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FIXED COEFFICIENTS FOR NEW CLASSES
OF UNIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS

In this paper we consider the class Ry, . consisting of analytic and uni-
valent functions with negative coefficients and fixed second coefficient. The
object of the present paper is to show coefficient estimates, convex linear
paper is to show coefficient estimates, convex linear combination, some dis-
tortion theorems and radii of starlikeness and convexity for f(z) in the class
R}, .. The results are generalized to families with finitely many fixed coeffi-
cients.

1. Introduction
Let A stands for the class of functions of the form

(1.1) f(z)=z+ Zakzk
k=2

which are analytic in the unit disc U = {z : |2|(1}. We denote by S the
subclass of univalent functions f(z) in A. The Hadamard product of two
functions f(z) € A and g(z) € A will be denoted by f % g(2), that is, if f(2)
is given by (1.1) and g¢(z) is given by

(1.2) g(z)=z+ Z br2*,
k=2

then

(1.3) fxg(z)=z+ Zakbkzk.
k=2
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Let
n 22" f(2)™)
(1.49) pr () = ZIEE
for n € Ng = NU(0) and z € U, where N = {1,2,...}. This symbol D" f(z)
has been named by Al-Amiri [1] the n-th order Ruscheweyh derivative of
f(2). We note that D°f(z) = f(z) and D f(2) = zf'(z).

Introduce, using the Hadamard product, operator

)= — 2 —

(15) D f(Z) - (1 . z)ﬁ“ * f(z)a ﬂ Z 1.
Ruscheweyh in [3] observed that (1.4) and (1.5) are equivalent when 8 =
n e No.

It is easy to see that

(1.6) D "f(z)=z+ ié(n,k)akzk,
k=2

where

(1.7) §(n, k) = ("*:‘ 1)

Denote by T' the subclass of § consisting of functions f(z) having the
form

(1.8) f(z) =2z~ f:akzk, ax > 0.
k=2

In [2] Owa studied the classes R} defined by
D™ f(2) n
D1 (2) } > 1 for z € U}.
For the classes R}, Owa [2] showed the following lemma

LEMMA 1. Let the function f(z) satisfies (1.8). Then f € R}, n € Ny, if
and only if

(1.9) R;:{feT:Re{

(1.10) > ké(n,k)ax < 1.
k=2

The above results is sharp. In particuler it means that for the functions
f € R}, we have
1




New classes of univalent functions 45

Denote by R, . the class of functions f(z) of the form

o0

1.12 = axz®;  ax >0,
(12 &= gy - et e
where 0 < ¢ < 1 is fixed and observe that by (1.1)

R, .CR;.

2. Coefficient estimates

THEOREM 1. For the class R}, . defined by (1.12) we have the following
characterization: Function f(z) € R}, . if and only if

o0
(2.1) > ké(n,k)ar < 1-c.
k=3
Proof. Putting
c
. = — <c<
(2.2) as 2t 1) 0<c<1,

in (1.10) and simplifying we get the result.
The result is sharp. In particular, it means that functions

(23) 6= IS;(; 33) bk,

are elements of R}, .. Moreover, we have
COROLLARY 1. Let the function f(z) be defined by (1.12). Then

(1-¢

(24) ar < m,

k>3.

3. Convexity theorems
One can easily observe that the class R _ is convex.
This situation can be, in a sense, reversed. Namely, we have the following

THEOREM 2. Let

(3.1) fa(z) =z - Q(n—il)z2

and

_ [4 3 (1 - C)
(3.2) fi(2) = 2 - 2(n + 1) ké(n, k) #
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for k = 3,4,... Then f(z) is in the class R;, . if and only if it can be
ezpressed in the form

(3.3) £(2) =Y M),
k=2

where Ap > 0 and Y poy Ap = 1.

Proof. Suppose that f(z) can be expressed in the form (3.3). Then we
have

(3.4) fz) =z~ +1) Z(;éznc)khk v

Since

(3.5) Z T 6)2; ké(n, k)= (1—c)(1=A) <1—v¢,

then it follows from (2.1) that f(2) is in the class R}, .
Conversely, let f(z) defined by (1.12) is in the class R}, .. Then, by using
(2.4) we get

(1-¢)

. < > 3.
(3.6) ar < Fo(n. k)’ >3
Setting

ké(n, k) k)

. >
(37) A= (l-c) ar, k>3
and
(3.8) Az=1-Y X,

k=3

we have (3.3). This completes the proof of the theorem.

