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1. Introduction

In their series of papers [6], P. Burmeister and B. Wojdylo thoroughly
study some basic category theoretical concepts in five categories “which are
likely to be the most natural ones when dealing with partial algebras” (loc.
cit., Introduction). These categories have as objects all partial 7-algebras,
for a given similarity type 7, and they differ in their morphisms. Two of
them have as morphisms the two usual types of total homomorphisms: plain
homomorphisms and closed homomorphisms. And the remaining three cate-
gories have as morphisms some special types of partial homomorphisms: quo-
morphisms (plain homomorphisms from a relative subalgebra), conformisms
(closed homomorphisms from a weak subalgebra) and closed quomorphisms
(closed homomorphisms from a relative subalgebra). Let these five categories
be denoted, for a given similarity type 7, by $om(7), €-SHom(7), Quom(7),
Conf(r) and €-Quom(7), respectively.

Recently, and through a work aimed at the generalization of graph gram-
mars to transformation systems of partial algebras (see the survey [2]), it
has appeared that there are two more types of partial homomorphisms that
may have some interest, at least from the point of view of their use in
single-pushout [10] and single-pullback {3] hypergraph algebraic transfor-
mation systems, and that seem not to have been considered previously in
the literature. Namely, there are what we shall call closed-domain quomor-
phisms (cd-quomorphisms for short), plain homomorphisms from a closed
subalgebra, and what we shall call closed-domain closed guomorphisms (cdc-
quomorphisms for short), closed homomorphisms from a closed subalgebra
(they are called “closed-domain quomorphic conformisms” in [2] and “par-
tial closed homomorphisms” in [14]).

This work has been partially supported by the DGICyT under grant PB91-0334-C03-1.
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We want to point out here that [2, Prop. 2.1] entails that cdc-quomor-
phisms are (as far as graph transformation goes) the right generalization
to partial algebras of M. Lowe’s partial homomorphisms for total alge-
bras [10, 11], which are the current basis of the Berlin approach to single-
pushout graph transformation; see [7] for a survey on this topic. These cdc-
quomorphisms can also be understood as the partial morphisms associated
to closed homomorphisms, in the sense of [9].

As it is done in [2] for the categories considered therein, we study here
the existence of limits and colimits in the categories €®-Quom(7) and
CDC-Quom(7) of partial 7-algebras with cd-quomorphisms and cdc-quomor-
phisms, respectively, as morphisms. This study is also motivated by the fact
that, in the context of algebraic transformation systems, the main features
one asks to a category of “partial homomorphisms” are related to com-
pleteness and cocompleteness ({10, 8, 13]). It turns out that €DC-Quom(r)
is complete and cocomplete iff (1) all operations in T are unary (ie., iff 7
is a graph structure in the sense of [10, 11]), while €D-Quom(7) is never
(even finitely) complete or cocomplete, unless there is no operation in the
similarity type.

So, this paper is to be understood as a sequel of [6] (and, in a single
point, of [12], where the cartesian closedness of the categories considered in
[6] is studied). Therefore, we shall make free use of the notations introduced
in [6], and we shall even refer the reader, when possible or suitable, to proofs
and examples from therein. There is one convention, not explicitly stated
in [6], that shall be used systematically here, usually without any further
mention: given a partial algebra denoted by a capital letter in boldface type
(A, B, etc.), we shall always denote its universe by the same capital letter,
but in slanted type (A4, B, etc.).

The similarity types considered in this paper, as in [6], are one-sorted
and with all its operations finitary, although there may be infinitely many
such operations. Nevertheless, as it is also pointed out in loc. cit., all results
generalize in an easy way to more general settings.

We shall assume on the reader’s side a working knowledge of the language
of partial algebras, and we refer her/him to [4] or [5] for any concept not
defined either here or in [6].

Acknowledgements. We acknowledge with thanks P. Burmeister and
B. Wojdylo for making available to us a draft version of [6, Part III], as well
as for several discussions on the partial homomorphisms considered herein.
We are specially grateful to P. Burmeister, whose remarks on this note have
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led to a significant improvement of it. The counterexamples for the unary
case in the proofs of Propositions 7.(b) and 13.(b) are essentially due to him.

2. Main results

Let 7 = (ny)yen be in the sequel a similarity type of partial algebras,
with set of operations Q. For every n € N, let Q") denote the set of operation
symbols {¢ € Q| n, = n}.

Let A = (A,(¢*)peq) and B = (B, (¢®)eq) be two partial T-algebras
(partial algebras of similarity type 7), let f : A — B be a partial mapping
with domain D, and let D be the relative subalgebra of A supported on D.

