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ON ALMOST-OPENNESS 
A N D SPACES INVERTNESS VIA DENSITY 

1. Introduction 
In 1943, Hewitt [1] presented the concepts of Mi-spaces, resolvability 

spaces and Si-spaces; these types of spaces are obtained via one of the 
important properties of topological spaces which called „density". Several 
topological properties of these types have been investigated. But, in 1966, 
Bourbarki [2] had given another type of spaces which is established depend 
on the density property which is known as a submaximal space. Also, the 
hyperconnected space has been defined by Steen and Seebach [3] in 1978, by 
the concept of dense sets. Recently, the author in [4] defined the almost-open 
space by using the concept of almost-openness which depends on the dense 
sets. Many properties of all previous concepts and some correlated spaces 
have been studied in [5]-[8]. 

Therefore, this paper is devoted to these types of spaces which are men-
tioned before. The first part contains the complete introduction to the sub-
ject of study which is presented throughout this paper. While, the fun-
damental notations and basic preliminaries which are necessarily used in 
this work will be given in the second section. In the third one, the general 
framework between the spaces which under the subject of disscution here 
have been constructed. This framework gives the relationships and shows 
the common properties among more than one type of these spaces. But, 
several characterizations of the previous spaces with their related sets and 
functions are established in the forth section. Depending on the framework 
in the third part, some suggested conditions have been found under which 
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the equivalence between the above mentioned spaces are satisfied, in the 
fifth section of this paper. All other new properties concerning the spaces 
via density and other notions are investigated throughout the final part of 
this work. 

2. Useful notations and basic preliminaries 
Throughout the present paper, all notations will be defined with respect 

to the topological space (X, r ) , whenever such spaces are needed it will be 
explicitly stated. Also, all topological spaces used here will not include any 
separation properties which are assumed unless they are otherwise needed 
in which case they will be given. In (X, r ) , the closure, the interior and the 
derived set of any W € P ( X ) will be denoted by cl(W), int(W) and d(W), 
respectively. Recall that, W is said to be dense, codense, nowhere dense and 
dense-in-itself if c l (W) = X , int(W^) = 0, int(cl(W0) = 0 and W = d(W), 
respectively. Dense-in-itself of any W C X, equivalently that W does not 
have any isolated points. D(X, r ) and C(X,T) will denote the class of all 
dense and codense sets of (X, r ) , respectively. 

In (X, r ) , any I f C l i s said to be almost-open [9] if W C int(clVF) 
and AO(X,T) means the collection of almost-open sets in (X, r ) . For any 
space (X, r ) let be the smallest topology on X containing AO(X, r) . 
While the topology RA = AO(X,T) n SO(X,T), where W 6 5 0 ( X , r ) , 
iff W is semi-open [10], i.e., W C cl(int W). And thus for any space (X, r ) , 
i C r ° C AO(X, T)CTA, and it is also known that AO(X, RA) = AO(X, r ) . 

A space (X, r ) is an Mi-space [1] if it is dense-in-itself and has the prop-
erty that each dense subset is open. But, (X, r ) is resolvable [1] if it is 
the disjoint union of two dense subsets. A space which is not resolvable 
is called irresolvable. A subset of X is resolvable (iiresolvable) if it is re-
solvable (irresolvable) as a subspace. A space is hereditarily irresolvable if 
each of its nonempty subsets is irresolvable. In the same paper [1], the con-
cept of Si-spaces was defined as follows: an Si-space is the space which is 
dense-in-itself and hereditarily irresolvable. (X, r ) is submaximal [2] if each 
of its dense subsets are open. Also, (X, r ) is called hyperconnected [3] if 
each nonempty open set is dense. A space (X, r ) is an almost-open space [4] 
if T = TA. 

3. Connections between spaces via density 
This article is devoted to study the relationships between the spaces 

defined depending on the known types of dense sets and mentioned previ-
ously. 
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By the meaning of these spaces, we can construct the following impli-
cation which shows the common properties among more than one type of 
these spaces. 
Submaximal spaces > Hereditarily irresolvable spaces > Irresolvable spaces 

I I I 
Mi-spaces > Si-spaces Resolvable spaces. 

