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SHIFTS ON B A N A C H SPACES 

1. Introduction 
Throughout this paper X denotes an infinite-dimensional complex Ba-

nach space and C{X) the Banach algebra of all bounded linear operators 
on X. For T <E C(X) set a(T) = dim N(T) and (3(T) = codim T(X), where 
N(T) is the kernel and T ( X ) the range of T. Define the generalized range 
of T to be the subspace 

K(T) = p| T n ( X ) . 

n> 1 

Write 

= {T € £(X): a(T) < oo, T(X) is closed} 
and 

$ - ( X ) = {T £ £ ( X ) : (¡(T) < oo}. 

Observe that T(X) is closed if T e [5, Satz 55.4]. 

is the set of semi-Fredholm operators on X , while 

is the set of Fredholm operators in C{X). If T e $±(X) , ind (T) = a(T) -
f3(T) is called the index of T. 

Write 

$ ( D = {A G C : T - XI e $ (X)} 
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for the Fredholm region of T. It is well known that $ (T ) is open. 

aw{T) = C \ {A G $ ( T ) : ind (T - XI) = 0} 

is called the Weyl spectrum, of T. We denote by c (T) , g(T) and r (T) the 
spectrum, the resolvent set and the spectral radius of T, respectively. 

The following class of operators was introduced by Crownover [2]: 

T G £(X) is called a shift if a(T) = 0, j3(T) = 1 and 7Z(T) = {0}. If T 
is a shift and an isometry, T is called a shift isometry. 

It is immediate that each shift T is a Fredholm operator with ind (T) = — 1. 
In [10] we have proved the following 

PROPOSITION 1. Let T G §±(X) and TZ(T) = { 0 } . Then 

(a) T e $ + ( * ) , 
(b) ind (T - XI) <0 for all X G a(T) with T - XI is semi-Fredholm, 
(c) a(T) = aw(T) is connected. 

COROLLARY. T e C(X) is a shift if and only if fi(T) = 1 and H(T) = 
{0}. In this case we have that o(T) = ay/{T) is connected. 

P r o o f . If P(T) = 1 and H(T) = {0}, we have that T is semi-Fredholm, 
hence, by Proposition 1(a), a(T) - f3(T) = a(T) - 1 = ind (T) < 0, thus 
a(T) < 1, therefore a(T) = 0. • 

EXAMPLES: 
(a) If X = lp (1 < p < oo) then the operator T given by 

is a shift isometry. 
(b) If X is the disk algebra, the sup-norm algebra of functions / which 

are continuous on the disk {z G C : \z\ < 1} and holomorphic for \z\ < 1, 
then the operator T defined by 

(Tf)(z) = zf(z) 

is a shift isometry on X . 

The following considerations are due to R. M. Crownover [2]. They justify 
the use of the term "shift". Let T G C{X) be a shift. Then there exists some 
XQ G X with | |z0 | | = 1 and 

(1) X = [aj0] ® T(X) 

(where [xo] = {«^o : & G C}). Let x G X. Then we have x = ao(x)xo + Txi 
for some AO(^) G C and x\ G X. Similarly there exist AI(X) G C and x^ G X 
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so that x\ = ai(a;)a;o + Tx2. Hence 

x = ao(z)zo + ai(x)Tx0 + T2x2. 

Since N(T) = {0 } , we get, by induction, unique sequences (an(x))™=0 and 
{ x n ) ^ = l of scalars and vectors such that 

n 

(2) x = ^ a f c ( z ) T f c z 0 + r n + 1 x n + 1 ( n > 0 ) . 
k=0 

The coefficients ctk(x) will be called the Taylor coefficients of x and equation 
(2) is called the Taylor formula for x induced by the decomposition (1). 

Let Xs denote the space of sequences 

= { ( < * „ ( * ) ) £ 0 : x e X } 

with the norm given by 

||K(aO)~ oil = M l -

Therefore the mapping x (a„(a;))^Lo5 which is linear and maps X onto 
Xs, is an isometric isomorphism. Equation (2) gives 

Tx = a0(x)Txo + ... + an(x)Tn+1x0 + Tn+2xn+1, 

thus the sequence of Taylor coefficients of Tx is 

(0,ao(x),ai (ar) , . . . ) . 

