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SHIFTS ON BANACH SPACES

1. Introduction

Throughout this paper X denotes an infinite-dimensional complex Ba-
nach space and £(X) the Banach algebra of all bounded linear operators
on X. For T € L(X) set o(T) = dim N(T') and S(T) = codim T(X ), where
N(T) is the kernel and T'(X) the range of T. Define the generalized range
of T to be the subspace

R(T) = () T*(X).
n>1
Write
@, (X)=A{T € L(X): a(T) < 00, T(X) is closed}
and
8_(X) = {T € L(X) : A(T) < ).

Observe that T(X) is closed if T € ®_(X) [5, Satz 55.4].

04(X) = 94(X)U _(X)
is the set of semi-Fredholm operators on X, while

®(X)=3,.(X)ND_(X)

is the set of Fredholm operators in L(X). If T € ®4(X), ind(T) = o(T) -
B(T) is called the indez of T.
Write

(T)={reC:T - € &X)}
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for the Fredholm region of T'. It is well known that ®(T') is open.
ow(T)=C\ {A € &(T):ind (T — M) = 0}

is called the Weyl spectrum of T. We denote by o(T'), o(T') and r(T) the
spectrum, the resolvent set and the spectral radius of T, respectively.
The following class of operators was introduced by Crownover [2]:
T € £(X) is called a shift if o(T) =0,8(T)=1and R(T)={0}. If T
is a shift and an isometry, T is called a shift isometry.
It is immediate that each shift 7" is a Fredholm operator with ind (T") = —1.
In {10] we have proved the following

ProPoSITION 1. Let T € ®4(X) and R(T) = {0}. Then

(a‘) Te ¢+(X),

(b) ind (T — AI) < 0 for all A € o(T) with T — AI is semi-Fredholm,

(c) o(T) = ow(T) is connected.

CoRroOLLARY. T € L(X) is a shift if and only if 3(T) = 1 and R(T) =
{0}. In this case we have that o(T) = aw(T) is connected.

Proof. If 3(T) =1 and R(T) = {0}, we have that T is semi-Fredholm,
hence, by Proposition 1(a), a(T) — 8(T) = a(T) — 1 = ind (T') < 0, thus
a(T) < 1, therefore o(T) = 0. m

EXAMPLES:

(a) f X = 1P (1 < p < o0) then the operator T given by

T(§1a§2a . ) = (0,€1a£27 .. )

is a shift isometry.

(b) If X is the disk algebra, the sup-norm algebra of functions f which
are continuous on the disk {z € C : |2| < 1} and holomorphic for |z| < 1,
then the operator T defined by

(Tf)(2) = 2f(2)
is a shift isometry on X.

The following considerations are due to R. M. Crownover [2]. They justify
the use of the term “shift”. Let T € £(X) be a shift. Then there exists some
zo € X with |Jzo|| = 1 and
(1) X =[z] 8 T(X)

(where [zo] = {azo : @ € C}). Let z € X. Then we have z = ap(z)zo + T'zy
for some ag(z) € C and z; € X. Similarly there exist a;(z) € Cand 2z, € X
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so that z; = ai(z)zo + T'z;. Hence
T = ap(z)zo + ay(z)Tzo + T?z,.

Since N(T) = {0}, we get, by induction, unique sequences (an(z))s2, and
(24,)52, of scalars and vectors such that

(2) T = Z or(2)T*zg + T 2pyr (22 0).
k=0

The coefficients ax(z) will be called the Taylor coefficients of z and equation
(2) is called the Taylor formula for z induced by the decomposition (1).
Let X, denote the space of sequences

Xs = {(an(z))7lo : @ € X}
with the norm given by

lI(en(2))nzoll = Il=l-

Therefore the mapping z — (a,())32, which is linear and maps X onto
X, is an isometric isomorphism. Equation (2) gives

Tz = ap(2)Tzo + ...+ an(2) T zg + T 22044,

thus the sequence of Taylor coefficients of Tz is

(0, o(2), 21(), .. .).

Hence T corresponds to the unilateral shift operator T : X, — X given

by

Ts(ao, a1,0Q2,.. ) = (0,&0,01,&2, . )

2. Perturbation properties
For the rest of this paper T always denotes a shift in L(X) and Q the
connected component of ®(T) which contains 0.

PROPOSITION 2.

(a) T — Al is a shift for each X € Q.

M) IfAeQ, Ac L(X),n€Nand A" =T — A, then n = 1 (hence
T — M has no nth root in L(X) for n > 2).