CoRrOLLARY 3. The extreme points of the class Ry, . are the functions
fi(2)(k > 2) given by Theorem 2.

4. Distortion theorems
We begin with the following

LEMMA 2. Let the function f3(z) be defined by (3.2) and define cp, 7o
putting

(4.1) ¢ = %{ — (3n? 4 25n + 20) + /(3n? + 25n + 20)? + 28(n + 1)}
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and
(4.2) 1=
_ =16(1—¢c)(n+1)+ V/256(1 — ¢)?(n + 1) + 24¢3(1 — c)(n + 1)(n + 2)
B 4c(n - c) '
Then, for 0 <r <1 and 0 < c <1, we have

; c 2(1-¢)
(4.3) e 2 = e S a D4 D)

with eauality for § = 0.
For either 0 <ce<cpand 0<r<rg orecg <e<1.

(4.4) (e € 74 gy - 3(ni(11)_(:)+ 5"

with eauality for 8 = «.
Further, for0<e<cpandrg<r<1,

(4.5) | fa(re®)| =

3c?(n +2) 41-2¢) c? .
s T{ [1 DI 1)] + [3(n T+ T8y 1)2]’"
41 - c)? (1~ ¢) ¥
F [9(n FIP(n 27 T 2+ 1P(n+ 2)] }
with esuality for

2¢(1 - c)r? — 3e(n + 1)(n + 2)
16(1 ~c)(n + 1)r )
Proof. We employ the same technique as it was used by Silverman and
Silvia [4]. Since
0| fs(re?)|? _ 3 sin 6 [c 16(1 — C)‘I‘6080 _2(1-¢) 1'2]
06 (n+1) 3(n+2) 3(n+1)(n+2)
we can see that

(4.6) § =+ cos™! (

(4.7)

Olfs(re ) _

9 0

(4.8)

for #; = 0,0, = 7, and

(4.9) 63 = £ cos™! (20(1 —o)r’ —3¢(n+1)(n+ 2))

16(1 — ¢)(n+ D)r

Since 65 is a valid root only when —1 < cosfl; < 1. Hence we have a third
root if and only if ro < 7 < 1 and 0 < ¢ < ¢5. Thus thfs results of the
theorem follows from comparing the extremal values |f3(re'®)| (I = 1,2, 3),
on the appropriate intervals.
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LEMMA 3. Let the functions fi(2) be defined by (3.2) and k > 4. Then

(4.10) | fi(re®)] < [ fa(=)l.
and
(4.11) |Fe(ret)] < | fa(=r)l.

Proof. Since fi(2) = z— 355y 2 22— k(;(ncl)c)z and & (c)k) is a decreasing
function of &, we have

re ) S 74 gyt + k(;(; ck)) r*
c 6(1—c)

S RS YTy ma e

which shows (4.10).

= —fa(~r)

In the same way we obtain (4.11).

THEOREM 3. Let the function f(z) belongs to the class R}, .. Then for
0<r<1, we have
; c 2(1-¢)
4.12 ret)| > r — r? - r
(4.12) |f(re™)] 2 2(n + 1) T3+ D)(nt 2)
with eauality for f3(z) at z = r, and

(4.13) [£(re®®)| < Max{Max|fs(re’®)], - fa(~7)},

where Maxy f3(re'®)| is given by Lemma 2.

The proof of Theorem 3 is obtained by comparing the bounds in Lemma
2 and Lemma 3.

Remark. Putting ¢ = 1 in Theorem 3 we obtain the following result
due to Owa [2]:

COROLLARY 4. Let the function f(z) defined by (1.8) be in the class R},.
Then for |z| = r < 1, we have

1 1
- 2(n+1)7'2 < lf(z)ST+2—(n—+—l)7‘2-

LEMMA 4. Let the function f3(z) be defined by (3.2) and let

(4.14)

(4.15) o= i{ ~(n* + 11n + 8) + v/(n2 + 11n + 8)% + 64(n + 1)}

and
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(4.16) 1 =
_=8(1—c)n+ 1)+ /[B(I=c)(n+ D> +8c(1 = c)(n+ 1)(n+2)
- 4¢(l - ¢) '
Then, for 0 <r <1 and 0 < ¢ <1, we have
(4.17) e > 1- — -0

Tt Dm+?)
with eauality for 8 = 0.

