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ON ALMOST-OPENNESS
AND SPACES INVERTNESS VIA DENSITY

1. Introduction

In 1943, Hewitt [1] presented the concepts of MI-spaces, resolvability
spaces and Sl-spaces; these types of spaces are obtained via one of the
important properties of topological spaces which called ,density”. Several
topological properties of these types have been investigated. But, in 1966,
Bourbarki [2] had given another type of spaces which is established depend
on the density property which is known as a submaximal space. Also, the
hyperconnected space has been defined by Steen and Seebach [3] in 1978, by
the concept of dense sets. Recently, the author in [4] defined the almost-open
space by using the concept of almost-openness which depends on the dense
sets. Many properties of all previous concepts and some correlated spaces
have been studied in [5][8].

Therefore, this paper is devoted to these types of spaces which are men-
tioned before. The first part contains the complete introduction to the sub-
ject of study which is presented throughout this paper. While, the fun-
damental notations and basic preliminaries which are necessarily used in
this work will be given in the second section. In the third one, the general
framework between the spaces which under the subject of disscution here
have been constructed. This framework gives the relationships and shows
the common properties among more than one type of these spaces. But,
several characterizations of the previous spaces with their related sets and
functions are established in the forth section. Depending on the framework
in the third part, some suggested conditions have been found under which
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the equivalence between the above mentioned spaces are satisfied, in the
fifth section of this paper. All other new properties concerning the spaces
via density and other notions are investigated throughout the final part of
this work.

2. Useful notations and basic preliminaries

Throughout the present paper, all notations will be defined with respect
to the topological space (X, 7), whenever such spaces are needed it will be
explicitly stated. Also, all topological spaces used here will not include any
separation properties which are assumed unless they are otherwise needed
in which case they will be given. In (X, 7), the closure, the interior and the
derived set of any W € P(X) will be denoted by c/(W), int(W) and d(W),
respectively. Recall that, W is said to be dense, codense, nowhere dense and
dense-in-itself if cI(W) = X, int(W) = 0, int(cl(W)) = 0 and W = d(W),
respectively. Dense-in-itself of any W C X, equivalently that W does not
have any isolated points. D(X,7) and C(X,7) will denote the class of all
dense and codense sets of (X, 1), respectively.

In (X,7), any W C X is said to be almost-open [9] if W C int(cl W)
and AO(X, ) means the collection of almost-open sets in (X, ). For any
space (X,7) let 74 be the smallest topology on X containing AO(X, 7).
While the topology 7 = AO(X,7)N SO(X,r), where W € SO(X,7),
iff W is semi-open [10], i.e., W C cl(int W). And thus for any space (X, 1),
T C 1% C AO(X,T) C T4, and it is also known that AO(X, %) = AO(X, 7).

A space (X, 1) is an MI-space [1] if it is dense-in-itself and has the prop-
erty that each dense subset is open. But, (X,7) is resolvable [1] if it is
the disjoint union of two dense subsets. A space which is not resolvable
is called irresolvable. A subset of X is resolvable (iiresolvable) if it is re-
solvable (irresolvable) as a subspace. A space is hereditarily irresolvable if
each of its nonempty subsets is irresolvable. In the same paper [1], the con-
cept of SI-spaces was defined as follows: an Sl-space is the space which is
dense-in-itself and hereditarily irresolvable. (X, 7) is submaximal [2] if each
of its dense subsets are open. Also, (X, ) is called hyperconnected (3] if
each nonempty open set is dense. A space (X, 7) is an almost-open space [4]
fr=r A

3. Connections between spaces via density

This article is devoted to study the relationships between the spaces
defined depending on the known types of dense sets and mentioned previ-
ously.
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By the meaning of these spaces, we can construct the following impli-
cation which shows the common properties among more than one type of
these spaces.

Submaximal spaces — Hereditarily irresolvable spaces —— Irresolvable spaces

I | !

MI-spaces — Sl-spaces +7#> Resolvable spaces.

Also, it is clear that: (i) MI-spaces are not resolvable and therefore MI-
spaces stand for the “maximally irresolvable” property.

(i) Resolvability is independent of each of Sl-spaces and irresolvability.

(ili) Hyperconnectedness is dual with respect to submaximality.

Note that we cannot demand the converse of the relations in the previous
implication as the following examples illustrate.

ExaMpPLE 1. For any fixed element (say ) of an infinite set X, with
a topology 7 = {X,0,{z},X — {z}}. One can show that a space (X, ) is
irresolvable but not hereditarily irresolvable.

ExampLE 2. If X = {(0,0)U {(0,1)u (L1,1) :m, n € N}}, with a
topology T, its openness takes the form (%, %) The basic neighbourhood
of (0, %) containing (0, %) with at most a finite number of points, differrent
than the same point, must be deleted. Also, a neighbourhood of the origin
point (0,0) contains neighbourhoods of all but finitely many points (0,1).