Hence T corresponds to the unilateral shift operator Ts : Xs —> Xs given 
by 

Ts(a0,ai,a2,...) = (0, a0 , e*i, a 2 , . . .)• 

2. Perturbation properties 
For the rest of this paper T always denotes a shift in £(X) and ft the 

connected component of <&(T) which contains 0. 
P R O P O S I T I O N 2. 

(a) T — XI is a shift for each A € fi. 
(b) If X € ft, A € £(X), n £ N and An = T - XI, then n = 1 (hence 

T — XI has no nth root in C(X) for n > 2). 
P r o o f , (a) Let A G ft and A ^ 0. If Tx = Xx then Tnx = Xnx for each 

ne N. Since A / 0, i = j^Tnx (n € N), thus x G H(T) = { 0 } . This shows 
that a(T - XI) = 0. Theorem 4.2 in [7] then gives 1Z(T - XI) = { 0 } . Since 
ind (T — XI) is a constant on ft ([5, Satz 104.1]), we derive 

0(T - XI) = - ind (T - XI) = - ind ( T ) = (3(T) = 1. 
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(b) Use [5, Aufgabe 71.3] to derive A G $(X) . Thus, by the index-
theorem ([5, Satz 71.3]), we get 

- 1 = ind (T - XI) = ind (An) = n ind (A), 

thus ind (A) = — therefore n = 1. • 

R e m a r k . Part (b) of Proposition 2 can be found in [2, p. 246] for 
shift isometries and for |A| < 1. Crownover's proof uses Banach-algebraic 
techniques. 

One more concept is useful at this point. For an operator A G £(X), 
i / 0 , the minimum modulus f(A) is given by 

where d(x,N(A)) = inf | |a;-?/| | . 
y€N(A) 

Our shift operator T is injective and T(X) is closed so that T _ 1 : 
T(X) —X is bounded and 

7 ( r ) = ||T- - in- i 

Let xo G X as in the decomposition (1). In [2] Crownover introduced the 
Banach space X © C with the norm 

| M / ? | | = m a x { H , i } 

and the operator At '• X © C —• X by 

At(x®/3) = (3x0 + Tx. 

It is easily seen that At is bijective. Crownover proved the following result 
([2, Theorem 2]): 

THEOREM 1. Let g = P ^ H - 1 . Then 
(a) For \X\ < g the operator T — XI is a shift on X and 

(3 ) X = [x0] © ( T - X / ) ( X ) . 

(b) If x G X and (an(x))™=0 is the sequence of Taylor coefficients for x 
induced by (1) then 

oo 
^ a n ( a ; ) A n converges for |A| < g 
n=o 
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and the representation of x induced by (3) has the form 
oo 

s = ( £ a n ( z ) A n ) z 0 + (T - A I )y x 

71=0 

for some y\ £ X (|A| < g). 

Crownover's proof of Theorem 1 is rather involved. In what follows we 
shall improve Theorem 1 with a simpler proof in the following sense: 

We shall see that the assertions of Theorem 1 are valid for a radius which 
is in general larger than g, and we shall derive a very simple representation 
for the Taylor coefficients for x. To this end we use the concept of relatively 
regular operators: 

An operator A G £ ( X ) is said to be relatively regular if ABA = A for 
some B G £ (X) . It is well known that Fredholm operators are relatively 
regular (see [5]). Thus each shift on X is relatively regular. 

P R O P O S I T I O N 3 . (a) Let A,B e C{X) \ { 0 } and ABA = A, then 

(b) IfT is a shift on X, then ST = I for some S E £(X). Furthermore 
we have 

I-TS and TS are projections, (I - TS)(X) = N(S), 
c T S ) ( X ) = T(X) and X = N(S) ® T{X). 

P r o o f , (a) [9, Prop. 4]. 
(b) Since T is relatively regular there is some S G C{X) such that TST = 

T. It is easy to see that ( I - ST)(X) = N(T) = {0}, thus ST = I. The rest 
is clear. • 

Let T be a shift on X, hence T has a left inverse S G Since 
X = N(S) © T(X) we have a(S) = 1. Let x0 G N(S) with ||x0|| = 1. Then 

(4) X = [x0] © (TS)(X) = [ar0] © T(X). 

