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3-DIMENSIONAL SPACE 

1. Introduction 
Let ( M 2 , g ) denotes a differentiable, i.e. of class C°°, complete 2-dimen-

sional manifold provided with a Riemannian metric g. We suppose that M2 

admits a (global) polar, geodesic coordinate system (u, v) in the following 
sense. The metric g can be written in the form 

(1.1) ds2 = du2 + B2(u,v)dv2, 0 < u < oo, 0<v<2ir, 

where (see [1], p. 79) 

(1.2) B(0, v) = 0, B'{0, v) = 1, 0 < v < 2tt. 

The prime denotes differentiation with respect to u. We extend in (1.1) the 
variable u from 0 < u < o o t o - o o < u < o o b y means of the equivalence 
relation defined on pairs (u, v) by 

(1.3) (~u,v) « (w,(v + 7r)mod27r), u ± 0, 0 < v < 2ir, 

and 

(1.4) ( 0 , w i ) » ( 0 , « 2 ) , 0<VUV2<2TT. 

More generally, if 

(1.5) B(UQ,V) = 0, —oo < UQ < oo, Uo = const, 0 < v < 27t, 

then we extend the equivalence relation defined by (1.3), (1.4) setting 

(1.6) (uo — u, v) « («o + w, (v + 7r)mod27r), u^uq, 0<V<2x, 

and 

(1.7) (u0,vi) w («0,^2)5 0 < vi,v2 < 2n. 
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We suppose that the function B(u, v) takes the same value at equivalent 
pairs (u, v), — oo < u < oo, 0 < v < 2w. 

If we consider the ratio of the length of an arbitrary subarc [i>i, V2] C 
[ 0 , 2 i t ) , v \ < V2, of an infinitesimal geodesic circle u + uq = u±,ui u0, with 
center ( U q , v ) < M2, 0 < v < 2if, such that (1.5) holds and of the length 
of the same subarc of an infinitesimal circle with center at the origin of the 
tangent plane to M2 at (uo,v) < M2, 0 < v < 2w, with the same radius 
u, u 0, we get 

(1.8) |B'(«0,t7)| = 1, 0<v<2n. 

Thus, (1.5) implies (1.8). 
Every equivalence class of pairs (u, v) defines a point of M2 and only 

these equivalence classes define points of M2. An equivalence class of pairs 
(uq,v), —00 < uo < 00, 0 < v < 2w, such that (1.5) holds is called a pole 
of the polar, geodesic coordinate system (u,v). Thus, (0, v), 0 < v < 2ir, 
and pairs equivalent with (0, v) by means of (1.6) define a pole of (u,v). It 
does not lead to confusion, if we denote a point of M2 by its representative 
(«1,01) and write (u\,vi) 6 M2. In particular, in the following (0, v) € M2, 
0 < v < 27T, is a pole of (u, v). 

In the following we suppose that the poles of (u, v) are the only points 
of M2 at which B(u, v) is zero. 

Every pole ( u o , v ) € M2, 0 < v < 2tt, is isolated. Indeed, let us assume 
indirect that there exists a sequence (i/fc, v) £ M2, 0 < v < 2w, k = 1 , 2 , . . . , 
of poles of («, v) such that limfc-^x, Uk = Wo, Uk ^ uq. We have 

]im B(uk,v)~ B(u0,v) _ Q 
fc—• 00 Uk — U() 

contrary to (1.8). 
For every point different from a pole we have B(u, v) 0, and therefore 

from (1.2) it follows that there exists a number Uo > 0 such that 

(1.9) B(u, v) > 0, 0 < u < no, 0 < v < 2tt. 

If (uo, v) £ M2, 0 < v < 27r, is a pole of (u, v), then from (1.9) it follows 

BM-B{u0,v)< 0 < u < u ^ Q<v<2.w 

U — Uo 

From (1.8) and (1.10) it follows 

(1.11) B'(uo,v) = - 1 , 0 < u < 2tt. 

The curves v = vq, 0 < vq < 2ir, are geodesic lines on M2. The curves 
u = ui, 0 < u\ < uo, are geodesic circles and «1 is the radius of such a 
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circle. By D2(u\) C M2 we denote a (geodesic) disk bounded by the circle 
u = u\. We denote 

(1.12) £>(«i) = i?2(«i) \ {(0,«)}, 0 < v < 2n. 

In Section 2 we characterize complete, 2-dimensional manifolds which admit 
a polar geodesic coordinate system (Theorem 2.1). In Section 3 by means 
of the curvature and torsion functions of the geodesic circles u = const 
and geodesic lines v = const, 0 < v < 2n, we derive a system of partial 
differential equations (3.11) which define isometric immersions of D(u\) C 
M2, 0 < «i < uo, in the Euclidean 3-dimensional space E3 (Theorem 3.1). 
In Section 4 we investigate the system of partial differential equations (3.11) 
at the pole (0, v) £ M 2 , 0 < v < 27T. We prove that the torsion function of an 
infinitesimal geodesic circle u = u\,u\ —>• 0, is defined by w(0,u) = | ( x i — 
X2)sm2v, 0 < v < 27r, where x 1 ?x2 are principal curvatures of a surface 
x(D2(ux)) C E3 at the pole (0 ,v) G M2, 0 < v < 2TT, for v = 0 and v = f 
respectively (Theorem 4.1); x denotes an isometric immersion of D2{u\) in 
E 3 . In Section 5 we investigate surfaces of negative Gauss curvature in E 3 by 
means of the system (3.11). We get an unexpected result which asserts that 
every solution of (3.11) defined on the whole of M2 \ {(0,v)}, 0 < v < 2n, 
has a singulatiry at (0,v) 6 M2 (Theorem 5.1). This implies e.g. that there 
does not exist a proof of the theorem of Hilbert [3] by means of (3.11). In 
Section 6 examples are presented. 