Also, it is clear that: (i) Mi-spaces are not resolvable and therefore MI-
spaces stand for the "maximally irresolvable" property. 

(ii) Resolvability is independent of each of Si-spaces and irresolvability. 
(iii) Hyperconnectedness is dual with respect to submaximality. 
Note that we cannot demand the converse of the relations in the previous 

implication as the following examples illustrate. 

E X A M P L E 1. For any fixed element (say x) of an infinite set X , with 
a topology T — {X,$,{x},X - {a:}}. One can show that a space (X,r) is 
irresolvable but not hereditarily irresolvable. 

E X A M P L E 2. If X = {(0,0) U {(0,±) U : m, n € N}}, with a 
topology r , its openness takes the form The basic neighbourhood 
of (0, containing (0, with at most a finite number of points, differrent 
than the same point, must be deleted. Also, a neighbourhood of the origin 
point (0,0) contains neighbourhoods of all but finitely many points (0, 
Hence (X, r ) is hereditarily irresolvable but fails to be submaximal. 

R e m a r k 1. Since each Mi-space and Si-space is dense-in-itself and sub-
maximal, hereditarily irresolvable, respectively, then the following fact must 
be verified: if the condition dense-in-itself is add to the space in Example 2, 
the fact that Mi-space implies Si-space can not be reversed. 

4. Characterizations of spaces via density 
Some equivalent definitions of each type of spaces which are under the 

discussion throughout this paper will be investigated in this section. In the 
beginning, one of the basic and useful concepts which is an ideal must be 
given. 

1(C) denotes the ideal generated by C ( X , T ) , and therefore the following 
two obvious results are obtained which are very useful to investigate the 
resolvability equivalent nextly. 

LEMMA 1. For any W C X in ( X , R), W G 1(C) iffW is a finite union 
of codense sets. 
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P R O P O S I T I O N 1. In ( X , R) the following statements are equivalent for 
any W C X : 

(i) W G / (C) ; 
(ii) int W is resolvable; 

(iii) int(cl W) is resolvable. 

As a consequence of two previous results, an immediate equivalent is 
given the following theorem. 

T H E O R E M 1. An open set U in a space ( X , T ) is resolvable i f f U £ 1(C); 
and therefore, (X, R) is resolvable i f f X is a finite union of elements of 1(C). 

Also, in [4] the author gives the following property which is useful 
throughout the sequel. 

LEMMA 2 [4]. Each dense set in any space is almost-open. 

P R O P O S I T I O N 2 . The topology TA is discrete if a space (X,r) is resolv-
able. 

P r o o f . Let be any x G X and D,D* G D(X,r) such that D n D* = 0. 
Then D U {x},D* U {x} £ D(X, r ) and therefore they are almost-open sets 
in (X, r ) (see Lemma 2). Hence (D U {x}) D (D* U {a;}) = {a;} G TA and this 
completes the proof. 

T H E O R E M 2 . A connected space (X, r ) is resolvable i f f TA is discrete. 

P r o o f . One direction follows by Proposition 2, previously. While the 
converse is established by using the hypothesis and Lemma 2 of [11]. 

Another important result related to the resolvability of (X, r ) due to 
Hewitt [1] will be stated as a useful fact to establish an obvious resolvability 
equivalent to other results which will be presented next. 

P R O P O S I T I O N 3 [1]. Any space ( X , T ) can be represented uniquely as a 
disjoint union X = F U G where F is closed and resolvable and G is open 
and hereditarily irresolvable. This is called the "Hewitt-representation" [1], 

T H E O R E M 3 . Let X be the Hewitt-representation of(X,r), then: 

(i) (X, T) is resolvable i f f G is an empty set. 
(ii) (X, r ) is hereditarily irresolvable i f f F is empty. 

P R O P O S I T I O N 4 [5]. For a space ( X , T ) the followings are equivalent: 

(i) (X, r ) contains an open, dense and hereditarily irresolvable subspace. 
(ii) Every open ultrafilter on X is a base for an ultrafilter on X. 