There is exactly one bounded linear functional / on X such that f(xo) = 1 
and f(Tx) = 0 for all x G X . Finally, let the operator AT : X ® C -»• X be 
defined as before (with the above x0). 

R e m a r k s . 
(a) Since T is not invertible in £ ( X ) , the set of its left inverses is infinite. 

It is precisely the set {L+U(I—TL) : U G £(X)}, where L is any left inverse 
of T. 
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(b) The operator At, the value of HA^H and / depend on the choice of 
xq. Therefore they depend on the choice of the left inverse S. 

P R O P O S I T I O N 4 . Let T , S , f and x0 as above. 

( a ) For x € X , the sequence of Taylor coefficients induced by ( 4 ) is 

( f ( S n x ) ) ™ = o 

and the Taylor formula induced by ( 4 ) is 

n 

x = J 2 f ( S k x ) x o + T n + 1 S n + 1 x ( n > 0 ) . 
k=0 

(b) ||S|| <11^11. 

P roo f , (a) We have x = «0(^)^0 + T x i , thus Sx = a o ( x ) S x 0 + S T x \ = 

xi and f ( x ) — a o ( x ) f ( x o ) + f { T x \ ) — ao(a;). Since Sx = x\ = a i ( x ) x o + 

Tx2, it follows that S2x = STx% = x-i and f(Sx) = 0:1(2:). 
By induction we see that xn — S X for n > 1, a n ( x ) = f ( S n x ) for n > 0. 
(b) By (1), we have x = f ( x ) x 0 + T S x , thus x = At(Sx © f ( x ) ) and 

A^ lx = Sx © f(x). This gives 

||5x|| < max{||Sz||, = \\Sx © /(®)|| = \\A?x\\ < IM?11|||o;||. 

This shows (b). • 

We shall see that the assertions of Theorem 1 remain valid if we replace 
¡1A^11|-1 by r ( S ) ~ 1 (Theorem 3). But first we show by an example that the 
strict inequality r(S) < H^^ll m a y actually occur. 

E X A M P L E . Let X = P and T e C { X ) defined by 

T t f i , 6 , • . • ) = ((),6,&,-..)• 

If L G £{X) is given by 

£ ( 6 , = ( 6 , 6 , - . . ) 

then we have LT = I. It is easy to see that the operator S — L + I — TL is 
a left inverse for T . By induction we get (x = (£i,f2> • • •)) 

n+1 
Snx = FY^ £fc,£n+2;£n+3? • • 

fc=l 



Shifts on Banach spaces 121 

f o r n e N . T h e S c h w a r z i n e q u a l i t y g ives 

71+1 1+1 71+1 \ 1/2 

fc=l k= 1 fc=l 

h e n c e 

n + l 9 oo 1 <2 n + l oo x 1/2 

11̂ 11 = (|EM + E Ifci3) <((»+n£i&ia + E &ia) 
fc=l k=n+2 fc=l fc=n+2 

n + l oo « <2 n + l ^ ^ = (»Ei&ia + £if*ia) =(ni2+»EIW2) • 
fc=l k=1 fc=l 

T h e r e f o r e w e h a v e ||5na;|| < V n T T | | a ; | | . P u t x = ( 1 , 1 , 1 , 0 , 0 , 0 , . . . ) , 

n + l 

t h e n ||Sni|| = n + 1 a n d ||s|| = ^ /w + 1 , t h e r e f o r e ||5nx|| = y/n + 1||£||. W e 

h a v e s h o w n t h a t ||5n|| = y/n + 1 f o r all n € N . T h i s y ie lds r(S) = 1 , f r o m 

w h i c h it fol lows t h a t 

r ( S ) < a / 2 = ||S|| < 1 1 ^ 1 1 . 

THEOREM 3 . Let T, S, f , x0 and Q as above. For D = {A E C : |A| < 
^y} we have: 

( a ) D C a . 

(b) X = [®0] 8 (T - XI)(X) for all A € D. 

(c) I f x e X and, {an(x)) n=Q is the sequence of Taylor coefficients for x 
induced by (4) then 

oo 

y^ an(x)An converges on D 
n = 0 

and 
oo 

" n ( z ) A n = / ( ( / - A S ) " 1 * ) on D. 

n = 0 

( d ) x = / ( ( / - A 5 ) " 1 a ; ) x o + (T - A / ) ( / - A S ^ S x for all x e X and 

A e D . 

