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FIXED COEFFICIENTS FOR NEW CLASSES 
OF UNIVALENT FUNCTIONS 

WITH NEGATIVE COEFFICIENTS 

In this paper we consider the class c consisting of analytic and uni-
valent functions with negative coefficients and fixed second coefficient. The 
object of the present paper is to show coefficient estimates, convex linear 
paper is to show coefficient estimates, convex linear combination, some dis-
tortion theorems and radii of starlikeness and convexity for f(z) in the class 
R*n c. The results are generalized to families with finitely many fixed coeffi-
cients. 

1. Introduction 
Let A stands for the class of functions of the form 

which are analytic in the unit disc U = {z : We denote by S the 
subclass of univalent functions f(z) in A. The Hadamard product of two 
functions f ( z ) £ A and g(z) 6 A will be denoted by f * g ( z ) , that is, if f ( z ) 
is given by (1.1) and g(z) is given by 

oo 
(1.1) 

oo 

(1.2) 
k=2 

then 
oo 

(1.3) 
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Let 

z[2B"1 / (*)] ( n ) 
(1.4) Dnf(z) 

nl 
for n G N0 = N U (0) and z£U, where N = {1,2, . . .} . This symbol Dnf(z) 
has been named by Al-Amiri [1] the n-th order Ruscheweyh derivative of 
/ O ) . We note that D°f(z) = f ( z ) and Dlf(z) = zf'(z). 

Introduce, using the Hadamard product, operator 

(1.5) 2>/»/(*) = _ £ _ * / (* ) , / ? > - ! . 

Ruscheweyh in [3] observed that (1.4) and (1.5) are equivalent when ¡3 = 
n e N0. 

It is easy to see that 
oo 

(1.6) D n f ( z ) = z + J 2 K n , k ) a k z h , 
k=2 

where 

(1.7) 

Denote by T the subclass of S consisting of functions f ( z ) having the 
form 

CO 
(1.8) f ( z ) = z-J2akZh, ak> 0. 

k=2 

In [2] Owa studied the classes JS* defined by 

(1.9) = 

For the classes _K*, Owa [2] showed the following lemma 

> — - , for z £ U 
n+ 1 

L E M M A 1 . Let the function f ( z ) satisfies ( 1 . 8 ) . Then f E R^i n € No, if 
and only if 

oo 
(1.10) J 2 k S ( n , k ) a k < 1. 

k=2 

The above results is sharp. In particuler it means that for the functions 
/ 6 we have 

< h l l > £ w r r y 
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Denote by c the class of functions f{z) of the form 
CO 

(1.12) = a f c > 0 ? 

where 0 < c < 1 is fixed and observe that by (1.1) 
Rn,c C Rn-

2. Coefficient estimates 

T H E O R E M 1. For the class c defined by {1.12) we have the following 
characterization: Function f{z) G Rn,c tf and only if 

CO 

(2.1) ^ k S { n , k ) a k < 1 - c. 
fc=3 

P r o o f . Putting 

(2.2) a> = w p r y 

in (1.10) and simplifying we get the result. 
The result is sharp. In particular, it means that functions 

<2'3' = 2 W T î f - W ï â / ' ^ 
are elements of R* c. Moreover, we have 

C O R O L L A R Y 1 . Let the function f{z) be defined by ( 1 . 1 2 ) . Then 

3. Convexity theorems 
One can easily observe that the class c is convex. 
This situation can be, in a sense, reversed. Namely, we have the following 

T H E O R E M 2 . Let 

(3.D 

and 

C ,3 (1 - C) k ( 3 . 2 ) fk{z) = z-
2 ( n + l ) k6{n,k) 
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for k = 3 , 4 , . . . Then f ( z ) is in the class c if and only if it can be 
expressed in the form 

oo 

(3.3) / (*) = £ > / * ( * ) , 
k=2 

where Xk > 0 and ^fc = 

P r o o f . Suppose that f ( z ) can be expressed in the form (3.3). Then we 
have 

(3.4) f ( z ) = * - - ^ - z 2 - y {]~C)^zk. V ' W 2(n + l ) f ^ k6{n,k) 

Since 

(3-5) S ' k ) =(1"c)(1 -Az) -1 -C) 

then it follows from (2.1) that f(z) is in the class 
Conversely, let f{z) defined by (1.12) is in the class Then, by using 

(2.4) we get 

Setting 

(3.7) k = 77^ r-afc, k > 3 
( 1 - c ) 

and 
oo 

(3.8) A2 = l - ^ A f c , 
k=3 

we have (3.3). This completes the proof of the theorem. 

COROLLARY 3. The extreme points of the class i?*>c are the functions 
fk(z)(k > 2) given by Theorem 2. 

