. Let r ' be the similarity 
type obtained from r by removing the operation symbols in 

. Since there 
cannot exist any cdc-quomorphism from a r-algebra having some nullary 
operation defined to a r-algebra having no nullary operation defined, the 
r'-reduct of the pullback in <£2)<£-£2uom(r) of two empty cdc-quomorphisms 
/ : A —• 0 and g : B —• 0 (A and B two r-algebras with all their nullary 
operations undefined) would be the product of the r'-reducts of A and B 
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in £IDC-:Quom(r'). But C2)C-£iuom(r') does not have all binary products 
(Proposition 8), and therefore <£0<£-£}uom(r) cannot have all pullbacks. 

So, let us assume henceforth that = 0 for every n > 2, and let as 
before r ' be the similarity type obtained from r by removing its miliary 
operations. Let ( f i : B ; —• A) j £ /, I 0, be a family of cdc-quomorphisms 
of r-algebras. Let 

= {^o € O ( 0 ) | <p£ is defined}. 

We have that, for every B 4 , the miliary operations defined in B ; are exactly 
those in i i ^ -

For every i G /, let D t be the closed subalgebra of B t supported on 
dom f i , and let /; : D2 —• A still denote the corresponding (totally defined) 
closed homomorphism. Since C-^om(r) is closed under arbitrary pullbacks 
[6, Thm. 5], there exists the pullback of this family of closed homomor-
phisms. Let it be D , together with closed homomorphisms di : D —• D; , 
i G I, which we shall also understand as closed homomorphisms di : D —• B z . 
In particular, the miliary operations defined in D are exactly those in i l ^ . 

Now let (fi : B^ —> A b e the family of cdc-quomorphisms under 
consideration, but understood as between the r'-reducts of the correspond-
ing algebras. Since <£2X£-£}uom(r') is complete (Corollary 12), there exists 
the pullback of this family in <£D<£-£iuom(r'). Let it be P ' , together with 
cdc-quomorphisms (of r'-algebras) pi : P ' —> B J , i G I. 

By the universal property of pullbacks, there exists one and only one 
cdc-quomorphism (of r'-algebras) d : D ' —> P ' , where D ' is the r'-reduct of 
D , such that pj o d = di. Such d is totally defined, because the di are so. 

Finally, let P be the r-algebra obtained from P ' by adding the operations 
in in the following way: a nullary operation <fo is defined in P iff <¿>0 G 
f i ^ , and in this case ip* = d(ipQ*). 

With this definition, it is clear that pi : P —>• B j is a cdc-quomorphism 
(of r-algebras) for every i G I. 

And it turns out that the r-algebra P , together with these cdc-quomor-
phisms, is the pullback in <£2X£-£)uom(r) of (/, : B j —> A); 6/. Indeed, let 
(gi : C —• B¿) i £ / be an /-indexed family of cdc-quomorphisms of r-algebras 
such that fi o gi = f j o gj for every i,j G I. Let C ' be the r'-reduct of C , 
and let (gi : C ' —> B'-)ie/ denote the same family of cdc-quomorphisms, but 
now taken between the corresponding r'-reducts. 

By the universal property of pullbacks in €5)€-£juom(r') , there exists one 
and only one cdc-quomorphism g : C' —> P ' such that gi = pi o g for every 
i G I. It is enough now to check that g is a cdc-quomorphism of r-algebras 
g : C —>• P : i.e., to show that, for every y?o G fi^» V7? £ dom9 an(^ d^ff) — 
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To do that, set E = dom o g{ for any i £ I , and let E be the closed 
subalgebra of C supported on E. By the universal property of pullbacks in 
C-^om(r), there exists one, and only one, closed homomorphism h : E —• D 
such that di o h = gi\E for every i 6 I. Reasoning with the r'-reducts, we 
have that g\e = do h and then it is clear that ip^ e dom^l^ C domg and 
9(<Po) = d(H<Po)) = vi-