P r o o f . P u t F(A) = ( / - A 5 ) _ 1 5 = 5 ( / - A S ) " 1 = E £ = o A n 5 n + 1 

(A G -D). T h e n it is e a s y t o see t h a t 

F(X)-F(fi) = (X-fi)F(X)F(n) 
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for A, n e D. This shows that N(F(A)) = N(F(fi)) for A, p e D. Thus 

N(S) = JV ( f (0 ) ) = N (F(A)) for each X £ D. 

An easy computation gives 

F(X)(T - AJ) = / on D, 

therefore 

X = iV(F(A)) © (T - X/)F(X)(X) 
= N{S) © (T - A/)(X) = [a0] 6 (T - A/)(X). 

Hence we have shown that (a) and (b) are valid. 
(c) Since, for A e D, (I - A5)_ 1x = „ A n 5 n x and an{x) = f(Snx) 

(Proposition 4) we get 
oo oo 

/ ( ( / - AS)-1*) = £ A n f ( S n x ) = £ an(x)Xn. 
n=0 n=0 

(d) Let x £ X and A £ D. By (b) there exist (3 £ C and y £ X such that 
x = /3x0 + (T - \I)y. It follows that 

F{X)x = (3F{X)x0 + F(X)(T - XI)y. 

Recall that z 0 € N(S) = N(F(A)) and that F(X)(T - XI) = I. Hence 
F(X)x — y, thus 

(3x0 = x - ( T - XI)F(X)x = x- TF(X)x + XF(X)x. 

Since f(T(X)) = {0} we get 

P = f(Px0) = /(*) + Xf((I - XS^Sx) 
oo oo 

= /(*)+/(E = /(*)+/(EAn5nx -x) 
n=0 n=0 

oo 
= / ( £ A » S n s ) = / ( ( / - A S ) " 1 * ) . 

71=0 

R e m a r k . In section 3 of this paper we shall see that a poor choice of 
S can lead to an arbitrary small value of r ( 5 ) - 1 . 

We close this section with a further perturbation result for shifts. 

THEOREM 4. Let T and il as above. Then for every e > 0 there exist 
z0£X\ {0} and a set M C ft such that 

(a) M is at most denumerable and has no accumulation points in 0 , 



Shifts on Banach spaces 123 

( b ) for every fi G M the distance from /x to the boundary of Q, is at 

most £, 
( c ) X = [z 0 ] e (T - A I ) ( X ) for a U X e i l \ M . 

P r o o f . Let e > 0. By [8, Theorem 4.5.4] (see also [4, Sect. 3.1.3] and 
[11]) there exist a set M with the properties (a) and (b) and a holomorphic 
function F:Sl\M -* £ ( X ) with 

F(X)(T - XI) = I a n d F(X) - F ( f i ) = (A - fi)F(X)F(fi) 

for all X,n G ft \ M. This gives N(F{A)) = N(F{fi)) and X = N(F(A)) © 
(T - XI)F(X)(X) for X,n G fi \ M. Fix A0 G ii \ M, put G i V ^ A o ) ) , 
z0 ± 0, and observe that (T- XI)F(X)(X) = ( T - X I ) ( X ) . This shows (c). • 

3. Orthogonal decompositions 
We begin with 

P R O P O S I T I O N 5 . Let A G C{X) \ { 0 } be relatively regular but not right 
invertible. Then 

P r o o f . Fix some C G C(X) such that AC A = A and put B = CAC. 
Then ABA = (ACA)CA = A and BAB = C(ACA)CAC = C(ACA)C = 
CAC = B. Set P I - AB. Since A is not right invertible we have P ^ O . 
Furthermore we have BP = B - BAB = 0. For a G M with a > r(B) set 
Ba = B + aP. W e g e t ABaA = ABA + aAPA = A + aA(A - ABA) = A. 

We now show by induction that 

(5) holds for n = 1, for B\ = B2 + aBP+aPB + a2P = B2+a2P(l+ f ) . 

i n f{ r (5 ) _ 1 : B G C(X), ABA = A} = 0. 

for n G N. 