4. Distortion theorems 
We begin with the following 

LEMMA 2. Let the function fa(z) be defined by (3.2) and define CQ, RO 
putting 

(4.1) c0 = - (3n2 + 25n + 20) + y/(Zn2 + 25n + 20)2 + 28(n + 1)} 
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and 

(4.2) r0 = 

_ -16(1 - c)(n + 1) + y/256(l - c)2(n + l ) 2 + 24c2(l - c)(n + l) (n + 2) 
4c(n — c) 

Then, for 0 < r < 1 and 0 < c < 1 , we have 

(4.3) \f3(rete)\>r- - r 2 -
2(1 - c) 

2 ( n + l ) 3(n + l ) (n + 2) 
with equality for 0 = 0. 

For either 0 < c < cq and 0 < r < tq or cq < c < 1 . 

(4.4) \Mre ie)\<r + 
2 ( 1 - c ) 

2 ( n + l ) 3(n + l ) (n + 2) 
with equality for 6 = IT. 

Further, for 0 < C < CQ and ro < r < 1, 

( 4 . 5 ) \f3(reie)\ = 

< r j 1 + 
3c2 (ra + 2) 

+ 

32(1 - c)(n + 1). 

4(1 - c)2 

+ 
4 ( 1 - c ) 

+ 

+ 

.3(n + l ) (n + 2) 8(n + l ) 2 . 

c 2 ( l - c ) 
9(n + l ) 2 (n + 2)2 24(n + l ) 3 (n + 2) J 

/2c(l - c)r2 - 3c(n + l ) (n + 2) 

with equality for 

(4.6) 0 — i cos . 
v ' V 16(1 — c)(n -f l ) r 

P roof . We employ the same technique as it was used by Silverman and 
Silvia [4]. Since 

(4.7) 
d\f3(rete)\2 _ r sin0 

~ ( n + 1 ) 89 

we can see that 

(4.8) 

for 0\ = 0,02 = t> and 

(4.9) 03 = ± cos"1 ^ 

1 6 ( 1 - c ) . 2 c ( l - c ) « 
c + . J r c o s 0 - — — \ w 

3(n + 2) 

d\h{reie)\2 

3(n + l ) (n + 2) 

= 0 
30 

2c(l - c)r2 - 3c(n + l ) (n + 2) 
1 6 ( l - c ) ( n + l ) r 

Since 03 is a valid root only when - 1 < cos03 < 1. Hence we have a third 
root if and only if r0 < r < 1 and 0 < c < c0. Thus the results of the 
theorem follows from comparing the extremal values |/3(re'e)| (I = 1,2,3), 
on the appropriate intervals. 
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L E M M A 3. Let the functions fk(z) be defined by (3.2) and k > 4. Then 

(4.10) \h(reie)\ < | / 4 ( - r ) | . 

and 

(4.11) \fi(reie)\ < M(-r)\. 

P r o o f . Since fk(z) = z- ^ ^ j z 2 - and is a decreasing 
function of k, we have 

< r + £ r2 +
 6 ( 1 ~ c ) r4 _ _ t /_r\ 

" ^ 2 ( n + l ) 4(n + l ) (n + 2)(n + 3) U K ' 

which shows (4.10). 

In the same way we obtain (4.11). 

THEOREM 3. Let the function f ( z ) belongs to the class Rn,c- Then for 
0 < r < 1, we have 

(4.12) \f(reie)\ > r - . C . r 2 - 2(1" C) ~3 

2(n + l ) 3(n + l ) ( n + 2) 

with equality for f3(z) at z = r, and 

(4.13) \f(rei9)\ < Max{Max|/3(re i ( ?) | , - / 4 ( - r ) } , 
& 

where Max# f3(ret8)\ is given by Lemma 2. 

The proof of Theorem 3 is obtained by comparing the bounds in Lemma 
2 and Lemma 3. 

R e m a r k . Putt ing c = 1 in Theorem 3 we obtain the following result 
due to Owa [2]: 

COROLLARY 4. Let the function f ( z ) defined by (1.8) be in the class . 
Then for \z\ = r < 1, we have 

L E M M A 4. Let the function f3(z) be defined by (3.2) and let 

(4.15) ci = - (n2 + l i f t + 8) + v V + 11 n + 8)2 + 64(n + 1)} 

and 
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(4.16) ri = 

= - 8 ( 1 - c)(n + 1) + y/[8(l - c)(n + l)]2 + 8c 2 ( l - c)(n + l ) (n + 2) 
4c( l - c) 

Then, /or 0 < r < 1 and 0 < c < 1, we have 

with equality for 0 = 0. 
For either 0 < c < c\ and 0 < r < ri or c\ < c < 1, 

2(1 - c) o 
(4.18) l/s(re")| < 1 + -r -

(n + 1) (n + l)(n + 2) 

with equality for 6 = 7r. 
Further, /or 0 < c < ci and r\ < r < 1, 

c2(n + 2) 
(4.19) 

+ 

+ 

8(1 — c)(n + 1) 
"2 4(1 - c) 

• + _2(n + l ) 2 T ( n + l ) ( n + 2). 