Hence (X, 7) is hereditarily irresolvable but fails to be submaximal.

Remark 1. Since each MI-space and SI-space is dense-in-itself and sub-
maximal, hereditarily irresolvable, respectively, then the following fact must
be verified: if the condition dense-in-itself is add to the space in Example 2,
the fact that MI-space implies SI-space can not be reversed.

4. Characterizations of spaces via density

Some equivalent definitions of each type of spaces which are under the
discussion throughout this paper will be investigated in this section. In the
beginning, one of the basic and useful concepts which is an ideal must be
given.

I(C) denotes the ideal generated by C(X, 7), and therefore the following
two obvious results are obtained which are very useful to investigate the
resolvability equivalent nextly.

LEMMA 1. For any W C X in (X,7), W € I(C) iff W is a finite union
of codense sets.
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ProposITION 1. In (X,T) the following statements are equivalent for
any W C X:
(i) W e I(C);
(i) int W is resolvable;
(iii) int(cl W) is resolvable.
As a consequence of two previous results, an immediate equivalent is
given the following theorem.

THEOREM 1. An open set U in a space (X, 1) is resolvable iff U € 1(C);
and therefore, (X, 7) is resolvable iff X is a finite union of elements of I(C).

Also, in [4] the author gives the following property which is useful
throughout the sequel.

LEMMA 2 [4]. Fach dense set in any space is almost-open.

ProPosITION 2. The topology T4 is discrete if a space (X, 1) is resolv-
able.

Proof. Let be any z € X and D, D* € D(X, ) such that D n D* = (.
Then DU {z},D*U {z} € D(X,7) and therefore they are almost-open sets
in (X, 7) (see Lemma 2). Hence (DU{z})N(D*U{z}) = {z} € T4 and this
completes the proof.

THEOREM 2. A connected space (X, ) is resolvable iff 74 is discrete.

Proof. One direction follows by Proposition 2, previously. While the
converse is established by using the hypothesis and Lemma 2 of [11].

Another important result related to the resolvability of (X,7) due to
Hewitt [1] will be stated as a useful fact to establish an obvious resolvability
equivalent to other results which will be presented next.

ProrosITION 3 [1]. Any space (X,T) can be represented uniquely as a
disjoint union X = F U G where F is closed and resolvable and G is open
and hereditarily irresolvable. This is called the “Hewitt-representation” [1].

THEOREM 3. Let X be the Hewitt-representation of (X, ), then:

(i) (X, 1) is resolvable iff G is an empty set.

(ii) (X, ) is hereditarily irresolvable iff F is empty.

PROPOSITION 4 [5]. For a space (X, T) the followings are equivalent:
(i) (X, 7) contains an open, dense and hereditarily irresolvable subspace.
(ii) Fvery open ultrafilter on X is a base for an ultrafilter on X.

(iii) Every nonempty open set is irresolvable.

(iv) For each dense subset D of (X, 7) int D is dense.
(v) For every W C X, if int W = 0, then W is nowhere dense.



On almost-openness 99

THEOREM 4. In (X, 1) the nest statements are equivalent:

() r=71=A0(X,7)=74 C SO(X,T).
(i) (X, ) is almost-open, contains an open, dense and hereditarily irre-
solvable subspace D C X.

Proof. (i)—(ii): The almost-openness of (X, 7) follows by the fact that
T = 14. Let D € D(X,7), then D € AO(X,T), since 74 is a topology
generated by a class AO(X,T) as a subbase. This means that D € 74 and
therefore D € SO(X,7) which gives X = ¢/D C cl([ D). Hence, [ D €
D(X,7) and by Proposition 4, the statement (ii) will be verified.

(ii)—(i): Since (X,7) is almost-open, then the equalities in (i) must be
satisfied. To show the equality also, let W € 74. Then, by Lemma 2 in [4]
W =Un D, where U € 7 and D € D(X, 1) which leads to int D € D(X, 1)
(see (iv) of previous proposition). Therefore, cl(int W) = cl(U Nint D) =
cddU,but W C U C clU = cl(int W). Hence the result.

Consequently, one characterization of almost-openness will be obtained
nextly, which has an obvious proof.

THEOREM 5. (X, ) is almost-open iff T = AO(X, ).

Here, I.4(X, 7) denotes the ideal of closed and discrete subsets of a space
(X, 7). But I,(X, ) means the ideal generating the class of nowhere dense
sets with respect to (X, 7) and 7(I,) is the extension topology defined by
an ideal I,,(X, 7). These notions help to characterize submaximality as the
following straightforward results.