= 0 
Let (5) be valid for some n G N. Then 

k=0 
71 Rfc+l n pk p 

k=0 a =0 a 
= 0 

a 

= Qn+2p 
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n Bjk+i n+1 / E\k 

= + «"+ 2 P £ ~k+ï + ^ P = Bn+2 + an+2P £ ( £ ) • 
fc=0 k=o v ' 

Thus (5) holds for n + 1. From (5) we get 

B n + 1 / B \ k 

« n + 1 + è i W k=0 

Since a > r(B) we derive (see [5, Satz 95.3]) 
Dn+l n / d \ k 

lim — — = 0 and lim P V - = aP(aI - B)~l, n—>oo a n + 1 n->oo \ CL ) k—0 K ' 
hence 

lim l ^ 1 ! ! = a | |P(a7 — B)~l 1 
n—i-oo a n + 1 ' ' 

This gives 

lim 1!—2—U = 1, thus r(Ba) = a. 
n—• oo a 

It results that lim r(Ba)~1 — 0. • 
a—»oo 

R e m a r k s , (a) It is clear that the conclusion of Proposition 5 is also 
valid if A is relatively regular and not left invertible. 

(b) Inspection of the proof just given shows that it uses no properties of 
jC(X) which are not shared by every Banach algebra with identity. 

Let T 6 C(X) be a shift and iî, S, / , xq and At as in section 2. The 
Propositions 3 and 4 give 

<\\S\\~' K^T). 

Since H^y1!! -1 < r ( 5 ) - 1 , Proposition 5 shows that a poor choice of S can 
lead to arbitrary small values of HAJ1!!-1 and r ( 5 ) - 1 . On the other hand a 
perturbation result of J. Zemanek [11, Theorem 1] shows that 

r (T) := lim 7 (T" ) 1 / " exists, T(T) = sup 7 (T") 1 / n 

n-K» „ > ! 

and 

(6) {A G € : |A| < T(T)} Ç ft. 
Since SnTn = I for each n G N, Proposition 3(a)-yields | |5 n | | _ 1 < l(Tn) 
for all n G N, hence 
(7) r(S)~1 < T(T). 
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This together with (6) suggests that the assertions of Theorem 3 perhaps 
remain valid for |A| < T(T). We leave this as an open question. 

We shall see below that if T is a shift isometry and if the decomposition 
[so] © T(X) = X is "orthogonal", we indeed have that r ^ ) - 1 = T(T). 

Following R. C. James [6], we say that two vectors x and y are orthogonal 
if for each a € C 

||a;|| < ||x + «2/(1 and \\y\\ < \\y + ax | | . 

T H E O R E M 5 . Let T, S, / , x0 as above. Suppose that xo is orthogonal to 
each Ty (ye X). Then 

(a) 11^11 = 11511 = ^ . 
(b) | |TS| | = | | / | | = 1. 
(c) I f T is a shift isometry then 

\\AZ1\\ = \\S\\ = r(S) = i(T)-1 = T(T)-\ 

P r o o f . The equation H ^ H = 7 ( T ) _ 1 is shown in [2, Theorem 3]. We 
give a different proof which also shows that (b) is valid. 

(a) and (b): Let x € X , then x = ax0 + Tx 1 (a G C, X\ 6 X) . Because of 
the orthogonality of ax0 and Tx\ we see that |a | = ||axo|| < ||«®o + r x i | | = 
||x||. Since f(x0) = 1 and f(Tx 1) = 0 we get 

l/OOl = l«| < I N , 

hence | | / | | < 1. By f(x0) = 1 = | |z0 | | it follows that | | / | | = 1. Thus we 
obtain 

^ f < M M . W 7 ( r ) - . < M „ s „ , 

this gives (observe that Sx = STx 1 = xi and a = / ( x ) ) 

\\A?x\\ = | |5z © f{x)|| = max { | |5x | | , M } < ||S||||x||, 

therefore HA^H < | |5| | . Since we have already shown that ||S|| < ||, it 
follows that Hill = p ^ H -