2. Complete 2-dimensional manifolds with a polar, geodesic 
coordinate sys tem 

We have the following 

T H E O R E M 2 . 1 . Let (M2,g) denote a complete Riemannian manifold re-
ferred to polar, geodesic coordinates (u,v) such that (1.3) and (1.4) hold and 
g is defined by ( 1 . 1 ) . Then the coordinate system (u, v) has at most 2 different 
poles. If (u,v) has one pole (0,v) 6 M2, 0 < v < 2ir, then M2 is diffeomor-
phic with the Euclidean plane E2. If (u,v) has 2 poles (0, v),(uo,u) € M 2 , 
0 < v < 27T, then M2 is diffeomorphic with the 2-dimensional sphere S2 and 
(u,v) satisfies (1.6), (1.7), where (UQ,V) £ M2, 0 < v < 2ir, denotes the 
representative of the second pole with the smallest UQ > 0. 

P r o o f . Let us suppose that (0,u) € M 2 , 0 < v < 2n, is the only pole 
of (u,v). By E2 we denote the Euclidean plane referred to polar coordi-
nates (u,v) with the identifications (1.3), (1.4). We define M2 —>• E2 setting 
that corresponding points have the same coordinates. This is a diffeomor-
phism, analytic if B(u, v) is analytic; otherwise M2 cannot be a complete 
manifold. 
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Let us suppose that besides (0, v) e M2, 0 < v < 2ir, there exists a 
further pole £ M2, 0 < v < 2T, U0 £ 0, of (u, v). Setting in (1.6) 
Uo = 0, u = uo, we get 

(2.1) ( -«o , v) ~ («o> + 7r)mod27r), 0 < v < 2ir. 

If v varies from 0 to 27r, then (v + 7r)mod27r also varies from 0 to 2ir and 
from (1.7) it follows 

(2.2) (u0,v) fa (u0 ,(v + 7r)mod27r), 0 < v < 2w. 

From (2.1) and (2.2) it follows 

(2.3) (-u0,v) « (u0,v), 0 < v < 2tt. 

We can set therefore «o > 0 and in the following UQ denotes the smallest 
positive number such that (1.7) holds. Let us suppose inductively 

(2.4) (0 ,®)» (2Jfetio,t/), 0 < v < 2ir, k = 0, ±1, ± 2 , . . . , 

(2.5) (uo,t>)«((2fc + l)«o,t;). 

Setting in (1.6) u = (2k + l)«o we get 

(2.6) (-21fctto,t;)» ((2*r + 2)«o,(© + 7r)mod27r), 0 < v < 2tt. 

From (2.3) applied to 2kuo and (1.7) it follows by (2.6). 

(2.7) (2kuo,v) ss ((2k + 2)u0,v), 0 < v < 2x. 

This proves (2.4), and (2.5) is similarly proved. Let us suppose indirect 
that there exists a further pole («i ,v) € M2, 0 < v < 27r, of (u, v) such 
that U\ is the smallest number with the property U\ > UQ > 0. There 
exists a non negative integer k such that (2k + l)ifo < ui < (2k + 2)UQ or 
(2k + 2)uo < Ui < (2fc + 3)«o. In the first case we have — UQ < U2 < 0, where 
u-i = (2k + l)uo - «1- By (1.6) we get 

(2.8) ((2k + l)u0-u2,v) » ((2& + l)u0 + u2 , (u + 7r)mod27r), 0 < v < 2%. 

Hence 

(2.9) (ui,v) ~ (2(2k + l)uo — «i, (v + 7r)mod27r), 0 < v < 2w, 

From (1.7) applied to the left side of (2.9) (see (2.2)) and (2.9) it follows 

(2.10) (2(2Jfe + l)«o - tti, (t> + 7r)mod27r) w (2(2k + l)u0 - «1,») 
= ((2k + 1)«0 + u2,v), 0 < v < 2tt, 
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and 2ku0 < u3 < (2k + 1 )u0, where u3 = (2k + 1)«0 + «2- From (2.9) and 
(2.10) it follows 

(2.11) (ui,v) « (u3,v), 0 < v < 2 ? r . 

Therefore, (113, v) G M2, 0 < v < 2n, is a further representative of the pole 
defined by («1, v) G M2, 0 < v < 2n, and > u3 > 0. This contradicts the 
definition of and therefore (0, v), (u0, V) £ M2, 0 < v < 2ir, are the only 
poles of (u,v). The proof in the second case is the same. 