THEOREM 6. For a space (X, 1) the following statements are satisfied:

(i) (X, 1) is submazimal iff C(X,7) C La(X, 7).
(ii) (X, 7(In)) is submazimal iff C(X,7) = L(X,T).

THEOREM 7. Let (X, T) be an almost-open space, then the following state-
ments are equivalent:

(i) (X, 1) is submazimal.
(i) (X,74) is submazimal.
(ii) 7 = 74 = AO(X, 1) C SO(X,1).
(iv) W C X s nowhere dense if it is codense.
(v) There exists an open, dense and hereditarily irresolvable subspace
DC X and T =14

Proof. (i)« (ii): Established by the almost-openness of (X, 7). While
the equivalent of (i) with each of other statements follows from Lemma 2 in
[5], Proposition 4 and Theorem 4 above.
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THEOREM 8. If (X, T) is an almost-open space, then the following state-
ments are equivalent:

(i) (X, T) is hyperconnected.

(ii) D(X, 1) coincides with the class of nonempty sets of 74.
(i) Any W € P(X) or its complement is dense.
(iv) D(X,T) contains the nonempty class of SO(X, ).

Proof. (i)« (ii): Established directly by the meaning of an almost-
openness and applying Lemma 2 in [4].

(i)« (iil): Letting intW # 0, then W € D(X,7) for X = cl(int W) C
cl W. But if not, this gives cl(X = W) = X —int W = X. Therefore X - W €
D(X,1).

(ili)—(i): Foreach 0 # U e, X # X -U=c(X-U). Hence X - U ¢
D(X, 1), by (iii), U must be a dense set.

(i)« (iv): Since each § # W € SO(X, 1), this gives § # int W € D(X, 7).
This shows one direction, while the other follows from 7 C SO(X, 7).

5. Basic properties of spaces via density

The benefits of spaces have been apparent by studying their proper-
ties. Moreover, this study shows the common results and the extension ones
among more than one type of the different spaces. So, this article will con-
tain several properties of spaces constructed via dense sets and other related
ones.

Hewitt in [1] showed that: “open subsets of a resolvable space are resolv-
able”. This fact will be strengthened as follows.

THEOREM 9. If (X, T) is resolvable and W € SO(X, ), then W is re-
solvable.

Proof. Since W € SO(X,7), ie., W C cl(intW) and (X,7) is re-
solvable. Then int W is resolvable and W — int W is nowhere dense in
(W, 7/W). Thus, if DU D* is a disjoint union of dense subsets of (int W),
then [DU (W —int W)] and D* are disjoint and also are dense in W. Hence
W is resolvable.

THEOREM 10. The union of a disjoint family of open resolvable sets in
any space is resolvable.

Proof. Let a space (X, 7) and W be the union of a disjoint resolvable
family {U; : § # U; € 7, i € I}. Then for each 7 € I, there exist disjoint
sets G;, H; which are dense in U; such that U; = G; U H;. If G = U;¢; G,
H = J;c; Hi, then G, H are disjoint and dense in their union W, and this
verifies the result.
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One can show that: “any subspace of a hereditarily irresolvable space
is hereditarily irresolvable”. The condition under which this result must be
reversible will be established by the following theorem.

THEOREM 11. (X, 1) is hereditarily irresolvable, if X can be expressed
as a disjoint union of Y and Y* € 7 and both (Y,7/Y) and (Y*,7/Y™*) are
hereditarily irresolvable.

Proof. Let us assume § # W C X and (W, 7/W) is resolvable. Then
there exist disjoint, dense in W subsets D and D* with W = DUD*. Suppose
that DNY* # ) and D*NY™ # 0. Then since Y* is open in X,(DNY™)
and (D* N Y*) are disjoint and dense in (W NY™*). For,if x € D*NnY~
and V is open with z € V, since D is dense in WV NWnND # 0. f U
is open in X and z € U then,for V=UNY*, V € 7 and ¢ € V so that
UNnWn(DNnY*)# 0. Thus, DNY* and similarly D* NY* are dense in
W € Y* and disjoint. Thus, W N Y* is a resolvable subspace of Y* which
contradicts Y * being hereditarily irresolvable. Apparently, either DNY™* = ()
or D*NY* = (. But in either case W NY contains a dense set in W. Thus,
dw(WnY)=WCWnNY CY,since Y is closed. Thus W is a resolvable
subspace of Y which cannot be, since Y is hereditarily irresolvable. This
final contradiction proves that (X, 7) is hereditarily irresolvable.

THEOREM 12. (X, T) is irresolvable if {int D : D € D(X,7)} is a filter-
base on X .

Proof. Let (X,7) be resolvable, then X = D U D* where D,D* €
D(X,7)and DN D* = @. This means that both of (int D) and (int D*) are
empty. This contradicts the hypothesis. Hence the result.