We shall say that f is a closed-domain quomorphism, cd-quomorphism
for short, when D is a closed subalgebra of A and f: D — B is a (plain)
homomorphism. In other words, when it satisfies the following condition:

for every » € Q and a € D™, if a € dom ¢* then p*(a) € D, f(a) €

dom ¢ and B(f(2)) = f(¢A()).
In particular, if po € Q© and if & is defined then 2 € D, of is defined
and f(¢g") = ¢5 -

We shall say that f is a closed-domain closed quomorphism, cde-quomor-
phism for short, when D is a closed subalgebra of A and f : D — B a closed
homomorphism. In other words, when it satisfies the following condition:

for every ¢ € Q and ¢ € D™, a € dom ¢ iff f(a) € dom ¢B; and then

¢*(a) € D and 9P(f(a)) = f(¢*()).
In particular, if @ € QO then @& is defined iff B is defined, and then
@8 € D and f(of) = @5

It is straightforward to prove that cd-quomorphisms (resp. cdc-quo-
morphisms) are closed under composition and that the identity is a
cd-quomorphism (resp. a cdc-quomorphism). Let €D-Quom(r) and
CDE-Quom(7) be the categories with objects all partial 7-algebras and with
morphisms the cd-quomorphisms and the cdc-quomorphisms, respectively.

The rest of this paper is devoted to establish the main properties of these
categories.

ProprosITION 1 (Isomorphisms). The isomorphisms in €OC-Quom(r)
and in €D-Quom(r) are the bijective closed homomorphisms.

Proof. Any invertible partial homomorphism {of any kind) has to be
totally defined, as well as its inverse, and therefore the isomorphisms in
CDC-Quom(7) and €D-Quom(7) are exactly the isomorphisms in Hom(7). m

ProposiTioN 2 (Monomorphisms). a) The monomorphisms in
CDC-Quom(7) are the injective closed homomorphisms.
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b) The monomorphisms in €D-Quom(7) are the injective (plain) homo-
morphisms.

Proof. a) Any injective closed homomorphism is a monomorphism in
€DC-Quom(7). Conversely, on one hand the proof given in [6, Prop. 2] for
closed quomorphisms (with a slight change: with the notations therein, one
must take now the domain of h,, instead of the whole term algebra, as source
algebra of h; and hy) shows that any monomorphism in €D€-Quom(7) has
to be totally defined, i.e. a closed homomorphism. And, on the other hand,
from loc. cit. we also know that a non-injective closed homomorphism cannot
be a monomorphism in €-$om(7), and therefore neither in €DEC-Quom(r).

b) A proof similar to the previous one applies. m

ProrosITION 3 (Epimorphisms). a) A cdc-quomorphism f : A — B
is an epimorphism in €OC-Quom(r) iff it is surjective.

b) A cd-quomorphism f : A — B is an epimorphism in €D-Quom(r) iff
for every subset X C f(A) there is at most one closed subset Bx of B such
that Bx N f(4) = X.

Proof. a) The proof of the closed quomorphisms case in [6, Prop. 3]
can be used here without any change, because the closed quomorphisms A,
and hy used therein to prove that if f is not surjective then it cannot be an
epimorphism, are cdc-quomorphisms if f is so.

b) As to the direct implication, assume that there exist two different
closed subsets C; and Cy of B such that C; N f(A) = Cy N f(A). Let
gi: B — B, 7= 1,2, be the identity on C;. Such ¢g; and g, are two different
cd-quomorphisms such that g; o f = g2 o f. Therefore f is not an epimorphic
cd-quomorphism.

Conversely, assume that for every subset X C f(A) there is at most one
closed subset of B intersecting f(A) in X, and let g1,¢2 : B — C be two cd-
quomorphisms of partial T-algebras such that gy o f = goof. Then dom g¢; and
dom g, are closed subsets of B such that (dom g1) N f(A) = (domg2) N f(A)
and therefore dom g; = dom g;. Moreover, {b € dom g; = dom g; | g1(b) =
g2(b)} is a closed subset of B (cf. [4, Prop. 3.5.3]) whose intersection with
f(A) is again (domg;) N f(A). Therefore {b € domg; = domg, | g:1(b) =
g2(b)} = dom g; and thus g; = g;. =

Remark. Every surjective cd-quomorphism is epimorphic, and every
epimorphic cd-quomorphism is dense in the sense of [4, Prop. 3.6.1] and [6,
Prop. 3], but it is easy to produce examples showing that these implications
are strict.

PRrROPOSITION 4 (Terminal object). a) €D€-Quom(7) has a terminal
object iff O = 0; and if it exists then it is the empty algebra.
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b) €D-Quom(7) has a terminal object iff QO = @: and if it exists then
it is the empty algebra.

Proof. a) Assume that ¢y € 2(® and that T is a terminal algebra in
€DC€-Quom(r). Then ¢F has to be defined (in order to accept a cdc-quo-
morphism from an algebra A with ¢f* defined) as well as undefined (in
order to accept a cdc-quomorphism from an algebra B with 2 undefined).
This shows that if €D€-Quom(r) has terminal object then Q(®) = §. And
it is clear that if Q(®) = () then the empty algebra is a terminal object in
COC-Quom(T).

b) Assume again that ¢o € (¥ and that T is a terminal algebra in
¢D-Quom(7). Let A be a partial 7-algebra with carrier A = {a,b}, with
¢ = a and with all other operations discrete. T being terminal, ¢F
has to be defined, say ¢f = t € T. But then there are (at least) two
cd-quomorphisms hy,h; : A — T; namely, by with domh; = {a} and
hi(a) = t, and hy with dom hy = {a,b} and hy(a) = hy(b) = t. This shows
that if €D-Quom(r) has terminal object then Q%) = (). As before, the con-
verse implication is straightforward. =

ProrosiTION 5 (Initial object). a) €DE-Quom(7) has an initial object
iff QO = 0; and if it exists then it is the empty algebra.
b) €D-Quom(7) has always an initial object, and it is the empty algebra.