By 

ti^ 7r 
(2.12) dan = du2 + - 4 sin2 —udv 2 , - 0 0 < u < 00, 0 < v < 27r, 

7T Uo 

we denote the Riemannian metric of the sphere 5'2(3^L) with radius ^ writ-
ten in a polar, geodesic coordinate system (u,v) with poles (0, v), (uo, v) G 

0 < v < 2TT, such that the identifications (1.3), (1.4), (1.6), (1.7) 
hold. We define M 2 —• S 2 ( ^ ) setting that corresponding points are defined 
by the same equivalence classes of coordinates of (u, v). This is a diifeomor-
phism onto the sphere, analytic if B(u, v) is analytic. This ends the proof. 

The Gauss curvature of (1.1) has the form 

We have the following 

T H E O R E M 2 . 2 . By the assumptions of Theorem 2 . 1 , if 
1311 nil 

/ \ _D O , -D N 
(2.14) —— < — c respectively — > c , c > 0, 

B B 
then 

(2.15) B(u, v) > ^shcu 

and M2 is diffeomorphic with E2 respectively M2 is diffeomorphic with the 
sphere S2. 

P r o o f . From the first inequality of (2.14) it follows 

(2.16) B" - c2B = 7 , 7 ( u , v) > 0. 

The solution of (2.16) has the form 

1 1 r 1 r 
(2.17) B — -shcu H — s h c u I jchcTjdr] chcu | shcqdrj f* (* *J s* U 



30 M. R o c h o w s k i 

and 
u u 

(2.18) B' — chcu + chcu J jcticr/dr) — shcu J" 7shcqdr/. 

0 0 

Since chcu > shcu, it follows 

u u 

(2.19) f = chcu J jchcydj) — shcu J f shcqdr) >Q. 

0 0 

From (2.18) and (2.19) follows 

u ^ " 1 
(2.20) B = f B'dr] = -shcu + J f d t j > -shcu. 

0 C 0 C 

Hence, (2.15) is proved, and therefore (u,v) has a single pole (0, v) £ M2, 
0 < v < 2x. Now, the first par t of Theorem 2.2 follows from the first par t 
of Theorem 2.1. 

From the second inequality of (2.14) it follows 

(2.21) B" + C2B = 7 , 7 ( t t , t ? ) < 0 . 

The solution of (2.21) has the form 

1 . 1 . r 1 r 
(2.22) B = - sin cu + - sin cu / 7 cos c^dr; cos cu I 7 sin cqdri. 

c c J c J 

0 0 

From (2.22) and 7 < 0, it follows 

n 
7T 1 r 

(2.23) B ( - , v ) = - J •y s'm cudu < 0. 
c c 0 

From (1.9) and (2.23) it follows tha t there exist numbers 0 < UQ < 
0 < VQ < 2?r, such tha t B{UQ,VQ) = 0, and therefore by our assumption 
B(uo,i>) = 0 for every v, c < v < 2n. Hence, it follows tha t (uo,v ) G M 2 , 
0 < v < 27r, is a second pole of the coordinate system (u, v). Now the second 
par t of Theorem 2.2 follows from the second part of Theorem 2.1. This ends 
the proof. 

The assertion of the second part of Theorem 2.2 is the same as in the 
theorems of Berger, Klingenberg and Toponogov (see [2], §§7.3, 7.8) in the 
case n = 2. However the assumptions in these theorems are entirely different 
f rom the ones in Theorem 2.2. 
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P R O P O S I T I O N 2 . 1 . By the assumptions of Theorem 2 . 1 , if the Gauss cur-
vature of {1.1) satisfies 

(2.24) K(u,v)<0, 

then M2 is diffeomorpgic with E2, 

(2.25) lim (B(u, v) - u) = oo U—+-00 

and B(u, v) is a concave function for every v, 0 < v < 2tt. If 

(2.26) K(u,v)> 0, ! i m % ) ) ) = 0 11—•oo 

then M2 is diffeomorphic with E2, 

(2.27) lim (u — B(u, v)) = oo 
u—+oo 

and B(u, u) is a convex function for every v, 0 < v < 2n. 

P r o o f . In the case (2.24) we prove at first that 

(2.28) B"(u, v) > 0 for u> 0, B"(0,») = 0, 0 < v < 2TT. 

From (1.2), (1.9), (2.13) and (2.24) it follows that there exists a number 
uq > 0 such that 

(2.29) B"(u, v) > 0 for 0 < u < «o, B"(0, v) = 0, 0 < v < 2TT. 

Let us suppose indirect that uo < oo is the greatest number such that (2.29) 
holds. From (2.29) it follows that B(u, v) is a concave function for 0 < u < uo 
and fixed v, 0 < v < 2ir, and since i?(0, v) = 0 it follows 

(2.30) B(u0,v) > 0 , 0 < v < 2TT. 

From (2.13), (2.24) and (2.30) it follows 

(2.31) B"(u0, v) > 0 , 0 < v < 2x, 

contrary to the definition of uo. This proves (2.28). From (1.2) and (2.28) it 
follows 

(2.32) f ( u ) = B(u, v) - u > 0 for u > 0, / (0 ) = 0, v = const, 0 < v < 2TT. 

Since f"(u) = B"(u,v) > 0 for u > 0, it follows that f(u) is a positive 
concave function for u > 0. Hence, f(u) tends to infinity with u oo, and 
(2.25) follows. From (2.30), where uq > 0 is arbitrary, it follows that the 
coordinate system (u, v) has a single pole (0,u) 6 M2, 0 < v < 2ir, and by 
Theorem 2.1 it follows that M2 is diffeomorphic with E2. 
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In the case (2.26) we have 

(2.33) B(u, v) > 0 for every u > 0, 0 < v < 2ir. 