THEOREM 13. Fach semi-open subspace of a submazimal space is sub-
mazimal.

Proof. Let (X,7) be submaximal and W € SO(X,7). Then 7 = ¢
and there is an open, dense, hereditarily irresolvable subset D C X. If
W is nonempty, then D Nint W is a dense, open, hereditarily irresolvable
subspace of (W, /W), and also clw(DNint W) = Wncl(DNint W) = Wn
c(int W) = W, because W € SO(X,7) and so /W = 7%/W = (r/W)=~.
Hence (W, 7/W) is submaximal.

6. Spaces via density and some functions

Recall that a bijection f: (X,7)— (Y,0) is a semihomeomorphism [11]
and o-homeomorphism [12], if both f and f~! preserve semiopen sets and
a-sets, respectively. Any property transmitted by semihomeomorphisms is
called semitopological [11].



102 R. A. Mahmoud

ProrosiTioN 5. Let f : (X,7) — (Y,0) be a bijection. Then f is a
semihomeomorphism iff f is an a-homeomorphism.

By the above result, a property P is semitopological if and only if P is
an a-topological property [13] which is defined as follows: an a-topological
property is any topological property shared by all numbers of the a-class
when possessed by any one member of the a-class. In particular, it is any
topological property possessed by both (X, 7) and (X, 7%) when possessed
by either of [14].

Also, for any topology T on X, the semiregularization of 7 [15] is the
topology 7, having for a basis the set of regular open subsets of (X, 7). The
semiregular class of 7 is the set [7]; of all topologies on X having the same
semiregularization as 7. A topological property P is a semiregular property
if it is shared by all members of [7]; when possessed by any one member.
This is equivalent to saying that (X, ) and (X, 7;) both have P whenever
either does.

It is clearly shown that: “spaces (X, ) and (X, 7%) share the same family
of dense subsets”, also resolvability is one of the a-topological and hence
semitopological properties. This illustrates our belief that generally the best
way to demonstrate that a property P is semitopological is to show that it
is a-topological. Also, clearly semiregular properties are a-topological [16].

Therefore, the following example shows that semitopological properties
are not semiregular.

ExaMPLE 3. Let (X, 7) be the two-point Sierpifiski space. Then (X, 7)is
not resolvable whereas the indiscrete semiregularization (X, 75) is resolvable.

Recall that any function f : (X,7) — (Y,0) is called dual almost-
continuous [4] A-function [9] if for each W € AO(Y,0), f~1(W) is open,
or almost-open, respectively.

One can show that: “for the usual space of real numbers (R,%), every
non-constant function f : (R,U) — (R,U) is not dual almost-continuous”.
This fact turns the attention to offer the following obvious consequence.

ProrosITION 6. If (X, T) is connected and (Y, o) is resolvable then f :
(X,7) = (Y, 0) is dual almost-continuous iff f is a constant function.

Some other equivalent definitions of dual almost-continuity will be given
nextly via some previously mentioned spaces.

THEOREM 14. If (Y, 0) is resolvable, the following statements are equiv-
alent:
(i) f:(X,7)— (Y,0) is dual almost-continuous.
(ii) f:(X,7) = (Y,D) is continuous, (D is the discrete topology).
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(iii) f~*(y) is clopen (closed and open) for each y € Y.
(iv) f~Y(B) is clopen for each BCY.

Proof. Since a function f : (X,7) — (Y,0) is dual almost-continuous
iff f:(X,7) — (Y,04) is continuous, and by using Proposition 2, we get
(i) (ii). While the other equivalents are established immediately.

CoRroLLARY 1. If (X, 1) is dense-in-itself and (Y,0) is a nonempty re-
solvable space, then there is no injection f : (X,7) — (Y,0) dual almost-
continuous.

PROPOSITION 7. For any submazimal space (X,7) the class AO(X,T)
coincides with its topology T.

Proof. Let W € AO(X, ), then, by Lemma 2 in [4], W can be expressed
as the intersection of U € 7 with D € D(X,7) and the submaximality of
(X, 7) gives that D is open and so UND € 7. Hence, AO(X,T) C 7, whereas
the other inclusion follows immediately, which established the result.

THEOREM 15. The following statements hold for any f : (X,7) — (Y, 0).

(i) A-function of f and dual almost-continuity of it are equivalent if
(X, 1) is a submazimal space.
(ii) Dual almost-continuity coincides with continuity if (Y,0) is an al-
most-open space.
(iii) Continuity, A-function and dual almost-continuity are equivalent if
(X, 1) is submazimal and (X, o) is almost-open.

Proof. It follows directly by applying Proposition 7 above and the
meaning of an almost-openness of any space.
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