4(1 - c)2 c 2 ( l - c) 
.(n + l ) 2 (n + 2)2 T 2(n + l ) 3 (n + 2) , 

with equality for 

(4.20) * = ± cos"1 p c ( l - c ) r 2 - c ( n + l ) ( n + 2 A 
v ' V 8(1 — c)(n + l ) r J 

The proof of Lemma 4 is given in the same way as Lemma 2. 

By Lemma 3 and Lemma 4 we have immediately: 

THEOREM 4. Let the function f(z) be in the class R* c. Then for 0 < 
r < 1 we have 

\f'(rei0)\ > 1 - -—^—rr - 2(1 " C) ~2 
( 4 ' 2 1 ) " , ( n + 1 ) ' " (n + l ) (n + 2) 

with equality for f^{z) at z = r, and 

(4.22) \f'(rei6)\ < Max{Max|/¿(re i 9 ) ,/ i ( - r ) } 
U 

where Max# \ fz{rel6)\ is given by Lemma 4. 

R e m a r k . Putting c = 1 in Theorem 4 we obtain the following result 
due to Owa [2]: 
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THEOREM 5 . Let the function f(z) defined by ( 1 . 8 ) be in the class R* 
Then for \z\ = r < 1, we have 

( 4 . 2 3 ) 1 -
T T 

< l/'WI < 1 + (71+1) 

5. Radii of starlikeness and convexity 

THEOREM 6 . Assume that the function f(z) be in the class Rn,c- Then 
f(z) is starlike of order g (0 < g < 1) in the disc \z\ < ri(n,c,g), where 
r\(n, c, q) is the largest value for which 

c(2-f>) , ( l - c X f c - e ) . ! 
( 5 . 1 ) :r + 2(n + l) k6(n,k) 
for k > 3. The inequality is sharp with the extremal function 

( 5 . 2 ) fk(z) = z - -z — 
(1 -e) 

2 ( n + l ) k6(n,k) 
Proof . It suffices to show that 

z for some k. 

< 1 -g (0 < f? < 1) for \z\ < ri(n,c,g). 

Note that 

( 5 . 3 ) 
zf'(z) 

- 1 
„fc-i 

for 121 < r if and only if 

(5.4) 

„ » F f e r + S L t * - l)«tr» _ , 
< — : r—j— < 1 - g 

1 - 2ï^ry r - ££=3 a * r * 

Since f(z) is in Ä* c, by (2.1) we may take 

(1 - c)Xk ( 5 . 5 ) 

where > 0, k > 3 and 

( 5 . 6 ) 

ßfc = kë(n,k) ' 

f > < i . 
k=3 

K > 3 , 

For each fixed r, choose the positive integer ko = ko(r) for which the ex-
pression ki>6(n,eko)rko~1 m a x i m a l - Then it follows that 

(5.7) 
^ koo(n,ko) k=3 
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Hence we conclude that f{z) is starlike of order g in \z\ < r i (n , c, g) provided 
that 

(5-8) 2(n + 1) ks(n,k0) ~ 

We find the value ro = r0(n,c,g) and the corresponding integer ko(to) so 
that 

( 5 ' 9 ) 2(n + 1 ) k0S(n,k0) " 1 

Then this value ro is the radius of starlikeness of order g for functions f ( z ) 
belonging to the class 

In a similar manner, we can prove the following theorem concerning the 
radius of convexity of order g for functions from the class 

T H E O R E M 7 . Let the function f ( z ) be in the class I ? * c. Then f ( z ) is 
convex of order g (0 < g < 1) in the disc \z\ < r2(n,c,g), where r2(n,c,g) 
is the largest value for which 

for k> 3 . The result is sharp for the function f ( z ) given by ( 5 . 2 ) . 

6. T h e class R * ^ » 
Instead of fixing just the second coefficient, we can fix finitely many 

coefficients. Let R*ltCk ^ denote the class of functions in R*n c of the form 

N oo 

k=2 > k=N+1 

where ck > 0,0 < ek = c < 1. Note that R*niCki2 = R*n<c. 

T H E O R E M 8 . The extreme points of N are of the form 
N 

- c ' 

k=2 
and 

N 

^ k6(n,k)Z 

The details of the proof are omitted. 
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The characterization of the extreme points enables us to solve the stan-
dard extremal problems in the same manner as it was done for i?* jC. We 
omit the details. 
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