Let us suppose indirect that there exists a number UQ > 0 such that B(UQ,V) 
= 0, 0 < v < 2ir, then (u,v) has 2 different poles, and by Theorem 2.1 M2 

is diffeomorphic with the sphere S2. Since S2 is compact it follows from the 
inequality (2.26) that there exists a constant A > 0 such that K{u, v) > A 
for every point (u, v) € M2 contrary to the second condition in (2.26). From 
(2.13), (2.26) and (2.33) it Mows 

(2.34) B"(u,v) < 0 for u > 0, B"(0,u) = 0, 0 < v < 2tt. 

From (1.2) and (2.34) it follows 

(2.35) g(u) = u- B(u, v) > 0 for u > 0, 5(0) = 0, v = const, 0 < v < 2ir. 

Since g"{u) = —B"(u,v) for u > 0, it follows that g(u) is a positive con-
cave function for u > 0, and therefore g(u) tends to infinity with u 00. 
Hence, (2.27) follows, and from (2.33) and Theorem 2.1 it follows that M 2 

is diffeomorphic with E2. This ends the proof. 

3. A system of partial differential equations 
The differentiation with respect to Bdv we mark by a dot. We assume 

K(u,v) ^ 0 for every point (u, v) £ M2, where K(u,v) is the Gauss curva-
ture (2.13). 

Let 

(3.1) z : D(u0) E\ D(u0)cM2, u0 > 0, 

denotes an isometric immersion, where D(UQ) is defined by (1.12). By E\, 
62, 63 we denote the unit vectors of the Frenet frame of a curve x(u, v), u = 
const. The unit tangent vector t to the curve x(u,v),v = const, can be 
written in the form 

(3.2) x' = t = — e<i cos <p — e3 sin ip, 0 < ip < 2n. 

By the Frenet formulas we have 

(3.3) (x')" = f = k cos (pe 1 + (w + <p)(e2 sin <p — e3 cos <p), 

where k(u, v), w(u, v) denote the curvature and torsion function of the curve 
x(u,v),u — const, respectively. On the other hand we have 

B' 
(3.4) x = ei and it follows e\ — —-jrei + 
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From (3.3) and (3.4) it follows 

B' 
( 3 . 5 ) k cos tp=—, e[ = (w + (p)(e2sm(p - e3cos(p). 

B 

We have k(u, v) > 0. Indeed, we have k(u, v) > 0. Let us suppose indirect 
that there exists a point (u,v) € D(u0) such that k(u,v) = 0. Then from 
(2.13) and the first formula of (3.5) we get by differentiation with respect 
to u 

(3.6) 
B' 

k' cos c¿> = — / 0. 
B 

From (3.6) it follows k'(u, v) ^ 0, and therefore there exists such a number 
Au 0 that k(u + Au, v) < 0. This contradiction proves that k(u, v) > 0. 
Now from (1.9) and the first formula of (3.5) it follows 0 < <p < f . 

Since e2,e3 are unit vectors, it follows 

(3.7) e'2 = ae3 + ßxei, e'3 = f e 2 + ¿id-

We have a + 7 = (e2 • e3) ' = 0. From the second formula of (3.5) and (3.7) 
it follows 

( 3 . 8 ) /3-i+ (w + tp) sin (p = ( e i - e 2 ) ' = 0 , ¿1 - ( w + <p)cos(p = (ei-e2)' = 0. 

Thus, we have 

(3.9) a — —7, / ? i = / ? sin 7 , 81 = -(3cos(p, w + ip + f3 = 0, 

and (3.7) can be written in the form 

(3.10) e'2 = ae3 + /? sin (pe\, e'3 = -ae2 - ¡3 cos ipe\. 

T H E O R E M 3 .1 . For every isometric immersion ( 3 . 1 ) the functions k, w, 
(p, a, ¡3 satisfy the following system of partial differential equations 

B' 

(3.11) 

ßsin (p + ß cos ip = k' + k—, 
B 

P r o o f . We have 

(3.12) 

ß cos Kp + ß2 sin (p = ak, 

• »B' , B' a + /?— = w + w—, 

B' 
w + (p + ß = 0 , kcos ip " —. 

B 

(¿i) ' = - f ¿ i + (ei )•• 
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From (3.10), (3.12) and the Frenet formulas it follows 

B' 
(3.13) (ei)" = k—e2 + k'e2 + ake3 + psm<pe1. is 
Differentiating the second formula of (3.5) with respect to Bdv and using 
Frenet formulas we get 

(3.14) {e\y = (w + <p)'(e2 sin <p - e3 cosy?) 

+(w + tp)[{—ke i + u;e3)siny5 + e2<pcos<p + wcos<pe2 + (¿sin ^pez]. 

The comparison of coefficients by e\,e2,e3 of (3.13) and (3.14) leads to the 
first two equations of (3.11) and to the first equation in the last row of 
(3.11). 

We have 

(3.15) {e2)' = -^e2 + (e'2y. 