(iii) Every nonempty open set is irresolvable. 
(iv) For each dense subset D of (X, r ) int D is dense. 
(v) For every W C I , «/int W = 0, then W is nowhere dense. 
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T H E O R E M 4 . In ( X , r ) the next statements are equivalent: 

( i ) r = r a = AO(X,T) = TA C SO(X,T). 

(ii) (X, r ) is almost-open, contains an open, dense and hereditarily irre-
solvable subspace D C X . 

P r o o f , (i)—>-(ii): The almost-openness of ( X , r ) follows by the fact that 
T = TA. Let D E D ( X , r ) , then D € AO(X,T), since TA is a topology 
generated by a class AO(X,t) as a subbase. This means that D G Ta and 
therefore D 6 SO(X,T) which gives X = clD C cl(/£>). Hence, / D € 
£>(X, r ) and by Proposition 4, the statement (ii) will be verified. 

(ii)—>-(i): Since (X, r ) is almost-open, then the equalities in (i) must be 
satisfied. To show the equality also, let W £ TA. Then, by Lemma 2 in [4] 
W = U n D, where U e r and D G £>(X, r ) which leads to int D <E P ( X , r ) 
(see (iv) of previous proposition). Therefore, cl(int W) = cl(i7 PlintZ)) = 
c l t / , but W C U C cl i / = cl(int W). Hence the result. 

Consequently, one characterization of almost-openness will be obtained 
nextly, which has an obvious proof. 

T H E O R E M 5 . ( X , r ) is almost-open i f f r = AO(X,T). 

Here, Icd{X, r ) denotes the ideal of closed and discrete subsets of a space 
(X, r ) . But In(X, T) means the ideal generating the class of nowhere dense 
sets with respect to (X, r ) and r ( / n ) is the extension topology defined by 
an ideal / n ( X , r ) . These notions help to characterize submaximality as the 
following straightforward results. 

T H E O R E M 6. For a space (X, r ) the following statements are satisfied: 

(i) (X, r ) is submaximal i f f C(X, r ) C ICD(X, T). 
(ii) (X, T(/„)) is submaximal i f f C ( X , r ) = / n ( X , r ) . 

T H E O R E M 7. Let (X, r ) be an almost-open space, then the following state-
ments are equivalent: 

(i) (X, r ) is submaximal. 
(ii) (X, Ta) is submaximal. 

( i i i ) T = Ta = AO(X, T) C SO(X,T). 

(iv) W C X is nowhere dense if it is codense. 
(v) There exists an open, dense and hereditarily irresolvable subspace 

D C I and R = TA. 

P r o o f . (i)<->(ii): Established by the almost-openness of ( X , r ) . While 
the equivalent of (i) with each of other statements follows from Lemma 2 in 
[5], Proposition 4 and Theorem 4 above. 
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THEOREM 8. I f ( X , T ) is an almost-open space, then the following state-
ments are equivalent: 

(i) (X, T) is hyperconnected. 
(ii) D(X,T) coincides with the class of nonempty sets of TA-

(iii) Any W G P(JT) or its complement is dense. 
(iv) D(X,T) contains the nonempty class of SO(X,T). 

P r o o f . (i)<->(ii): Established directly by the meaning of an almost-
openness and applying Lemma 2 in [4]. 

(i)^(iii): Letting intW + 0, then W G D{X,T) for X = cl(int W) C 
cl W. But if not, this gives D(X - W) = X - i n t W = X. Therefore X — W G 
D(X,T). 

(iii)—>(i): For each 0 + U G T,X ± X - U = cl{X - U). Hence X - U $ 
D(X,T), by (iii), U must be a dense set. 

(i)«-Kiv): Since each 0 ^ W G SO(X, r ) , this gives 0 ± int W 6 D(X, r ) . 
This shows one direction, while the other follows from r C SO(X,T). 

