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NEIGHBOURHOODS OF CONVEX FUNCTIONS
RELATED WITH PARABOLA

1. Introduction

Let us denote by A the class of functions f of the form f(z) = z +
S ne, axz® which are regular in the unit disk K = {z € C: |z| < 1}. For
d > 0 we define the neighbourhood Ns(f) of a function f € A as follows

(1) Ns(f) = {9(z) =2+ Y bkzk| S klox — bil < 8.
k=2 k=2

The notion of neighbourhood was first introduced by Ruscheweyh [3]. Using
convolution methods he obtained conditions such that for f € A all functions
g € Ns(f) are in some class of univalent functions in K. Some applications
and extensions of his results we can find in [2], see also [1], [5].

As usual by S we denote the set of functions f € A which are univalent
in K. Let us consider the following subclasses of §

_ N ETHO N () I .
(2) SP(a)_{feS. o) <R ) + a, eK}, >0,
(3) CP(a)=
: zf"(z) - e zf"(z) a, z a
{feS. 1+ ) <R (1+ f’(z)>+ ) EK}, > 0.

The class .S P(a) was introduced in [4]. For each @ > 0 holds SP(a) C $* —
the class of starlike functions. In fact, for f € SP(o) the image of K under
p(z) = z2f'(z)/ f(2) lies in the parabolic region

4) Qa)={w:|lw—-a]<Rew+ea}={w=u+iv:v? < dau},

contained in the right half-plane. The class denoted by C P(a) was intro-
duced in [6]. Obviously, an Alexander’s type theorem relates classes SP(a)
and C P(a). Thus, for each a > 0, CP(¢) is the subclass of §° — the family

of convex functions.
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The aim of this paper is to give conditions such that for f € C P(a) all
functions g € Ns(f) are in the class SP(a).

2. Main results
The Hadamard product or convolution of two power series f(z) = z +

S akzk and g(2) = z + Yo, bkz® is defined as (f * g)(2) =
S s arbr2®. Using the properties of convolution we give the deﬁmtlon
of the class SP(a) in a different way.

Note, that according to (4), for f € SP(a) we have zf'(2)/f(z) #t £
2v/at i,z € K, t > 0. Now, for fix @ > 0 we define SP'(a) as a class of all
functions H; of the form

_ h(2) - (£ 2Vt fi(2)
®) B = T i avati)
where f1(z) = 1% and fo(2) = 55, 2 € K.

THEOREM 1. A function f is in the class SP(a), a > 0, if and only if
1(f xHy)(2) #0 in K for all H; € SP'().

Proof. Assume that 1(f x H,)(z) # 0 in K for all H; € SP'(a). Thus
f(z)* =22 2)2 (ti?@ i) f(
2[1 - (t £ 2v/at i)]
_z2f(2) = (t £ 2ot i) f(2)
it 2ati)]
Hence Zf (z) #t £ 2V/ati, t > 0. Since z){((j) = 1at z =0 and §Q(a) =
{t£ 2\/_tz :t > 0}, we have %gl € a), z € K. Therefore f € SP(a).
Conversely, let f € SP(a) for fixed @ > 0. Since ZJ{(IS) # t4 2/ati,
t >0, for f € SP(e), then for all H; € SP'(a) holds
G (120t i) f(z)
1-(t+2vati) =

t>0, z€ K,

0 # (f*Ht)( )=

t>0.

S H(2) =

This ends the proof.
We need the following
LEMMA 1. If Hy(2) = 2+ 3 ey hi(t)2F € SP'(a), @ > 0, then
he(t)] < { ;—ﬁ for0< a<1/2,
k for a > 1/2,
for allt > 0.
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Proof. Let fora>0andt >0

1- (t:t12\/a_t z‘)[(l—zz)2 - (t+2vat i)ljz] = z+;hk(t)zk-

Comparing the coefficients of both sides, we get

Hy(z) =

_ |k~ (t+2Vat )
Rk (D) = iyl 2
Thus
(k=) 440t (k—1)(k+1-2t) (k-1)(k+1)
Ih’°(t)|2‘(1—t)2+4tozt_1+ (1-1)2 + 4at “1+(1—t)2+4at

from £ > 0. Now, if ¢ > 0 then

(1_t)2+4at2{411a(1—a) for 0 < @ < 1/2,

for a > 1/2.
Hence
()P <1+ K —1=k* fore>1/2
and .
2
lhe(t)|* <1+ 4:(1——1(1) < 4a(f— ) for 0 < a < 1/2,
as desired.