Proof. (a) Let A€ 2 and A # 0. If Tz = Az then T"z = A"z for each
n € N. Since A £ 0, z = 3= T"z (n € N), thus z € R(T) = {0}. This shows
that (T — AI') = 0. Theorem 4.2 in [7] then gives R(T — AI') = {0}. Since
ind (T — AI) is a constant on £ ([5, Satz 104.1]), we derive

B(T = M) = —ind (T = AI) = —ind (T) = B(T) = 1.
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(b) Use [5, Aufgabe 71.3] to derive A € ®(X). Thus, by the index-
theorem ([5, Satz 71.3]), we get
—1=ind (T - AI) = ind (A") = nind (A4),
thus ind (A) = —1, therefore n = 1. m

Remark. Part (b) of Proposition 2 can be found in [2, p. 246] for
shift isometries and for |A| < 1. Crownover’s proof uses Banach-algebraic
techniques.

One more concept is useful at this point. For an operator 4 € £L(X),
A # 0, the minimum modulus v(A) is given by

v(4) = inf{#]&“@j 1z ¢ N(A)},

here d(z, N(A)) = inf -yl
where d(z, N(4)) = inf = -1

Our shift operator T is injective and T(X) is closed so that 77! :
T(X)— X is bounded and

YHT) =T~

Let 29 € X as in the decomposition (1). In [2] Crownover introduced the
Banach space X @ C with the norm

o ® g1 = max { o, 12}

and the operator A7 : X §C — X by
Ar(z @ B) = Pao + Tx.

It is easily seen that A7 is bijective. Crownover proved the following result
([2, Theorem 2}):

THEOREM 1. Let o = ||AZ'||™!. Then
(a) For |A| < o the operator T — Al is a shift on X and

(3) X = [20] ® (T ~ A)(X).
(b) Ifz € X and (an(2))3%q is the sequence of Taylor coefficients for z
induced by (1) then

o0
Zan(z))\" converges for |A| < o

n=0
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and the representation of © induced by (3) has the form

o= (3 an(@)ao + (T = Al

TL:O
for some y) € X (7] < o).

Crownover’s proof of Theorem 1 is rather involved. In what follows we
shall improve Theorem 1 with a simpler proof in the following sense:

We shall see that the assertions of Theorem 1 are valid for a radius which
is in general larger than g, and we shall derive a very simple representation
for the Taylor coefficients for z. To this end we use the concept of relatively
regular operators:

An operator A € £(X) is said to be relatively regular if ABA = A for
some B € L(X). It is well known that Fredholm operators are relatively
regular (see [5]). Thus each shift on X is relatively regular.

ProposITION 3. (a) Let A, B € L(X)\ {0} and ABA = A, then
1
= < 7(4).
a7 =

(b) If T is a shift on X, then ST = I for some S € L(X). Furthermore
we have

I—TS and T'S are projections, (I — TS)(X)= N(S),
(TSHX)=T(X)and X = N(S)® T(X).

Proof. (a) [9, Prop. 4].

(b) Since T is relatively regular there is some S € £(X) such that TST =
T. It is easy to see that (I — ST)(X) = N(T) = {0}, thus ST = I. The rest
is clear. m

Let T be a shift on X, hence T has a left inverse S € L£(X). Since
X = N(S)® T(X) we have a(S) = 1. Let zg € N(§) with ||zo|| = 1. Then

(4) X = [20] ® (TS)(X) = [z0] © T(X).

There is exactly one bounded linear functional f on X such that f(z¢) =1
and f(T'z) = 0 for all z € X. Finally, let the operator A7 : X ® C — X be
defined as before (with the above zg).

Remarks.

(a) Since T is not invertible in £(X), the set of its left inverses is infinite.
It is precisely the set {L+U(J—TL): U € L(X)}, where L is any left inverse
of T.
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(b) The operator Ar, the value of ||A7']] and f depend on the choice of
zo. Therefore they depend on the choice of the left inverse §.

ProprosiTION 4. Let T, S, f and zq as above.
(a) For z € X, the sequence of Taylor coefficients induced by (4) is

(F(5™2))nZo
and the Taylor formula induced by (4) is

T = Z f(Skx)zo + TS e (n>0).
k=0
(b) N8Il < [1IAZM]]-

Proof. (a) We have z = ag(z)zo + Tz, thus Sz = ao(z)Szo+ STz, =
z1 and f(z) = ao(z)f(x0) + f(T21) = ao(z). Since Sz = z; = oy(z)zo +
Tz, it follows that §%z = §Tzy = z; and f(Sz) = a;y(z).