For either 0<c<ciand0<r<ryorecg <c<l,

c 2(l-¢)
(+1)  (+n+t2)

(4.18) fy(re®) <14

with eauality for 8 = «.
Further, for 0 < c<c¢y andry <r <1,

(4.19) |f'(re’®)] < {[1 + mc:(z)?—n?f)]

c? 4(1-c) 2
f [2(n+ T T D+ 2)]T

4(1- )’ ’(1-¢) :
+ [(n+1)2(n+2)2 2(n + 1)3(n+2)]r4}

with ecuality for

(4.20) 0 = + cos! (20(1 —o)r? —e(n+ 1)(n+ 2))

8(1-c)(n+ Dr
The proof of Lemma 4 is given in the same way as Lemma 2.

By Lemma 3 and Lemma 4 we have immediately:

THEOREM 4. Let the function f(z) be in the class R;, .. Then for 0 <
r < 1 we have

c r 2(1 - C) 7-2
(n+1) (n+1)(n+2)

with eauality for fi(z) at z = r, and

(4.22) |f'(re?*)| < Max{Max | f5(re’*), fi(~r)}

(4.21) 1f/(rei®)] > 1 -

where Maxg | f3(re®)| is given by Lemma 4.

Remark. Putting ¢ = 1 in Theorem 4 we obtain the following result
due to Owa [2]:
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*

THEOREM 5. Let the function f(z) defined by (1.8) be in the class R,.
Then for |z| = r < 1, we have

(4.23)

r

5. Radii of starlikeness and convexity

THEOREM 6. Assume that the function f(z) be in the class R}, .. Then
f(z) is starlike of order p (0 < p < 1) in the disc |2| < r1(n,c,p), where
ri(n,c, o) is the largest value for which

o(2~0) ,(A-c)k=0) 4
. <1-
(5-1) 2t 1) T kb(nB) !
for k > 3. The ineauality is sharp with the extremal function
. c 2 _ (1-¢) &

M2 = 2= o~ Ry
Proof. It suffices to show that

for some k.

(5.2)

2f'(2)
—=+-11<1- 0<p<1) forlz| <r(n,c,o).
P il<i-0 0<o<n) forld<n(neo)
Note that
! 4+ 302 (k- DagrF
(5.3) zf'(z) _1l< n—-l-l)_ Dl ) kk 1 0
f(z) 1= Sy ™ — ke GT
for |z| < 7 if and only if
«(2-0) k-1
. <1-
(5.4) n T l)r + Z(k o)ar 1
Since f(z)is in R}, ., by (2.1) we may take
_ (1 - c)/\k
(5.5) ax = TE(m k)’ k>3,

where Ap > 0,k > 3 and

(5.6) Z A < 1
k=3

For each fixed r, choose the positive integer kg = ko(r) for which the ex-
pression kilg—‘(’n—i)—j ko-1 is maximal. Then it follows that

1 (A=e)(ko—0) k-
(5.7) ;(k‘—g)akrk SW—O%) ko1
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Hence we conclude that f(z) is starlike of order g in |z| < r1(n, ¢, o) provided
that

(2-0), , (1=ho=0) s o, _,

2(n+1) ks(n, ko)

We find the value rg = 7o(n,c, 0) and the corresponding integer k(o) so
that

(5.8)

¢(2-0) (L—c)(ko~ ) k-1 _
To" =

2(n + 1) koé(’n, ko)

Then this value rq is the radius of starlikeness of order p for functions f(z)

belonging to the class R}, .

(59) o + - 0.

In a similar manner, we can prove the following theorem concerning the
radius of convexity of order g for functions from the class R;, .

THEOREM 7. Let the function f(z) be in the class Ry, .. Then f(z) is
convez of order p (0 < p < 1) in the disc |z| < ro(n,c,0), where ra(n,c, o)
is the largest value for which
«2-0)  (-c)k-p)
(n+1) é(n, k)
for k > 3. The result is sharp for the function f(z) given by (5.2).

Tk_l S 1—9,

(5.10)

6. The class R; .
Instead of fixing just the second coefficient, we can fix finitely many
coefficients. Let R}, ., denote the class of functions in R}, . of the form

N o)
Ck k k
(6.1) (2)=2z- E — 2" - E agz",
k=2 2(n + 1) k=N+1

where ¢ > 0,0 < }:g:z ¢r = ¢ < 1. Note that R}, , , = R}, .

THEOREM 8. The exztreme points of R}, .« are of the form

N
z - — 2z
1:2;2 ké(n, k)
and
N

— Ck k_ (l—c) k 3
’ I;ka(n’k)z ko). JorE=NALNA2,.

The details of the proof are omitted.
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The characterization of the extreme points enables us to solve the stan-
dard extremal problems in the same manner as it was done for Ry .. We
omit the details.
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