Applying Frenet formulas to the left and right side of (3.15) we get 

(3.16) (¿2)' = -k'ex - ke'l + w'e3 + we'3, 
jgl jjt jjl 

(3-17) - — e 2 + {e'2y = k—ei - w—e3 + (e'2)\ 

From (3.10), (3.15), (3.16), (3.17) and the Frenet formulas, it follows 

B' B' 
(3.18) ae3 — awe2 + $sm ipei + (3(pcos<pe\ + ¡}ksunpe2 + k—e 1 — w—e3 B B 

= —k'e 1 — k(w + <fi)(e2 siniy? — e3 cosy) + w'e3 — w(ae2 + /3cos<pei). 

The comparison of coefficients by ei,e2,e3 in (3.18) leads to the first and 
third equations of (3.11). The second equation of the last row of (3.11) is 
defined by the first formula of (3.5). This ends the proof. 

From (3.2) and (3.10) it follows 

(3.19) t' = (ip' + a)(e2 sin <p — e3 cos (p) = xn, 

where x — tp' -h a is the curvature function of the curve x(u, v), v = const, 
and n denotes the principal normal of this curve. The principal normal n 
coincide with the normal vector to the surface x(D(uo)) at x(u, v). We have 

(3.20) n' = (<p' + a)(e2 cos <p + e3 sin <p) + f5e\ = -xt + (3e\. 

From (3.20) it follows that ¡3 is the torsion function of the curve x(u, v), v = 
const, and e\ is the binormal vector of this curve. Thus, (3.2), (3.19), 
(3.20) and the second formula of (3.5) are the Frenet formulas of the curve 
x(u, v), v = const, 0 < v < 2tt. 
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From (3.2), (3.4) and (3.10) it follows that the second quadratic form of 
(3.1) has the form 

(3.21) n.d2x = ((p1 + a)du2 + 2B(w + cp)dudv + B2k sin <pdv2. 

4. The system (3 .11) at the pole (0, v) G M2, 0 < v < 2?r 
In this section we assume that (3.1) is regular also at the pole (0,v) G 

M2, 0 < v < 27r, i.e. that there exists an isometric immersion 

( 4 . 1 ) x : D2{UQ) —• E3, D2(U0)CM2. 

From (1.2), (1.9) and the second equation of the last row of (3.11) it follows 

(4.2) lim k(u, v) = oo, 0 < v < 2ir. 
u—>0 

The function k cos ip is the geodesic curvature of x(u,v),u = const, and 
A;siny> is the (first) normal curvature of X(D2(UQ)) in the direction tangent 
to this curve at (U, V) 6 D2(UQ). By X\, we denote the principal curvatures 
of the surface x(D2(u0)) at (0,u) G M 2 , 0 < v < 2x, and v = 0, v = f define 
the corresponding principal directions at (0,u) G M2, 0 < v < 2n. We have 

(4.3) lim k sin <p = cos2 v + XX2 sin2 v, 0 < v < 2w. . u-+0 

From (4.2) and (4.3) it follows 

(4.4) lim <p(u, v) = 0, 0 < v < 2-K. 

From (1.2), (1.9) and (4.4) it follows 

sin (D B^ 
(4.5) lim k sin (p = lim — = w'(0,?;), 0 < v < 2x. 
v ' u—o r u-+o B cos ip v ' ~ 

From (4.3) and (4.5) it follows 

(4.6) y/(0, v) = x\ cos2 v + x2 sin2 v, 0 < v < 2it. 

By (3.19) is x = (p' + a the (second) normal curvature of x(B2(u0)) C E3 in 
the direction tangent to x(u, v), v — const, at the point (u, v) G M2. Hence, 
we have 

(4.7) <¿>'(0, v) + a(0, v) = X\ sin2 v + x2 cos2 v, 0 < v < 2k. 

From (4.6) and (4.7) it follows 

(4.8) a(0,v) = - ( * i - x 2 ) cos 2v, 0 < v < 2tt. 

We have the following 
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THEOREM 4.1. For every isometric immersion (4.1) we have 
3 

(4.9) t o ( 0 , t 7 ) = - ( * i - * 2 ) s i n 2 t 7 , 0 < v < 2tt, 

(4.10) /?(0,t7) = sin 2v. 

P r o o f . We have by (4.6) 

( 4 . 1 1 ) l i m (P(u, VQ) = l i m u—*o ' u-i-o B(u, vo)dv 

d<p'(o,v) 
dv 

V=V0 dv\u->oB(u,v o) 

= -(•*! - X2) s i n 2VQ, 0 < V 0 < 2TT. 

V=Vo 

v=v0 

Since jd(u, v) is the torsion function of x(u, v), v = const, at the point (u, v) £ 
M2 it follows that /?(«, v) together with their derivatives with respect to u 
exists at (0, v) £ M2 for every v, 0 < v < 2ir. Hence, by (4.11) from the first 
equation of the last row of (3.11), it follows 

(4.12) lim (w + <p + /?) = w(0, v) - (xi - x2) sin 2v + (3(0, v) = 0. 

From (4.12) it follows that a finite limit of w{u, v) at (0, v) £ M 2 , 0 < V < 2?r, exists. 
The third equation of (3.11) can be written in the form 

(4.13) + 2 / 3 ^ + (<// + a ) ' = 0. 