Proof. The proof of (a) is similar to that of point (a) in the last Propo-
sition, and (b) is straightforward. m

COROLLARY 6 (Zero object). a) €DC-Quom(7) has a zero object iff
QO = §; and if it exists then it is the empty algebra.

b) €D-Quom(7) has a zero object iff Q) = @; and if it exists then it is
the empty algebra. m

Since we have already dealt with terminal objects (Proposition 4), in the
next proposition we only study the existence of products of families with
non-empty index set.

ProrosiTION 7 (Products (of non-empty families)).

a) €OC-Quom(7) has all products of non-empty families of algebras iff
Q = Q). And then, a product of a family of algebras is given by the con-
struction described in (6, Thm. 2] of a product for them in €onf(7), replacing
everywhere in it “morphism” by cdc-quomorphism.

b) €D-Quom(7) has all products of non-empty families of algebras iff
Q = Q. And, in this case, a product of a family (A;)ics of partial -
algebras (I # 0) is obtained in the following way. Let (A*,(pr; : A* —
Ai)ier) be the product (described in [6, Thm. 2]) of the family of universes
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(A;)ier in the category of sets with partial mappings. For every ¢ € Q0O set

A _ J (™ )ier  if ™ is defined for every i € I
v= undefined otherwise.

Then the partial T-algebra A* = (A*, (9™ )peq) defined in this way,
together with the projections pr;, i € I, is the product of (A;)ier in
€D-Quom(T).

Proof. a) When QM £ @ for n = 0 or » > 2, the arguments in the
proof of [6, Thm. 2] for closed homomorphisms can be used to show that
there cannot exist the products in €D€-Quom(7) of the partial r-algebras
A and B considered therein (in the case n > 2, one must replace in that
proof P by the intersection of the domains of the projections).

So, in order that all (binary) products exist it must happen Q = Q(1),
And in this case, a proof similar to the one for conformisms in loc. cit.
shows that the same construction (taking as morphisms the cdc-quomor-
phisms) yields the product of a non-empty family of partial 7-algebras in
COC-Quom(r).

b) Let us consider first the case Q™ # @, for some n > 1; as usual
(in [6]), we shall assume without any loss of generality that Q1) # §. So,
let ¢ € Q) and consider a partial r-algebra A with carrier A = {a,b}
and with all operations discrete except ¢, which is given by p®(a) = b.
Assume that the product P of A and A exists in €D-Quom(7), together
with projections py,p2: P — A.

The family of cd-quomorphisms f1,fo : A — A with f; = @ and f, =
Ida entails the existence of an element z € P such that p;(z) is undefined
and py(z) = @, and moreover such that p;(¢F(z)) is again undefined and
pa(@¥(z)) = b. On the other hand, the family of cd-quomorphisms gy, ¢, :
A — A given by g1(b) = b and g2 = Ida, entails now the existence of an
element y € P such that p;(y) is undefined and py(y) = a, and moreover
such that pi(9®(y)) = p2(¢%(y)) = b.

In particular, there must exist two different elements =,y € P such that
p1(z) and pi(y) are undefined and py(z) = p2(y) = a. But then there exist
two different cd-quomorphisms A — P corresponding to the family of cd-
quomorphisms hy,hy : A — A given by hy = § and hy(b) = a. Namely,
h,h' : A — P with h(a) and h'(a) undefined, and with h(b) = 2 and
h'(b) = y. This shows that the product of two copies of A in €D-Quom(7)
cannot exist in this case.

Now let us consider the case © = Q). Given a non-empty family of
partial T-algebras (A;)icr, let A* be defined as in the statement. For every
partial 7-algebra C and for every family of cd-quomorphisms f; : C — A,
t € I, there exists a unique partial mapping f : C — A* such that f; = priof
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for every i € I: namely, the one with dom f = |J;¢;dom f; and if ¢ € dom f
and I, = {i € I | c € dom f;} then f(c) = (fi(¢c))ie1, € A™.

Since dom f; is closed for every ¢ € I and all operations in 7 are nullary,
dom f is a closed subset of C. Moreover, if ¢ € QO is such that ¢ is defined
then it belongs to dom f; for every i € I and therefore p*i is defined for
every i € I, which entails that ¢A" is defined and f(¢€) = A" Therefore,
f is a cd-quomorphism.

Since the (partial) projections pr; : A* — A; are clearly cd-quomor-
phisms A* — A;, ¢ € I, we finally conclude that A*, together with the pro-
jections pry, i € I, is in this case the product of (A;)ier in €D-Quom(7). =

Combining Propositions 4 and 7 we obtain the following.