By the orthogonality of ax0 and Tx\ we also have that 

1175x11 = 11^11 < 1 1 ^ 0 + ^ 1 1 = 11x11, 

therefore | |T5| | < 1. Because of 0 ± TS = (TS)2 we also have \\TS\\ > 1, 
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hence \\TS\\ = 1. It remains to show that Ĥ H < 7 (T ) ' 1 . We have 

||5«|| = ||»i|| = | | T - 1 ( r « 1 ) | | < | | r - 1 | | | | r « 1 | | 

This completes the proof of (a) and (b). 
(c) If T is an isometry, Tn is an isometry for each ra € N, thus 7 (T n ) = 1 

for all n, hence 7 (T ) = T(T). Use (a) and (7) to get the result. • 

4. Local spectra of shift isometries 
Let us review some classical concepts of local spectral theory which are 

due to N. Dunford [3]. 
An operator A £ C{X) is said to have the single valued extension property 

(SVEP) in Ao € C if for any analytic function / : D —» X , D an open 
neighbourhood of Ao, with 

(T - A/)/(A) = 0 on D, 

we have / = 0. A is said to have the SVEP in C if A has the SVEP in each 
A0 € C. 

Let A 6 £(X) be arbitrary and fix x £ X. The local resolvent set SA(X) 
of A in 2: is defined by 

¿A(X) = {A G C : there is an open neighbourhood U of A and an analytic 
function f : U X with {A — f i l ) f ( f i ) = x for each /i G U}. 

It is immediate that SA(X) is open. The complement JA(X) = C \ SA(X) 
is called the local spectrum of A in x. It is clear that 7 i s closed and 
1A{X) C P(A). Observe that 7,4(0) = 0. It follows from [3] that if A has the 
SVEP in C, then 

(8) 1A{X) ± 0 for each i £ l \ {0 } and a{A) = (J yA(x). 
x^O 

PROPOSITION 6. Let T 6 £(X) be a shift and Q as in the previous 
sections. Then 

(a) T has the SVEP in C. 
(b) 7T(®) IS connected for each x 0. 
( c ) i i C f | ^ o 7 T ( ® ) . 

P r oo f . [10, Theorems 1 and 2]. • 

THEOREM 6. Let T be a shift isometry and i i as above. Then 

(a) a{T) = {A € C : |A| < 1}. 
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(b) SI = {A G € : |A| < 1}. 
( c ) jT(x) = a(T) for each x^O. 

P r o o f , (a) The spectrum of each non invertible isometry is the closed 
unit disk (see [2, p. 239]). 

(b) Since T(T) = 1, (6) shows that 

{A G € : |A| < 1 } C SI C cr (T) . 

Since fI is open, the result follows from (a). 
(c) Let x ± 0. Part (c) of Proposition 6 gives 

Si Q 7T(®) Q 

hence, since 7t(®) is closed, it follows that 7r(®) = c(T) . • 

Let X* denote the dual space of X and T* the adjoint of T G C{X). 

T h e o r e m 7. Let T be a shift on X and SI as above. 

( a ) T* is Fredholm and a(T*) = 1 , P(T*) = 0 . 

(b) 7t*(®*) C C \ SI for all x* £ X*. 
( c ) T* does not have the SVEP in C . 

( d ) I f T is a shift isometry, then 

HT'(X*) C {A G C : |A| = 1 } . 

P r o o f , (a) follows from [5, Satz 82.1]. 
(b) Since T - XI is a shift for each A £ ft (Proposition 2), T - XI is 

left invertible in C(X). By [1, Theorem 1], there is a holomorphic function 
F : —> C(X) such that 

F(X){T - A I ) = I o n SI. 

Thus (r* - XI*)F(X)* = I* on SI. This gives 

( T * - XI*)F(X)*x* = x* f o r a l l A € SI a n d a l l Z* <E X * . 

Therefore we have 

(9) SI C 6T>(X*) for each x* G X \ 

(c) Fix ^ € N(T*), x% ± 0. Put y>(A) = for A G C \ {0}. Then 
(T* - XI')ip(X) = xg for A ^ 0, hence C \ {0} C 6T-(x^). Use (9) to derive 
¿ t . (®5) = C. This gives JT'(X^) = 0. By (8), T* cannot have the SVEP. 

(d) By (9) and Theorem 6 we get 

7 T . ( x * ) C C \ i l = { A G C : | A | > 1}. 

Since 7 t - («*) C a(T*) = a{T) = {A G C : |A| < 1}, the result follows. • 
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