Finally, P is the only r-algebra with r'-reduct P ' and such that p, : P —»• 
Bj, i G are cdc-quomorphisms. Indeed, if there exists another r-algebra 
P with r'-reduct P ' and so that the mappings pi : P Bi are cdc-quomor-
phisms P —>• B; then the only cdc-quomorphism p : P —> P corresponding 
to this family of cdc-quomorphisms should be the identity on the r'-reducts, 
and therefore the identity. 

b) Arguing as in the case ^ 0, n > 2, for cdc-quomorphisms, we 
easily prove that if ^ 0, for some n > 1, then C2?-£juom(r) does not 
have all pullbacks of non-empty families. And if SI = then <£D-£}uom(r) 
has all non-empty products (Proposition 8) and all equalizers (Proposition 
11) and therefore all pullbacks of non-empty families. • 

P R O P O S I T I O N 16 (Pushou t s ) . a) <£2N£-£luom(r) has all of pushouts of 
non-empty families of morphisms with common source algebra iff fi = 
Moreover, a pushout of a family of cdc-quomorphisms is obtained in this 
case by the usual combination of a coproduct and a coequalizer (cf dual of 
[1, Prop. 11.11]). 

b) <£D-£3uom(r) has never all pushouts, unless 0 = 0. 

P r o of. a) In the case ^ 0 for some n > 2, an argument similar (but 
dual) to the one used in the same case for pullbacks of cdc-quomorphisms 
in the previous Proposition, shows that <£2)<£-£}uom(r) does not have all 
pushouts, while in the case 

the example for the nullary case in 
Proposition 13.(a) can also be used to show that C2)C-£}uom(r) does not 
have all pushouts either. And if il = i^1) then <£!>£-£}uom(r) is cocomplete 
by Corollary 14. 

b) Since CS)-£3uom(r) has always an initial object (Proposition 5) but 
never all coequalizers (unless ft = 0; Proposition 13), it never has all pull-
backs (unless ft = 0). • 

P R O P O S I T I O N 17 (Inverse limits). €33C-iDuom(r) and C3)-£Juom(r) 
have always all inverse limits of non-empty inverse systems. Moreover, an 
inverse limit of a non-empty inverse system of cdc-quomorphisms or cd-
quomorphisms is given by its inverse limit in Quom(r) described in 
[6, Th. 6]. 
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P r o o f . Let I = ( / , < ) be any non-empty upward directed set and let 

A = ((Ai)iei,(fi,j : A{ Aj)i,jei) 
i>j 

be any inverse system of partial r-algebras in £}uom(r). Let A, together with 
quomorphisms fi : A Af, i G I , be the inverse limit of A in £juom(r) 
described in loc. cit. In particular, for every system of quomorphisms (gi : 
B —* Ai)i£i compatible with A there exists one (and only one) quomorphism 
g : B —• A such that gi = /,• o g for every i G I. 

In loc. cit. it is shown that if all quomorphisms / ¿ j and <7, are closed 
then all quomorphisms as well as g, are also closed. This implies that 
(A, ( f i : A —»• A i ) i £ i ) is the inverse limit of A in C-£}uom(r) when all 
quomorphisms / ¿ j are closed. 

Now a similar (but easier) argument shows that if all quomorphisms fcj 
and gi have their domain closed then all quomorphisms fi, as well as g, 
have also their domain closed. And this implies that (A , ( / ; : A —»• A,-),-e/) 
is the inverse limit of A in CS)-Ouom(r) (resp. CS)C-£Juotn(r)) when all 
quomorphisms / ¿ j are cd-quomorphisms (resp. cdc-quomorphisms). • 

A similar proof also applies for direct limits, yielding the following result. 

P R O P O S I T I O N 1 8 (Direct limits). CS)C-£Juom(r) andCS-Quom(r) have 
always all direct limits of non-empty directed systems. Moreover, a direct 
limit of a non-empty directed system of cdc-quomorphisms or cd-quomor-
phisms is given by its direct limit in C-£juom(r) described in [6, Th. 6d]. • 
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