CoRroLLARY 8 (Products). a) €DC-Quom(7) has all products iff @ =
o,
b) €D-Quom(r) has never all products (unless Q = 0).

CoroLLARY 9 (Cartesian Closedness). €DC-Quom(r) and
¢D-Quom(7) are never cartesian closed.

Proof. In order that €D-Quom(r) is cartesian, it must happen that
Q = 0, and in order that €DC€-Quom(7) is cartesian it must happen that
Q = QM) Therefore, when one of these categories is cartesian, it has a zero
object as well as non-zero objects, and therefore it cannot be cartesian closed
(see for instance [1, Ex. 27A]). =

ProposiTION 10 (Coproducts). a) €DC-Quom(T) has all coproducts
iff @ = Q. And, in this case, a coproduct of a family of algebras is given
by its coproduct in $Hom(r) described in [4, §4.3].

b) €D-Quom(r) has all coproducts iff either Q) = § or QY = § for
every n > 2. And, in this case, a coproduct of a family of algebras is given
again by its coproduct in Hom(r).

Proof. a) In the case Q(™ # § for n = 0 or n > 2, an argument similar
to the one used for closed homomorphisms in the proof of [6, Thm. 2d]
shows that there do not exist all coproducts of pairs of partial algebras in
CDE-Quom(T).

Now, when = Q1) it is straightforward to show that the usual “disjoint
union” construction [4, Constr. 4.3.4.(a)] yields the coproduct of any non-
empty family of partial algebras in €D€-Quom(7). Since €DE-Quom(7) has
also an initial object in this case (Proposition 5), we conclude that it has all
coproducts.

b) Let us consider first the case when Q(® £  and (™ # @ for some
n > 2; as usual, we restrict ourselves to the case n = 2. So, let ¢, € Q)
and ¢ € Q).
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Let A be a partial T-algebra with carrier A = {ao,a1,4,aq,a}} and
with all operations discrete except o and ¢, which are defined as follows:
e = ao and ¢ (ao,a) = a1, p*(a0,a) = af and ¢*(a1,a) = af. Let B
be a partial T-algebra with carrier B = {b} and with all operations discrete
except @o and ¢, which are given by ¢P = b and ¢P(b,6) = b. Assume
that the coproduct C of A and B exists in €D-Quom(7), together with the
natural injections (cd-quomorphisms) ¢; : A — C and ¢, : B — C.

Since there is a (total) homomorphism from A to B, both ¢; and ¢; would
be totally defined, and then it should happen that ¢;(ap) = ¢1(a1) = £2(b)
and Zl(a(’)) = [1(&'1)

But now consider the partial T-algebra D with carrier D = {d,dyp,d;}
and all operations discrete except ¢ and ¢, which are given by ¢ = d and
©P(d,d) = d. Then the mappings f : A — D, given by f(ao) = f(a1) = d,
f(a}) = do and f(a}) = dy, and g : B — D, given by g(b) = d, are
cd-quomorphisms f : A — D and ¢ : B — D and they would induce a
cd-quomorphism h : C — D such that h(€1(ag)) # h(€1(a})). This yields a
contradiction and therefore the coproduct C cannot exist.

Let us consider now the remaining cases. Since €D-Quom(7) has always
an initial object (Proposition 5), we shall only consider here coproducts of
non-empty families. So, let (A;);er be in the sequel a non-empty family
of partial r-algebras, and let @, A;, together with homomorphisms ¢; :
A; — @ Ai, i € I, denote their coproduct in $om(r). Let B be any
partial T-algebra andlet f; : A; — B, ¢ € I, be a family of cd-quomorphisms.
For every : € I, let D; be the closed subalgebra of A; supported on dom f;.
The total homomorphisms f; : D; — B induce a total homomorphism
f: ey Di — B.

In the case Q(©) = @, we have that @ic;Di is a closed subalgebra of
;cr Ai. Therefore f yields a cd-quomorphism f : B;.; A; — B such that
fol; = f; for every ¢ € I. And any cd-quomorphism f': @;.;A; — B
such that fof; = f; for every ¢ € I must have @, ; D; as domain (because
¢7'(dom f") = dom f; for every i € I) and then such f' must be equal to
f. Therefore, if © = Q) then @ieIAi is indeed a coproduct of (A;);er in
€D-Quom(7) too.

In the case Q) £ 0, ;¢ D: turns out again to be a closed subalgebra
of P;c; Ai, but this fact is now not as straightforward as before, and we
prove it in a Claim below. Knowing this claim to be true, one can continue
the proof in this case as in the previous one, obtaining again that &,c; A;
is a coproduct of (A;);er in €D-Quom(T).