From (4.13) we have 

(4.14) lim ( £ / ? ' + / ? £ ' + — (^ ' + a)) = 0. 
u - + 0 ov 

From (1.2), (4.7) and (4.14) it follows (4.10). From (4.12) and (4.10) it 
follows (4.9). This ends the proof. 

R e m a r k 4.1. The formula (4.9) can be proved directly, applying the 
known formula of the torsion function to the curve x(U, v), u = UQ, UQ > 0, 
Uo 0. The formula (4.10) is a known theorem of O. Bonnet. 

5. Complete surfaces of negative Gauss curvature in Euclidean 
3-dimensional space 

Let k,w,(p,a,fi denote a solution of the system (3.11) in the disk 
D2(UQ) C M2. By the fundamental theorem of surfaces theory the first 
quadratic form (1.1) and the second quadratic form (3.21) define (up to mo-
tions of E3) a unique surface x(D2(ua)) C E3 for sufficiently small u0 > 0. 
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The equation of lines of curvature of x(D2(u0)) C E3 has the form 

( 5 . 1 ) (3du2 + B{{ip' + a ) - k sin (p)dudv - B2(3k sin <pdv2 = 0 . 

From the first two equations and the second equation in the last row of the 
system (3.11) , it follows the Gauss equation 

B" 
(5.2) /32 = — + {iff + a)k sin <p. 

a 

We have the following 

LEMMA 5 .1 . If the Gauss curvature ( 2 . 1 3 ) is negative for all (u,v) G 
D2(UO), then there exists a number u\, 0 < u\ < UQ, such that the 2 geodesic 
lines x(u, v), v — 0, v — y, — u\ < u < u\, are plane lines of curvature. 

P r o o f . From (4.10) it follows that there exists a number u\, 0 < u\ < uo, 
such that for every u, 0 < u < Ui, there exist 4 points (u,Vi) G D 2 (u\) , 
i = 1 , 2 , 3 , 4 , such that (3(u,Vi) = 0 and -¡^(u,Vi) ^ 0. From the implicit 
function theorem it follows that for every u, 0 < u < there exist numbers 
0 < U3 < U2 < u\ such that < u < u2 and differentiate functions 
Vi = Vi(u), U3 < u < U2, Vi(u) = Uj, such that fl(u,Vi(u)) = 0, U3 < 
u < U2, i = 1 , 2 , 3 , 4 . From (2.13) and (5.2) it follows that <p' + a and 
ksirnp are principal curvatures at points (u,v) 6 D2(u\) C M2 such that 
fl(u,v) = 0, i.e. {{ip' + a) — fcsinip) ^ 0. Hence, from (5.1) it follows dv = 0 
for du = A u = «2 — u3 > 0 , and therefore V{(u) = V{ for «3 < u < U2, 
1 = 1 , 2 , 3 , 4 . This means that the line of curvature which passes through 
the point x(u,Vi) G X(D2(UI)), w3 < u < U2, is tangent to the geodesic line 
x(u,v), v = Vi, at the point x{u,v{) G X(D2(UI)). Therefore the direction 
of the geodesic line x(u,v), v = V{, at x(u,Vi), U3 < u < U2, is a principal 
direction, and it follows that the geodesic line x(u,v), v = Vi, u$ < u < u 2 , 
is a plane line of curvature (f3(u,Vi) = 0) for i = 1 , 2 , 3 , 4 . By the indirect 
argument we extend the curve x(u,v), v = Vi, U3 < u < U2, to a plane line 
of curvature x(u,v), v = Vi, 0 < u < u\. Since v = 0,v = f define the 
principal directions at (0 ,u) G D2{u 1), 0 < u < 27r, it follows V{ = 0 or 
Vj = j or Vi = 7T or Vi = |7r, i = 1 , 2 , 3 , 4 . Therefore we can set Vi = 0, 
v2 = f , v 3 — 7r, v4 — |7r. From this with the use of (1.3) Lemma 5.1 follows. 

We have the following 

THEOREM 5 .1 . Let us suppose that the Gauss curvature ( 2 . 1 3 ) is negative 
for every point (u,v) G M2. For every solution k,w,(p,a,f3 of the system 
( 3 . 1 1 ) on M2 \ { ( 0 , v ) } , 0 < v < 27T, and every isometric immersion 

(5.3) 2/ : M —> E3, M CN2\ { (0 , <;)}, 0 < v < 2tt, 
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of an open, connected set M, such that ( 1 . 1 ) and ( 3 . 2 1 ) are the first and 
second quadratic forms of (5.3) respectively, there does not exist an extension 
of (5.3) to an isometric immersion 

( 5 . 4 ) x : M2 E2, 

such that ( 1 . 1 ) and ( 3 . 2 1 ) are the first and second quadratic forms of (5.4) 
respectively. 