5. Basic properties of spaces via density 
The benefits of spaces have been apparent by studying their proper-

ties. Moreover, this study shows the common results and the extension ones 
among more than one type of the different spaces. So, this article will con-
tain several properties of spaces constructed via dense sets and other related 
ones. 

Hewitt in [1] showed that: "open subsets of a resolvable space are resolv-
able". This fact will be strengthened as follows. 

THEOREM 9. I f ( X , r ) is resolvable and W G SO(X, r ) , then W is re-
solvable. 

P r o o f . Since W G SO(X,T), i.e., W C cl(intW) and ( X , T ) is re-
solvable. Then int W is resolvable and W — int W is nowhere dense in 
(W,T/W). Thus, if D U D* is a disjoint union of dense subsets of (intW), 
then [D U (W — int W)] and D* are disjoint and also are dense in W. Hence 
W is resolvable. 

THEOREM 10. The union of a disjoint family of open resolvable sets in 
any space is resolvable. 

P r o o f . Let a space ( X , r ) and W be the union of a disjoint resolvable 
family {Ui : 0 ^ £/,• G r , i G I}. Then for each i G there exist disjoint 
sets Gj,Hi which are dense in Ui such that Ui — Gil) Hi. If G = [Ji^Gi, 
H = \JieIHi, then G, H are disjoint and dense in their union W, and this 
verifies the result. 
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One can show that: "any subspace of a hereditarily irresolvable space 
is hereditarily irresolvable". The condition under which this result must be 
reversible will be established by the following theorem. 

THEOREM 11. ( X , T ) is hereditarily irresolvable, if X can be expressed 
as a disjoint union ofY and Y* £ r and both (Y,T/Y) and (Y*,T/Y*) are 
hereditarily irresolvable. 

P r o o f . Let us assume 0 ^ W C X and ( W , T / W ) is resolvable. Then 
there exist disjoint, dense in W subsets D and D* with W = DVD*. Suppose 
that D n Y* ± 0 and D* n Y* ± 0. Then since Y* is open in X, {D n Y*) 
and (D* n Y*) are disjoint and dense in (W n Y*). For, if x G D* n Y* 
and V is open with x G V, since D is dense in W, V n W D D ^ 0. If U 
is open in X and x G U then, for V = U D Y*, V £ r and x € V so that 
U n W n (D n Y*) ± 0. Thus, Df)Y* and similarly D* n Y* are dense in 
W G Y* and disjoint. Thus, W n Y* is a resolvable subspace of Y* which 
contradicts Y* being hereditarily irresolvable. Apparently, either D(~)Y* — 0 
or D* fi y * = 0. But in either case W n Y contains a dense set in W. Thus, 
clw(W n y ) = W c w ^ n r c y , since Y is closed. Thus W is a resolvable 
subspace of Y which cannot be, since Y is hereditarily irresolvable. This 
final contradiction proves that (X, r ) is hereditarily irresolvable. 

THEOREM 12. ( X , T ) is irresolvable if{mtD : D € D(X,r)} is a filter-
base on X. 

P r o o f . Let (X,T) be resolvable, then X = D U D* where D,D* £ 
D(X, T) and D n D* = 0. This means that both of (int D) and (int D") are 
empty. This contradicts the hypothesis. Hence the result. 

THEOREM 13. Each semi-open subspace of a submaximal space is sub-
maximal. 

P r o o f . Let (X,r) be submaximal and W E SO(X,T). Then r = r a 

and there is an open, dense, hereditarily irresolvable subset D C X. If 
W is nonempty, then D D int W is a dense, open, hereditarily irresolvable 
subspace of (W, r /W) , and also clw(Z)nint W) = Wncl(Dnint W) = W<1 
cl(int W) = W, because W G SO(X,T) and so r/W = ra/W = (r/W)a. 
Hence (W,T/W) is submaximal. 

6. Spaces via density and some functions 
Recall that a bijection / : (X,T) —> (Y, A) is a semihomeomorphism [11] 

and a-homeomorphism [12], if both / and / - 1 preserve semiopen sets and 
a-sets, respectively. Any property transmitted by semihomeomorphisms is 
called semitopological [11]. 
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P R O P O S I T I O N 5 . Let f : ( X , R ) (Y , a) be a bijection. Then f is a 
semihomeomorphism iff f is an a-homeomorphism. 