CLaIM. Let T be a similarity type of algebras with @ = QO u Q)| let
(Aj)ier be a non-empty family of partial T-algebras, and for every i € I
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let D; be a closed subalgebra of A;. Then ;c;Di is a closed subalgebra of
Dicr Ai-

Proof (of the Claim). If Q) = {§ then this is clear. Assume now
QO £ @ and let 7' be the similarity type obtained from 7 by removing the
operation symbols in Q(%). For every ¢ € I, let A} and D) denote respectively
the 7'-reducts of A; and D;. Then @ielDé is a closed 7'-subalgebra of
Dier Ai-

Now let 8 (resp. 8) denote the congruence on €D, A} (resp. on P, D;)
generated by

X = {((c,o(‘,“,i),(gooAj,j)) | oo € 0O is defined both in A; and A;}

(resp. by
Xo = {((¢2,3), (¢2,7)) | po € 2 is defined both in D; and D;,}).

Since every D; is a closed subalgebra of the corresponding A;, we have that
X = Xy, and since @;¢; D; is a closed 7'-subalgebra of P, ; Al, it finally
turns out that, except for the diagonal pairs, # = 6y (and, in particular,
if # € | |;c; D} then [z]g = [2]g, and if = & | ;c; D} then [z]s = {z}) and
(Dic1Di)/s, is a closed T'-subalgebra of (P;c; Al)/s-

Recall now that @;.; A; is obtained from (P;c; A})/s by adding the
operations in Q% in the following way: a nullary operation g is defined
in @;c;A; when it is defined in some A;, and in this case go?"e’A‘
[((,ooA" ,1)]¢. And, of course, the same for @, ; D;. But then @SB"E’A‘ is defined
iff 90?“5’])", and they are the same. This finishes the proof that @, ; D; is
a closed subalgebra of @;.; A;, and the proof of the Proposition. m

ProprosiTION 11 (Equalizers). a) €D€-Quom(7) has all equalizers iff
Q = QO y Q. Moreover, if @ = Q) then an equalizer of a family (f; :
A — B);er of cdc-quomorphisms is the same as its equalizer in €-Quom(7)
described in [6, Thm. 3] (3| while if Q) £ @ then an equalizer of (f; :
A — B);es is given by the same construction as the one for its equalizer in
€-Quom(7) when all operations in Q are unary, as described in loc. cit.

b) €D-Quom(r) has always all equalizers, and they are given by the
corresponding equalizers in Quom(t) described in [6, Thm. 3].

(2) The constructions in Theorems 3 and 3d and the corresponding Lemmas in (6],
concerning equalizers and coequalizers, are given only for two morphisms, but, as it is
pointed out therein, they are easily generalized to arbitrary families of morphisms. We
shall refer in the sequel to these generalizations, rather than to the constructions actually
displayed in loc. cit.
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Proof. a) Let us consider first the case @ = Q). Let F = (f; : A —
B).cs be a family of cdc-quomorphisms between two partial 7-algebras.
Then all nullary operations defined in A belong to

C= {a € (dom f; | fi(a) = fi(a) for every i,j € I} U <A -~ |Jdom fi),
il il

(actually, they belong to the first set in this union) making the relative
subalgebra C of A supported on C to be closed. And then a proof similar
to the one for €-Quom(7) in [6, Thm. 3] shows that the inclusion of C into
A is the equalizer of F in €D€-Quom(7).

In the case @ = QO UM with Q) £ @, let again F = (f; : A — B)ig;g
be a family of cdc-quomorphisms between two partial 7-algebras and let

E ={a € A| there are no t € F({z},¥Alg(7)) and ¢,j € I
such that a € domt# and

tA(a) € (dom f; Udom f;) — {z € (dom f; ndom f;) | fi(z) = f;(2)}}.

As it is shown in the proof of [6, Th. 3], E is a closed subset of A, and then
an argument combining the arguments for closed quomorphisms in the pure
nullary and pure unary cases in loc. cit. shows that the inclusion in A of its
closed subalgebra E supported on F is the equalizer of ¥ in €D€-Quom(7).

Finally, in the case Q™ # §§ for some n > 2, the example given in loc.
cit. to show that in this case the equalizer of two closed quomorphisms need
not exist can also be used to show that the equalizer of two cdc-quomor-
phisms need not exist either (the closed quomorphisms considered therein
are actually cdc-quomorphisms).

b) The proof is essentially the same as the one for quomorphisms in loc.
cit. m

Since a category is complete, i.e. it has all limits, iff it has all products
and all equalizers {1, Th. 12.3], summarizing Corollary 8 and Proposition 11
we obtain:

CoROLLARY 12 (Completeness). a) €DC-Quom(7) is complete iff @ =
o,
b) €D-Quom(7) is never complete, unless 2 = 0. m

ProrosiTION 13 (Coequalizers). a) €D€-Quom(T) has all coequalizers
iff @ = Q). Moreover, in this case a coequalizer of a non-empty family
F = (fi + A — B)ier of cde-quomorphisms is obtained as follows. Let
8(F) be the least equivalence relation on B containing all pairs of the form
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(fi(a), fi(a)) with a € dom f; Ndom f;, ¢,j € I. Let
B(F) = {be B (Blary) € [Ydom £},

i€l i€l
let D(F) be the greatest closed subset of B contained in B(F) and let finally
8(F)o be the restriction of 6(F) to D(F). Then §(F)o turns out to be a
closed congruence on the relative subalgebra D(F) of B supported on D(F),
and the natural homomorphism naty ), : B = D(F)/s(F), is a coequalizer
of F in €OC-Quom(T).
b) €D-Quom(7) has never all coequalizers, unless = 0.