P r o o f . Let us suppose indirect that (5.4) exists. By Lemma 5.1 there 
exists a number Ui > 0 such that x(u,v), v = 0, v = f , —U\ < u < « i , are 
plane lines of curvature on x(M2) C E2. By the theorem of Hadamard ([2], 
§7.2) the point (« i , 0 ) G M 2 can be chosen as a new pole of a new polar, 
geodesic coordinate system of M2. Applying Lemma 5 . 1 to the system ( 3 . 1 1 ) 
written in the new polar geodesic coordinate system, it follows that the plane 
line of curvature x{u,v), v = 0, 0 < u < u\, can be prolonged to a plane 
line of curvature x(u,v), v = 0, 0 < u < u\ + U2, «2 > 0. In this way, 
by the indirect argument it follows that the curves x(u,v), v = 0, v = f , 
—oo<u<oo, are plane lines of curvature which together are geodesic lines 
on the surface x(M2) C E3. Since, by the theorem of Hadamard the pole of a 
polar, geodesic coordinate system can be chosen arbitrary on M2, it follows 
tha t every line of curvature on x(M2) is a plane geodesic line. Therefore 
the Riemann metric of M2 induced by the isometric immersion (5.4) can 
be written in the form ds2 = dw2 + dw\, where ( ^ 1 , ^ 2 ) are parameters 
on the lines of curvature. Hence, x(M2) is a surface with Gauss curvature 
K(w\, W2) — 0 contrary to our assumption. This ends the proof. 

COROLLARY 5 . 1 . If the Gauss curvature ( 2 . 1 3 ) is negative for every point 
(u,v) € M2, then every solution of the system ( 3 . 1 1 ) on M2 \ { ( 0 , V)} , 
0 < v < 2ir, has a singularity at the pole (0,U) G M2, 0 < v < 2TT, in 
the following sense. For every UQ > 0 an isometric immersion (3.1) such 
that ( 1 . 1 ) , ( 3 . 2 1 ) are the first and second quadratic forms of x(D(uo)) C 
E3 cannot be prolonged to an isometric immersion ( 4 . 1 ) . Indeed, otherwise 
applying the global version of the fundamental theorem of surface theory to 
( 1 . 1 ) and ( 3 . 2 1 ) we get ( 5 . 4 ) . 

R e m a r k 5.1. From Theorem 5.1 it follows that an isometric immersion 
of a connected manifold M2 provided with a complete Riemannian metric 
g defined by ( 1 . 1 ) , of negative Gauss curvature at every point of M2 cannot 
be a solution of ( 3 . 1 1 ) . This implies that by means of ( 3 . 1 1 ) we cannot 
prove e.g. that the complete Riemannian metric induced from E3 on the 
hyperbolic paraboloid z — xy and written in polar geodesic coordinates 
can be a Riemannian metric of a complete surface in E3 isometric with the 
hyperbolic paraboloid. 
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Moreover by the same reason, there does not exist a proof of the theorem 
of Hilbert [3] which asserts that the Lobachevski plane L2, i.e. B = shu in 
(1.1), cannot be isometrically immersed in E3, discussing the system (3.11). 
More generally, discussing the system (3.11) we cannot get a proof of the 
theorem of Efimov [3], which asserts that there does not exist a complete 
surface in E3 such that K(u, v) < - c 2 , c 0, (u, v) G M2. 

The attempt to get a proof of the theorems of Hilbert or Efimov by 
means of the system (3.11) fails because the theorema egregium in the polar, 
geodesic coordinate system (u, v) is reduced to the simple formula (2.13) and 
the Codazzi-Mainardi equations are identically satisfied by (3.11), they do 
not deliver a further condition in addition to (3.11). From Theorem 5.1 it 
follows that these difficulties cannot be avoided. 

6. Examples 
a) Let B(u,v) = sin«, 0 < « < 7r, 0 < v < 2n. We suppose w(u,v) = 0 

identically and ip(u,v) = ip(u). Thus from the first equation of (3.11) it 
follows 

(6.1) k(u) = d> 0, D = const. sin« 
From k cos <p = ctgu and (1.9) we get 

(6.2) D cos ip — cos u. 

If D > 1, then from (6.2) it follows 

,„ . 1 1 7T COSU 
(6.3) arccos — < <p < arccos — + —, <p = arccos , 0 < u < TT. 

The formulas (6.3) characterize the spherical surfaces of revolution of the 
elliptic type. 

If 0 < D < 1, then from (6.2) we have —D < cos u < D and therefore 
,„ ,, 7T COS« 
(6.4) arccos D <U < arccos D + —, IP = arccos . 

The formulas (6.4) characterize the spherical surfaces of revolution of the 
hyperbolic type. 

b) Let K(u,v) > c2, c / 0, w(u,v) = 0 identically, (p(u,v) = (p(u) on 
D2{UQ) C M2,U0 > 0. We suppuse tha t (U 0 ,V ) £ M2, 0 < v < 2TV, is the 

2 second pole of (u, v). Then x(D («0)) C E3 is a convex surface of revolution 
2 

with the axis of revolution passing through the poles; D (u0) denotes the 
closure of D2(uo) C M2. 

Indeed, from Theorem 2.1 it follows that M2 is diffeomorphic with S2. 
From (1.9) and (2.13) it follows that B'(u,v) is a decreasing function of u, 
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and from (1.2) and (1.11) it follows 

(6.5) - 1 < B ' ( u , v ) < l for 0 < u < u0, 0 < v < 2n. 

The system (3.11) takes the form 

B1 B' 
( 6 . 6 ) k' + k— = 0, w = a = (3 = 0, kcos(p=—. 

B B 

From (6.6) it follows 

( 6 . 7 ) C(v) cos <p(u) — B ' ( u , v ) . 
Jj\u, V) 

From (1.2) and (4.4) it follows for u = 0 and consequently for every u, 
0 < u < uo, C(v) = 1. Hence 

(6.8) k(u, v ) = ^ cos ip{u) = B ' ( u , v). 