By induction we see that z,, = $™z for n > 1, an(z) = f(S"z) forn > 0.

(b) By (1), we have z = f(z)zo + TSz, thus 2 = Ar(Sz @ f(z)) and
AT'z = Sz @ f(z). This gives

152l < max{|ISzl, L&y < 1152 & £ = 14722l < 147 ).
¥(T)
This shows (b). =

We shall see that the assertions of Theorem 1 remain valid if we replace
JA7Y[|=! by 7(S)~! (Theorem 3). But first we show by an example that the
strict inequality 7(5) < ||A7!]] may actually occur.

EXAMPLE. Let X = {? and T € £(X) defined by
T(&1,62,...) =(0,&1,&2,...).
K L € L(X) is given by
L(&1,62,--) = (&2,6s,-.2)

then we have LT = I. It is easy to see that the operator S = L+ I -TL is
a left inverse for 7'. By induction we get (z = (£1,&2,...))

n+1

Stz = (; EkyEnt2yEntas - - )
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for n € N. The Schwarz inequality gives

n+1 n+1 n+1

|Z£kl<2|ek|<(§j|£k) VxSt

hence
|S“z||—(|§sk| + 3 k) < ((n+1)§|fk|2+ Y lel)”
k=n+2 k=n+2
n+1 n+t1

= (n Z|§k|2+2|ek )" (uxu2+n2|ek )
Therefore we have ||S™z|| < v/n+ 1||z|. Put 2 = (1,1,...,1,0,0,0,...),
N e’

n+1
then ||S™Z|| = n 4+ 1 and ||Z|| = v/n + 1, therefore ||S™Z|| = v/n + 1]||Z||. We
have shown that ||S™|| = v/n+ 1 for all n € N. This yields #(§) = 1, from
which it follows that

r(8) < V2 =|IS|| < 1 AT |-
THEOREM 3. Let T, S, f, zo and Q as above. For D = {A € C: |A] <
%S)} we have:

(a) D C Q.

(b) X = [zo] ® (T — M)(X) for all A € D.

(c) Ifr € X and (an(:v)):o=0 is the sequence of Taylor coefficients for z
induced by (4) then

oo}
Z an(z)A™ converges on D

n=0

and
Z on(z)A" = f((I - A§)'z) on D.
n=0 .
(d) z = f(I = AS)"t2)zo + (T — AI)(I — AS)" '8z for all z € X and
AeD.

Proof. Put F(A) = (I = AS)71S = ST - AS)™! = Y2, amgntl
(XA € D). Then it is easy to see that

F(A) = F(p) = (A= p)F(A)F ()
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for A, p € D. This shows that N (F(A)) = N(F(y)) for A, p € D. Thus
N(S)= N(F(0)) = N(F())) foreach A€ D.
An easy computation gives
FN(T-X)=I onD,
therefore

X = N(F(\) @ (T - \)F(A)(X)
= N(S)® (T - AI)(X) = [a0] ® (T — AD)(X).

Hence we have shown that (a) and (b) are valid.
(c) Since, for A € D, (I = AS)™1z = 320 A"8"z and a,(z) = f(S5"z)
(Proposition 4) we get

f((I-A8)e) = Z/\"f(S":z:) Zan(z)/\"

n=0

(d) Let z € X and A € D. By (b) there exist 8 € C and y € X such that
z = fzg + (T — Al)y. It follows that

F(\z = BF(Nao + FO)(T - M)y.

Recall that 29 € N(S) = N(F())) and that F(A)(T — M) = I. Hence
F(M\)z = y, thus

Bro =z — (T - A)F(A)z =2 —TF(A)z + AF(A)z.
Since f(T(X)) = {0} we get
B = f(Bzo) = f(w) +Af(I-A8)” 1597)

= f(z)+ f( E AMH§™Ig) = f(a) + f i_oj A"§™s - o)

= f(Z)\"S” ) = £(T-28)").

Remark. In section 3 of this paper we shall see that a poor choice of
S can lead to an arbitrary small value of 7($)~!.

We close this section with a further perturbation result for shifts.

THEOREM 4. Let T and Q as above. Then for every € > 0 there exist
20 € X \ {0} and a set M C Q such that

(a) M 1is at most denumerable and has no accumulation points in {2,
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(b) for every p € M the distance from p to the boundary of Q is at

most ¢,
(¢) X = [20) ® (T = M)(X) forall \ € Q\ M.