Proof. a) Let us consider first the case when QM +£ @ for some n > 2,
and as usual we restrict ourselves to the case n = 2. So, let ¢ € Q) let A
be a discrete T-algebra with universe A = {a;,a;} and let B be a partial 7-
algebra with carrier B = {by, b}, b2} and with all operations discrete except
©B, which is given by ¢B(by,4]) = by. Let f : A — B be the cdc-quo-
morphism given by f(a1) = b1 and f(az) = by, and let g : A — B be the
cdc-quomorphism given by g(a;) = by. Assume that the coequalizer of f
and ¢ in €DC-Quom(7) exists, and that it is h : B — C. Then it is clear
that by,b] € domh and, since this domain has to be closed, b; € dom h too.
But then ho f # hog. So, such a coequalizer does not exist.

Consider now the case when Q) # ¢, and let o € Q). Let A be a
partial 7-algebra with universe A = {a,a’} and with all operations in Q
discrete except g, which is given by & = a, let B be a partial T-algebra
with universe B = {b} and with all operations in  discrete except ¢y,
which is given by 8 = b. Let f : A — B be the cdc-quomorphism given
by f(a) = f(a') = b, and let g : A — B be the cdc-quomorphism given by
g(a) = b. Then there is no cdc-quomorphism h coequalizing f and g.

So let us assume finally that Q = Q). From [6, Lemma 7.(i)] (for closed
quomorphisms) we know that the restriction 8(F) of 8(F)' to B(F) is a
closed congruence on the relative subalgebra B(F) of B supported on B(F).
Then, 6(F)y is a closed congruence on D(F) (the closed subalgebra of B
supported on D(F)) and

Ila,tg(y:)o . B — D(]‘-)/g(}')o
is a cdc-quomorphism. We must show now that it is the coequalizer of F.
We split this proof into several steps.
Let us first prove that D(F) is a union of 8(F)-classes. To do that, notice
that a standard construction shows that
D(F)={be B(F)|
For every t € F({z},XAlg(r)), if b € domtB then tB(b) € B(F)}.
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So, let b € D(F) and b’ € B(F) such that (b',b) € 6(F). Then there exist
fiseeosfar fly-o oy fl € Fand ay,...,a, € A such that a; € dom f;Ndom f]
for every 1 = 1,...,n and fi(ay) = b, f{(a;) = fit1(aiz1) for every ¢ =
1,...,n—1,and fl(a,) =b.

Let t € F({z},Xg(7)) such that &' € domtB. If f1(a;) = b' € dom tB
then a; € domt® and f](a;) € domtB. By induction we conclude that
b € dom tB. But, since b € D(F), it turns out that tB(8) € B(F). And since
8(F) is a closed congruence on B(F), it implies that tB(d') € B(F). We
conclude that b’ € D(F).

Therefore, D(F) is a union of §(F)-classes, and it implies in particular
that natg(r), © fi= natg(r), © fi6j el

Now let h : B — C be another cdc-quomorphism coequalizing F. Then
domh is a closed subset of B, and by [6, Lemma 8] it is a union of 8(F)-
classes. It implies on one hand that dom & C B(F), and thus dom h C D(F),
and on the other hand that 8(F), := 8(F)o N (dom k)? is contained in ker h
and that (dom h)/4(x), is a closed subset of D(F)/g(5), -

Now, since 8(F), C kerh, there is a closed homomorphism #
(domh)/g(F), — C yielding a cde-quomorphism ho: D(F)o/o(r), — C
such that b = ho natg(r),. The unicity of such h being clear, this achieves
the proof that nater), : B — D(F)/4(x), is the coequalizer of (f;)ier in
COC-Quom(7).

b) Let us consider first the case when Q(™ # () for some n > 1. As usual,
we restrict ourselves to the case Q) £ §, so let ¢ € Q.

Let A be a discrete algebra with carrier A = {a}, let B be a partial
T-algebra with carrier B = {bq,b,,b],05} and with all operations discrete
except B, which is given by ¢B(b;) = b} and pB(b;) = b}. Let f,g: A —
B be cd-quomorphisms given by f(a) = b; and g(a) = by, and assume
that there exists the coequalizer h : B — C of f and g. From the cd-
quomorphism p : B — B given by p(b,) = p(bs) = by and p(b}) = p(b}) = b}
we deduce that & is total, and since it must coequalize f and g it must
also satisfy that h(b;) = h(by) and k(b)) = h(b}). But now let ~: B — B
be the cd-quomorphism given by the identity on the (closed) subalgebra of
B supported on {b},b5}. It also coequalizes f and g, and it entails that
h(b}) # h(b}), which yields a contradiction.