By the above result, a property P is semitopological if and only if P is 
an a-topological property [13] which is defined as follows: an a-topological 
property is any topological property shared by all numbers of the a-class 
when possessed by any one member of the a-class. In particular, it is any 
topological property possessed by both (X, r ) and (X, TA) when possessed 
by either of [14]. 

Also, for any topology r on X, the semiregularization of r [15] is the 
topology TS having for a basis the set of regular open subsets of (X, r) . The 
semiregular class of r is the set [r],s of all topologies on X having the same 
semiregularization as r. A topological property P is a semiregular property 
if it is shared by all members of [r]s when possessed by any one member. 
This is equivalent to saying that ( X , r ) and (X, rs) both have P whenever 
either does. 

It is clearly shown that: "spaces (X, r ) and (X, r ° ) share the same family 
of dense subsets", also resolvability is one of the a-topological and hence 
semitopological properties. This illustrates our belief that generally the best 
way to demonstrate that a property P is semitopological is to show that it 
is a-topological. Also, clearly semiregular properties are a-topological [16]. 

Therefore, the following example shows that semitopological properties 
are not semiregular. 

E X A M P L E 3. Let (X, r ) be the two-point Sierpinski space. Then (X, r ) is 
not resolvable whereas the indiscrete semiregularization (X, r s) is resolvable. 

Recall that any function / : (X, r ) —» (Y, a) is called dual almost-
continuous [4] A-function [9] if for each W £ AO(Y,a), f~1(W) is open, 
or almost-open, respectively. 

One can show that: "for the usual space of real numbers every 
non-constant function / : (R,£/) —• (R,ZV) is not dual almost-continuous". 
This fact turns the attention to offer the following obvious consequence. 

P R O P O S I T I O N 6 . If (X, r ) is connected and (Y , a) is resolvable then f : 
(X, r ) —• (F, a) is dual almost-continuous iff f is a constant function. 

Some other equivalent definitions of dual almost-continuity will be given 
nextly via some previously mentioned spaces. 

T H E O R E M 14 . If(Y,a) is resolvable, the following statements are equiv-
alent: 

(i) / : (X, t) (Y, a) is dual almost-continuous. 
(ii) / : (X, r ) —> (Y, B) is continuous, (B is the discrete topology). 
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(iii) 1 (y) is clopen (closed and open) for each y £ Y. 
(iv) f~1(B) ¿5 clopen for each B C Y. 

P r o o f . Since a function / : (X, r ) (Y, a) is dual almost-continuous 
iff / : (X, r ) —> (Y, a a) is continuous, and by using Proposition 2, we get 
(i)<->(ii). While the other equivalents are established immediately. 

COROLLARY 1. / / ( X , R) is dense-in-itself and (Y,a) is a nonempty re-
solvable space, then there is no injection f : ( X , r ) —> (Y, a) dual almost-
continuous. 

PROPOSITION 7. For any submaximal space (X, r ) the class AO(X,T) 
coincides with its topology T. 

P r o o f . Let W € AO(X, r ) , then, by Lemma 2 in [4], W can be expressed 
as the intersection of U € r with D G T) and the submaximality of 
(X, T) gives that D is open and so UC\D 6 r . Hence, AO(X, r ) C r , whereas 
the other inclusion follows immediately, which established the result. 

T H E O R E M 15 . The following statements hold for any f : ( X , r ) —>• (Y , a). 

(i) A-function of f and dual almost-continuity of it are equivalent if 
(X, r ) is a submaximal space. 

(ii) Dual almost-continuity coincides with continuity if (Y, a) is an al-
most-open space. 

(iii) Continuity, A-function and dual almost-continuity are equivalent if 
(X, r ) is submaximal and (X, a) is almost-open. 

P r o o f . It follows directly by applying Proposition 7 above and the 
meaning of an almost-openness of any space. 
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