Proof. Let ¢ > 0. By [8, Theorem 4.5.4] (see also [4, Sect. 3.1.3] and
[11]) there exist a set M with the properties (a) and (b) and a holomorphic
function F': Q\ M — L(X) with

FONT-AM)=1 and F(\) - F(u) = (A= p)F()F ()

for all A, € @\ M. This gives N(F(A)) = N(F(p)) and X = N(F(X)) ®
(T = ADFA)(X) for \,p € Q\ M. Fix Ao € Q\ M, put z € N(F(Xo)),
20 # 0, and observe that (T — AI)F(A)(X) = (T~ AI)(X). This shows (c). m

3. Orthogonal decompositions
We begin with

ProPosITION 5. Let A € L(X)\ {0} be relatively regular but not right
invertible. Then

inf{r(B)™': B € L(X), ABA=A}=0.

Proof. Fix some C' € £(X) such that ACA = A and put B = CAC.
Then ABA = (ACA)CA = A and BAB = C(ACA)CAC = C(ACA)C =
CAC = B. Set P := I — AB. Since A is not right invertible we have P # 0.
Furthermore we have BP = B — BAB = 0. For a € R with a > r(B) set
B, = B+ aP. We get AB,A=ABA+ aAPA = A+ aA(A—- ABA) =

We now show by induction that

n B k
(5) Bntl = pntl a"“PZ (;) for n € N.
(5) holds for n = 1, for B2 = B> + aBP,+aPB +a*P = B* +o?P(I+ &),

=0
Let (5) be valid for some n € N. Then

n k
B2 = (Bn+1 + an+1PZ (g) )(B + aP)

=B"? 4 q

BkP
n+2pz
k=0 =0 k=0

~ 2
_——

=anrt2p
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n Bk+1 n+1 B k
_ 2 n+2 +2 _ pn+2 n+2 =
=B 4 o PE —ak+l+a" P=B"""+a PE (a> .

k=0
Thus (5) holds for n + 1. From (5) we get
B+l prtl " (B\*
antl = gl +PZ (Z) .
k=0
Since a > r(B) we derive (see (5, Satz 95.3])
. Bn+1 1
nh—bnéoa"‘l'l =0 and nh_}ng()PE( ) P(al - B)~
hence
IBe™ ) _ o)p(ar - By
n—»oo a™ +1 )
This gives
n+1(1/n+1
BT =1, thus r(Ba)=oc.
n—oo o

It results that lim r(By)™ ! =0. m
a—»00

Remarks. (a) It is clear that the conclusion of Proposition 5 is also
valid if A is relatively regular and not left invertible.

(b) Inspection of the proof just given shows that it uses no properties of
L(X) which are not shared by every Banach algebra with identity.

Let T € £(X) be a shift and 2, 5, f, 2o and A7 as in section 2. The
Propositions 3 and 4 give

BAZH I < 11817 < (D).

Since ||A7Y|7! < #(S)! Propos1t10n 5 shows that a poor choice of S can
lead to arbitrary small values of ||A7!]|~* and 7(§)~!. On the other hand a
perturbation result of J. Zemanek [11, Theorem 1] shows that

I(T) := lim y(T™)/" exists, TI(T) = sup~y(T™)*/"

and
(6) {AeC: A< T(T)}C Q.

Since S™T™ = I for each n € N, Proposition 3(a) -yields ||S™||~! < v(T™)
for all » € N, hence

(7) r($)™" < T(T).
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This together with (6) suggests that the assertions of Theorem 3 perhaps
remain valid for |A| < T(T'). We leave this as an open question.
We shall see below that if T is a shift isometry and if the decomposition
[z6] ® T(X) = X is "orthogonal”, we indeed have that r(5)~! = I(T).
Following R. C. James [6], we say that two vectors z and y are orthogonal
if for each a € C

loll < o+ ayll and  [lgl] < lly + acl.
THEOREM 5. Let T, S, f, xo as above. Suppose that zq is orthogonal to
each Ty (y € X). Then

(@) 1471 = 151l = 3¢y
d) TS| = [Ifll = 1.
(¢) If T is a shift isometry then
IAZH| = IS] = 7($) = ¥(T)™' = T(T)~".

Proof. The equation ||A7|| = ¥(T)~! is shown in [2, Theorem 3]. We
give a different proof which also shows that (b) is valid.