It remains to consider the case Q@ = Q© £ 0. Let ¢ € 20 let A be
a discrete algebra with carrier A = {a}, let B be a partial T-algebra with
carrier B = {b} and with all operations discrete except o, which is given
by ¢® = b,let f: A — B be the cd-quomorphism given by f(a) = b and let
g : A — B be the empty cd-quomorphism. Then there does not exist any cd-
quomorphism with source algebra B coequalizing f and g (because it should
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be totally defined) and in particular there does not exist the coequalizer of
fand g. m

Remark: It is easy to produce examples showing that, in point (a) in
the last Proposition, one has in general that D(F) # B(F). Therefore, the
coequalizer of a family of cdc-quomorphisms in €D€-Quom(7) is in general
different from their pushout in €-Quom(r) or Conf(7).

Since a category is cocomplete, i.e. it has all colimits, iff it has all coprod-
ucts and all coequalizers, summarizing Propositions 9 and 13 we obtain:

CoROLLARY 14 (Cocompleteness). a) €DC-Quom(7) is cocomplete iff
Q =00,
b) €D-Quom(7) is never cocomplete, unless X = (. m

Specific (and interesting) types of limits or colimits may exist in a cate-
gory even when it is not complete or cocomplete. In addition to the general
results on completeness and cocompleteness given so far (Corollaries 12 and
14), in the sequel we discuss the existence of pullbacks and pushouts of
non-empty families of morphisms, as well as of inverse limits of non-empty
inverse systems and direct limits of non-empty directed systems.

ProrosiTioN 15 (Pullbacks). a) €D€-Quom(7) has all pullbacks of
non-empty families of morphisms with common target algebra iff Q@ = QO U
QW) Moreover, if @ = QW) then a pullback of such a family of cdc-quomor-
phisms is obtained by the usual combination of a product and an equalizer
(¢f. [1, Prop. 11.11}), while in the general case a pullback of a family (f; :
B: — A)ics of cdc-quomorphisms of T-algebras is obtained, grosso modo,
by first computing the pullback (P',(p; : P' — Bl)icr) of the family (f; :
B! — A')ier (A’ and B the unary reducts of A and B;, resp.), and then
defining in P’ the nullary operations (obtaining a 7-algebra P) in the only
possible way so that the ‘projections’p; : P! — B! become cdc-quomorphisms
of T-algebras p; : P — B; (see details in the proof).

b) €D-Quom(r) has all pullbacks of non-empty families of morphisms
with common target algebra iff Q@ = Q). Moreover, a pullback of such a
family of cdc-quomorphisms is obtained in this case by the usual combination
of a product and an equalizer.

Proof. a) Assume first Q(™) # @ for some n > 2. Let 7/ be the similarity
type obtained from r by removing the operation symbols in (%), Since there
cannot exist any cdc-quomorphism from a 7-algebra having some nullary
operation defined to a 7-algebra having no nullary operation defined, the
7'-reduct of the pullback in €D€-Quom(7) of two empty cdc-quomorphisms
f:A—>0Dand g:B — 0 (A and B two T-algebras with all their nullary
operations undefined) would be the product of the 7'-reducts of A and B
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in €DC-Quom(r’). But €DE-Quom(r') does not have all binary products
(Proposition 8), and therefore €D€-Quom(7) cannot have all pullbacks.

So, let us assume henceforth that QM) = @ for every n > 2, and let as
before T’ be the similarity type obtained from 7 by removing its nullary
operations. Let (f; : B; — A)ier, I # 0, be a family of cdc-quomorphisms
of T-algebras. Let

Q(AO) = {po € QO | o is defined}.

We have that, for every B;, the nullary operations defined in B; are exactly
those in Qg:).

For every ¢ € I, let D; be the closed subalgebra of B; supported on
dom f;, and let f; : D; — A still denote the corresponding (totally defined)
closed homomorphism. Since €-$om(r) is closed under arbitrary pullbacks
[6, Thm. 5], there exists the pullback of this family of closed homomor-
phisms. Let it be D, together with closed homomorphisms d; : D — D,

t € I, which we shall also understand as closed homomorphisms d; : D — B;.

In particular, the nullary operations defined in D are exactly those in Qg).

Now let (f; : B, — A');er be the family of cdc-quomorphisms under
consideration, but understood as between the 7'-reducts of the correspond-
ing algebras. Since €DC-Quom(7’) is complete (Corollary 12), there exists
the pullback of this family in €D€-Quom(7’). Let it be P’, together with
cdc-quomorphisms (of 7'-algebras) p; : P! — B., i € I.

By the universal property of pullbacks, there exists one and only one
cdc-quomorphism (of 7'-algebras) d : D' — P’, where D' is the 7'-reduct of
D, such that p; o d = d;. Such d is totally defined, because the d; are so.

Finally, let P be the r-algebra obtained from P’ by adding the operations
in Q) in the following way: a nullary operation ¢ is defined in P iff ¢q €
QES), and in this case pf = d(pd).

With this definition, it is clear that p; : P — B; is a cdc-quomorphism
(of T-algebras) for every i € I.