For each complex number ¢ we define the function F, as follows

(6) () = %

THEOREM 2. Let f € A and 6 > 0. Assume that for € such that |e| < 8,
holds F, € S P(«a), where F, is defined by (6). Then for every H; € SP'(a),
a > 0, holds

1
L H))
Proof. If F, € SP(a) for |¢|] < é, where § > 0 is fixed, then according
to Theorem 1, holds 1(F, x H;)(2) # 0 in K for all H; € SP'(a). Hence
(fxH)(z)+ ez
(1+¢€)z
so |L(f * H;)(2)| > 6 follows from |¢| < §.

THEOREM 3. Let f € A and 6 > 0. Assume that for € € C, |¢| < 4,
the function F, defined by (6), is in SP(a), @ > 0. Then Ng(f) C SP(a),

>6, z€K.

40 or %(f*Ht)(z)#—e for 2 € K,
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where

§ = {2\/a(1—a Y6 for0< a<1/2,

fora>1/2.

Proof. Let g(2) = z + Y 4w, bkz® € No(f). Then for any H; € SP'(a)
we have

2o

— |20 H)6) + 1 - DB >

> |14 )

- - e

But by Theorem 2

Loemie|2e sex,
hence
00 b — k
%(Q*Ht)(z) > 6 ;( k akz)hk(t)z >

o0 oo
> 8= {20 > 1he(t)] bk — ail > 6 =Y [Ri(®)]1bk — akl-
k=2 k=2
Next, in viev of Lemma 1 we have
(o0}
S Ihe(O)llbe - ax] < { ey i bkl for0<a <12,
k=2 Zk 2k|bk—ak| fOI‘OLZl/Q.
From g € Ng(f) it follows that

§— —=2  for0 1/2
l(g*Ht)(z) > W) or 0 < a<1/2,
z -8 for a > 1/2.

Therefore |1(g + H;)(z)| # 0 in K for all H; € SP'(e) if
5 2\/01(1—016 for0 < a<1/2,
for a > 1/2.

By Theorem 1, this means that g € SP(a), or equivalently Ng(f) C SP(a),
so the result follows. ,

For the proof of next theorem we need the following result obtained in
[4].
LEMMA 2. If f € S° and g € SP(a), a > 0, then f*g € SP(a).

THEOREM 4. If f € CP(a), @ > 0, then the function F., defined by (6),
belongs to SP(a) for |e| < 1/4.
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Proof. Assume that f(z) = z + Y re, axz® € CP(a), where @ > 0 is
fixed. Then

2)+ez  z € heg akZF
Ff(z)zf(1)++€ _ (4 )nlLJrE:_ K2
€ oo Zk 2
_ f(z)*[z(hlLJr):rEk:z I fo) (_1+z_) — (Fxh)(2),

where

pz , €
h()_L—Z—)W ZGIX, P:1+€-

It is easy to see that if |¢] < 1/4, then the function & is starlike. In fact, we
have

zh(z) 1 pz
hz) 1-z 1-p2’
hence
zh'(2) 1
Re >0 if |p| <m0
W) DNFLESE

The last inequality holds for 2 € K, if |p| < 1/3, which is true for || < 1/4.
Therefore for [¢] < 1/4 the function

Sh(t) dt_h(z)*log o ze K,
0

is in S¢ and we have
fe€CP(a) = zf'(z) € SP(a).
But

=)

(fxh)(z)=(h* f)(2) = h(2) * (zf’(z) * log I
= zf'(z) * (h(z) * log ]

1
—_— Z :
Hence using Lemma 2 we get
F(z)=(f*h)(z) € SP(a) for|e] < 1/4
and the proof is completed.
THEOREM 5. If f € CP(a), a > 0, then Ng:(f) C SP(a), where

5/:{@ for 0 < a < 1/2,

1/4 fora > 1/2.
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Proof. Assume that f € CP(a). Then from Theorem 4 it follows that
the function Fy, defined by (6), is in SP(e) for |¢] < 1/4. Next, applying
Theorem 3 with § = 1/4 we obtain desired result.
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