(a)and (b): Let z € X, then z = az¢+ T2 (o € C, 21 € X). Because of
the orthogonality of azo and T'zy we see that |a| = ||azo]| < ||azo+T24|| =
|z||. Since f(zo) =1 and f(Tz1) = 0 we get

|f(2)] = |e| <l

hence ||f]] < 1. By f(zo) = 1 = ||zo] it follows that ||f]] = 1. Thus we
obtain

@] Wl o)1 < et

1(T) = AT)
this gives (observe that Sz = STz = z; and a = f(z))
AZlz|| = ||Sz @ f(x :max{ Sa:,m}< S ,
lAz"]| = || (@)l ISzl T J S IRIE

therefore ||A7!|| < ||S]|. Since we have already shown that ||S|| < [|AT (], it
follows that ||S]| = ||A7 ).

By the orthogonality of azq and Tz, we also have that
ITSz|| = [|T21]| < [lazo + Tza|| = [|2[l,
therefore ||TS|| < 1. Because of 0 # T'S = (T'S)? we also have ||TS| > 1,
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hence ||TS|| = 1. It remains to show that ||S|| < v(T)~1. We have
ISzl = a1l = 1T~ (Tz1)l| < IIT'lllllevlll

ITs|
— el = )ll I

|TSz| < +(T)

_ 1 |
¥(T)
This completes the proof of (a) and (b).
(c) If T is an isometry, T™ is an isometry for each n € N, thus y(T™) = 1
for all n, hence ¥(T') = I'(T). Use (a) and (7) to get the result. m

(T

4. Local spectra of shift isometries

Let us review some classical concepts of local spectral theory which are
due to N. Dunford [3].

An operator A € £(X ) is said to have the single valued extension property
(SVEP) in X € C if for any analytic function f : D — X, D an open
neighbourhood of Ag, with

(T - ADf(A)=0 on D,

we have f = 0. A is said to have the SVEP in C if A has the SVEP in each
Ao € C.

Let A € L(X) be arbitrary and fix € X. The local resolvent set § 4(z)
of A in z is defined by

d4(z) = {A € C: there is an open neighbourhood U of A and an analytic
function f: U — X with (A — ulI)f(p) = z for each p € U}.

It is immediate that §4(2) is open. The complement v4(z) = C\ 64(z)

is called the local spectrum of A in z. It is clear that y4(2) is closed and

Ya(z) C o(A). Observe that y4(0) = 0. It follows from [3] that if A has the
SVEP in C, then

(8) Ya(z) # 0 for each z € X \ {0} and o(A4)= U va(z).
z#0
ProposiTION 6. Let T € L(X) be a shift and Q as in the previous
sections. Then

(a) T has the SVEP in C.
(b) yr(z) is connected for each x # 0.

(€) € € Nepo 77(2)-
Proof. [10, Theorems 1 and 2]. m

THEOREM 6. Let T be a shift isometry and Q as above. Then
() o(T)={r e C:|A| <1}
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(b) R ={reC:|A<1}.

(c) vr(z) = o(T) for each x # 0.

Proof. (a) The spectrum of each non invertible isometry is the closed
unit disk (see [2, p. 239]).

(b) Since I'(T) = 1, (6) shows that

{deC:|A\ <1} CQCa(T).
Since 2 is open, the result follows from (a).
(c) Let = # 0. Part (c) of Proposition 6 gives
QCyr(z) Co(T)
hence, since yr(z) is closed, it follows that yr(z) = o(T). m
Let X* denote the dual space of X and T™* the adjoint of T € L(X).
THEOREM 7. Let T be a shift on X and Q) as above.

(a) T is Fredholm and o(T*) =1, B(T*) = 0.
(b) y7=(z*) CC\ Q for all z* € X*.

(c) T* does not have the SVEP in C.

(d) If T is a shift isometry, then

yr-(z*) C {A € C: |\ =1}.

Proof. (a) follows from [5, Satz 82.1].

(b) Since T — Al is a shift for each A € Q (Proposition 2), T — Al is
left invertible in £(X). By [1, Theorem 1], there is a holomorphic function
F:Q — L£(X) such that

FA)(T-X)=1 onQ.
Thus (T* — AI*)F(A)* = I'* on Q. This gives
(T* = AI")F(A)*'z* =z* forall A € Q and all 2* € X™*.
Therefore we have
(9) Q C ér-(z*) foreachz* € X"

(c) Fix z5 € N(T*), z§ # 0. Put p(A) = —% for A € C\ {0}. Then
(T* = AI*)p(A) = z§ for A # 0, hence C\ {0} C é7-(z§). Use (9) to derive
é7-(z}) = C. This gives yr-(z) = 0. By (8), T* cannot have the SVEP.

(d) By (9) and Theorem 6 we get

yr-(z*) CC\ QR ={A e C:|A| > 1}.

Since y7-(z*) C o(T*) = o(T) = {X € C:|A| < 1}, the result follows. =
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