And it turns out that the r-algebra P, together with these cdc-quomor-
phisms, is the pullback in €DE€-Quom(7) of (f; : B; — A)ier. Indeed, let
(9i : C — B;);es be an I-indexed family of cdc-quomorphisms of 7-algebras
such that f; 0 g; = f; 0 g; for every i,j € I. Let C’ be the r'-reduct of C,
and let (g; : C' — B!);es denote the same family of cdc-quomorphisms, but
now taken between the corresponding 7'-reducts.

By the universal property of pullbacks in €D€-Quom(r’), there exists one
and only one cdc-quomorphism g : C' — P’ such that g; = p; o g for every
¢ € I. It is enough now to check that ¢ is a cdc-quomorphism of 7-algebras

g : C — P:i.e., to show that, for every g € QES), ¢S € dom g and g(¢§) =
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¢F. To do that, set E = dom f; o g; for any ¢ € I, and let E be the closed
subalgebra of C supported on E. By the universal property of pullbacks in
¢-$Hom(7), there exists one, and only one, closed homomorphism ~ : E — D
such that d; o h = g;|g for every i € I. Reasoning with the 7'-reducts, we
have that g|g = d o h and then it is clear that ¢S € domg|g C dom g and
9(¢F) = d(h(#§)) =

Finally, P is the only r-algebra with 7’-reduct P’ and such that p; : P —
B;, i € I, are cdc-quomorphisms. Indeed, if there exists another 7-algebra
P with 7'-reduct P’ and so that the mappings p; : P — B; are cdc-quomor-
phisms P — B; then the only cdc-quomorphism p : PP correspondmg
to this family of cdc-quomorphisms should be the identity on the 7’-reducts,
and therefore the identity.

b) Arguing as in the case Q™) # @, n > 2, for cdc-quomorphisms, we
easily prove that if Q(® # @, for some n > 1, then €D-Quom(r) does not
have all pullbacks of non-empty families. And if @ = Q%) then €D-Quom(r)
has all non-empty products (Proposition 8) and all equalizers (Proposition
11) and therefore all pullbacks of non-empty families. m

ProposiTION 16 (Pushouts). a) €DC-Quom(7) has all of pushouts of
non-empty families of morphisms with common source algebra iff @ = Q1.
Moreover, a pushout of a family of cdc-quomorphisms is obtained in this

case by the usual combination of a coproduct and a coequalizer (cf. dual of
[1, Prop. 11.11]).

b) €D-Quom(7) has never all pushouts, unless Q = §.

Proof. a) In the case Q(") # @ for some n > 2, an argument similar (but
dual) to the one used in the same case for pullbacks of cdc-quomorphisms
in the previous Proposition, shows that €D€-Quom(7) does not have all
pushouts, while in the case Q9 # @, the example for the nullary case in
Proposition 13.(a) can also be used to show that €D€-Quom(7) does not
have all pushouts either. And if @ = Q(!) then €DE-Quom(7) is cocomplete
by Corollary 14.

b) Since €9-Quom(7) has always an initial object (Proposition 5) but
never all coequalizers (unless @ = §; Proposition 13), it never has all pull-
backs (unless 2 = 0). m

ProprosiTION 17 (Inverse limits). €D€-Quom(r) and €D-Quom(r)
have always all inverse limits of non-empty inverse systems. Moreover, an
inverse limit of a non-empty inverse system of cdc-quomorphisms or cd-
quomorphisms is given by its inverse limit in Quom(T) described in

(6, Th. 6].



152 R. Alberich, M. Moya, F. Rossells, L. Sastre

Proof. Let I = (I, <) be any non-empty upward directed set and let
A= ((Ai)ier (fi,j: Ai — Aj)z',j;,l)
2]

be any inverse system of partial 7-algebras in Quom(7). Let A, together with
quomorphisms f; : A — A;, i € I, be the inverse limit of A in Quom(7)
described in loc. cit. In particular, for every system of quomorphisms (g; :
B — A;);es compatible with A there exists one (and only one) quomorphism
g : B — A such that g; = f; o g for every ¢ € I.

In loc. cit. it is shown that if all quomorphisms f; ; and g; are closed
then all quomorphisms f;, as well as g, are also closed. This implies that
(A,(fi : A — A))icr) is the inverse limit of A in €-Quom(r) when all
quomorphisms f; ; are closed.

Now a similar (but easier) argument shows that if all quomorphisms f; ;
and g¢; have their domain closed then all quomorphisms f;, as well as g,
have also their domain closed. And this implies that (A,(f;: A — Aj)icr)
is the inverse limit of A in €D-Quom(7) (resp. €DE-Quom(r)) when all
quomorphisms f; ; are cd-quomorphisms (resp. cdc-quomorphisms). m

A similar proof also applies for direct limits, yielding the following result.

ProposITION 18 (Direct limits). €D€-Quom(7) and €D-Quom(7) have
always all direct limits of non-empty directed systems. Moreover, a direct
limit of a non-empty directed system of cdc-quomorphisms or cd-quomor-
phisms is given by its direct limit in €-Quom(7) described in (6, Th. 6d]. m
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