From (6.5) and (6.8) it follows that cp(u) is defined for 0 < u < uq and 

( 6 . 9 ) B ' ( u , v ) = B ' ( u ) . 

From (6.9) it follows 
u 

(6.10) B ( u , v ) = f B'(7])dr]+D{v). 
o 

Since 5(0 , v) = D(v) = 0 it follows 

(6.11) B(u, v) = B(u), k(u, v) = — , 0 < u < u0. 
B(u) 

Since B ' ( u ) is a decreasing function such that B'(0) = 1,B'(uq) = —1, it 
follows that there exists such a number ui, 0 < u\ < uq, that B ' ( u i ) — 0. 
Therefore the function B(u) is increasing for 0 < u < u\ and decreasing 
for U\ < u < uo. Hence, (6.11) and K ( u , v ) > c2 define a convex surface of 
revolution of positive Gauss curvature. 

c) Let K ( u , v ) < - c 2 , c ^ 0 , w ( u , v ) = 0,<p(u,v) = <p(u). From (2.18) it 
follows 

(6.12) 5 ' ( t t , t ; ) > l , lim B'(u, v) = oo. 
U—+00 

The solution of the system (3.11) has the form (6.7). However because of 
(6.12) this solution has a singularity at u = 0. Indeed, from the second 
formula of (6.7) it follows 

(6.13) 1 < B ' ( u , v ) < C(v) 



Polar geodesie coordinate system 41 

and for every w0, 0 < < 27T, there exists a number «o = such that 

(6.14) B'(uo,vo) = C(vo). 

From (1.9) and (2.13) it follows that B'(u, v) is an increasing function of u. 
Therefore from (6.14) it follows 

(6.15) 1 < B'(u,v0) < C(VQ) for 0 < u < u0. 

Hence C(v0) > 1, and therefore 

(6.16) cosy(O) = c ( V o y cos<p(u0) = l . 

From the second formula of (6.7) it follows that ip(u) is a decreasing function 
such that 

(6.17) 1 < cos ip(u) < 1 for 0 < u < u0. 

From (6.16) it follows that (4.4) is not satisfied, and therefore at (0, v) 6 M 2 , 
0 < v < 27r, the solution (6.7) has a singulatiry. 

If we suppose B(u,v) = B(u) and u(vo) = const = uo > 0, 0 < v0 < 2n, 
then (6.7) define a surface of revolution. Let L(u) denotes a plane curve 
u = const, 0 < u < uq. The length of L(u) is 

2tt 
(6.18) f B(u)dv = 2 t r B ( u ) . 

o 

From the first formula of (6.7) it follows that the radius r(u) of the circle 
L{u) is equal r(u 

) = ^ M , where C = C(v0) > 1, 0 < vo < 27r. Hence 
27rB(u) > 27rr(u). This implies that in the case K(u,v) < —c2,c ^ 0, the 
solution (6.7) of (3.11) defines a surface of revolution which partly overlaps, 

d) Let 
(6.19) x : D2(u0) - E3, D2(u0) C L2, u0 > 0, 

denotes an immersion of the geodesic disk D2(UQ) of the Lobachevski plane 
L2 in E3 with the property that the geodesic circle u = UQ is isometrically 
mapped on a metric circle in E3 (or more generally on a closed plane curve 
without selfintersections). Then (6.19) cannot be an isometric immersion. 
Indeed, the length of the circle u = Uo is 2irshuo. Since (6.19) is an isometric 
mapping for u = uo, this is also the length of the metric circle (or another 
simple closed curve) x(u0,v), 0 < v < 27i\ For Au > 0 sufficiently small 
there exists a tubular neighborhood of a:(«o,u), 0 < v < 2t such that the 
disks with centers X(UQ,V), 0 < v < 27r, have radius Aw. The length of 
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x(uo — A u , v), 0 < v < 2w, is 2wsh(uo — A u ) . Let e(v), 0 < v < 2K, denotes 
a vector field of unit vectors along the curve x(uo, v), 0 < v < 27r, such that 
dx(uo,v) • e(v) = 0. Then a;(«0)V) + A u e ( v ) , 0 < v < 2K, is a closed curve 
contained in the toroidal surface defined as the boundary of the tubular 
neighborhood of x(uo, v), 0 < v < 2TT. The length of the shortest closed surve 
ofthe form £(«()> ̂ )+Aue(t;),0 < v < 27T, is 2ir(shuo—Au) > 2i:sh(uo—Au). 
Hence, (6.19) cannot be an isometric immersion. 

References 

[1] W. B l a s c h k e , K. L e i c h t we iß , Elementare Differentialgeometrie, Springer Verlag, 
Berlin, Heidelberg, New York (1973). 

[2] D. G r o m o l l , W. K l i n g e n b e r g , W. M e y e r , Riemannsche Geometrie im Großen, 
Sringer Verlag, Berlin, Heidelberg, New York (1968). 

[3] M. R o c h o w s k i , Special problems of surface theory in the Euclidean 3-dimensional 
space, Demonstratio Math. 25 (1992), 1-23. 

Address of Author: 
Fleiner Str. 76c 
70437 STUTTGART, GERMANY 

Received June 12, 1995. 


