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1. Introduction

Let (M2, g) denotes a differentiable, i.e. of class C*°, complete 2-dimen-
sional manifold provided with a Riemannian metric g. We suppose that M?
admits a (global) polar, geodesic coordinate system (u,v) in the following
sense. The metric ¢ can be written in the form

(1.1) ds® = du® + B*(u,v)dv?, 0<u<oo, 0<wv<2rm,
where (see [1], p. 79)
(1.2) B(0,v)=0, B'(0,v)=1, 0<v<?2r.

The prime denotes differentiation with respect to u. We extend in (1.1) the
variable u from 0 < v < 00 to —00 < u < 00 by means of the equivalence
relation defined on pairs (u,v) by

(1.3) (—u,v) = (u,(v+m)mod27), u#0, 0<v<2r,
and
(1.4) (0,v1) = (0,v2), 0< v,ve <27

More generally, if

(1.5) B(ug,v) =0, —o0 < up<00, u=const, 0<v<2n,

then we extend the equivalence relation defined by (1.3), (1.4) setting

(1.6)  (uo— u,v) = (up + u,(v+ 7)mod27), u#ug, 0<v<2m,
and

(17) (UO,UI) ~ (UO,’UQ), 0< U1,V < 2T.
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We suppose that the function B(u,v) takes the same value at equivalent
pairs (u,v),—00 < u < 00, 0 < v < 27,

If we consider the ratio of the length of an arbitrary subarc [v;,v2] C
[0,27), v1 < vq, of an infinitesimal geodesic circle u+ug = uy, Uy — up, with
center (ug,v) < M?, 0 < v < 2r, such that (1.5) holds and of the length
of the same subarc of an infinitesimal circle with center at the origin of the
tangent plane to M? at (up,v) < M2, 0 < v < 27, with the same radius
u,u — 0, we get

(1.8) |B'(ug,v)| =1, 0<v<2r.

Thus, (1.5) implies (1.8).

Every equivalence class of pairs (u,v) defines a point of M? and only
these equivalence classes define points of M2. An equivalence class of pairs
(uo,v), —00 < 4y < 00, 0 < v < 27, such that (1.5) holds is called a pole
of the polar, geodesic coordinate system (u,v). Thus, (0,v), 0 < v < 2,
and pairs equivalent with (0, v) by means of (1.6) define a pole of (u,v). It
does not lead to confusion, if we denote a point of M? by its representative
(v1,v1) and write (uy,v1) € M2, In particular, in the following (0,v) € M2,
0 < v < 2m,is a pole of (u,v).

In the following we suppose that the poles of (u,v) are the only points
of M? at which B(u,v) is zero.

Every pole (ug,v) € M?, 0 < v < 2, is isolated. Indeed, let us assume
indirect that there exists a sequence (ux,v) € M%,0< v < 27, k=1,2,...,
of poles of (u,v) such that limg_,o ux = ug, ux # uo. We have

fim Bk ) — B(uo,v) _
k—o0 U — Up

0

contrary to (1.8).
For every point different from a pole we have B(u,v) # 0, and therefore
from (1.2) it follows that there exists a number ug > 0 such that

(1.9) B(u,v) >0, 0<u<uy, 0<Lwv<2m.
If (up,v) € M?, 0 < v < 2r, is a pole of (u,v), then from (1.9) it follows
B(u,v) ~ B(ug,v) <0

(1.10) , O0<u<u, 0<v<2rm.
U — Up

From (1.8) and (1.10) it follows

(L.11) B'(ug,v) = -1, 0<v<2m.

The curves v = vy, 0 < vy < 2, are geodesic lines on M2. The curves
u = u, 0 < u; < ug, are geodesic circles and u; is the radius of such a
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circle. By D%(u;) C M? we denote a (geodesic) disk bounded by the circle
© = u;. We denote

(1.12) D(w) = D*(u1) \ {(0,v)}, 0<w< 2.

In Section 2 we characterize complete, 2-dimensional manifolds which admit
a polar geodesic coordinate system (Theorem 2.1). In Section 3 by means
of the curvature and torsion functions of the geodesic circles v = const
and geodesic lines v = const, 0 < v < 27, we derive a system of partial
differential equations (3.11) which define isometric immersions of D(uy) C
M?,0 < u; < up, in the Euclidean 3-dimensional space E* (Theorem 3.1).
In Section 4 we investigate the system of partial differential equations (3.11)
at the pole (0,v) € M2,0 < v < 2r. We prove that the torsion function of an
infinitesimal geodesic circle u = uy,u; — 0, is defined by w(0,v) = 3(5; —
sy)sin2v, 0 < v < 2m, where , 5, are principal curvatures of a surface
z(D*(u1)) C E® at the pole (0,v) € M?,0< v < 2r,forv=0and v= 172
respectively (Theorem 4.1); z denotes an isometric immersion of D?(u;) in
E3.1n Section 5 we investigate surfaces of negative Gauss curvature in E3 by
means of the system (3.11). We get an unexpected result which asserts that
every solution of (3.11) defined on the whole of M2\ {(0,v)},0 < v < 27,
has a singulatiry at (0,v) € M? (Theorem 5.1). This implies e.g. that there
does not exist a proof of the theorem of Hilbert [3] by means of (3.11). In
Section 6 examples are presented.

2. Complete 2-dimensional manifolds with a polar, geodesic
coordinate system
We have the following

THEOREM 2.1. Let (M?, g) denote a complete Riemannian manifold re-
ferred to polar, geodesic coordinates (u,v) such that (1.3) and (1.4) hold and
g is defined by (1.1). Then the coordinate system (u,v) has at most 2 different
poles. If (u,v) has one pole (0,v) € M2, 0 < v < 2w, then M? is diffeomor-
phic with the Euclidean plane E2. If (u,v) has 2 poles (0,v), (ug,v) € M?,
0 < v < 2w, then M? is diffeomorphic with the 2-dimensional sphere S* and
(u,v) satisfies (1.6), (1.7), where (ug,v) € M?, 0 < v < 2w, denotes the
representative of the second pole with the smallest ug > 0.

Proof. Let us suppose that (0,v) € M?%, 0 < v < 2, is the only pole
of (u,v). By E? we denote the Euclidean plane referred to polar coordi-
nates (u,v) with the identifications (1.3), (1.4). We define M? — E? setting
that corresponding points have the same coordinates. This is a diffeomor-
phism, analytic if B(u,v) is analytic; otherwise M? cannot be a complete
manifold.
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Let us suppose that besides (0,v) € M?%, 0 < v < 2, there exists a
further pole (up,v) € M?, 0 < v < 27, up # 0, of (u,v). Setting in (1.6)
ug = 0, u = ug, we get

(2.1) (—uo,v) = (ug, (v + 7)mod27), 0< v < 2m.

If v varies from 0 to 2w, then (v + 7)mod2r also varies from 0 to 27 and
from (1.7) it follows

(2.2) (uo,v) = (ug, (v + m)mod27), 0< v < 2m.
From (2.1) and (2.2) it follows
(2.3) (—uo,v) = (ug,v), 0<v<2m.

We can set therefore ug > 0 and in the following up denotes the smallest
positive number such that (1.7) holds. Let us suppose inductively

(2.4) (0,v) ~ (2kug,v), 0<wv<2r, k=0,+1,42,...,
(2.5) (uo,v) = ((2k + 1)uo, v).

Setting in (1.6) u = (2k + 1)ug we get

(2.6) (—2kuo,v) = ((2k + 2)up, (v + 7)mod27), 0< v < 2.
From (2.3) applied to 2kup and (1.7) it follows by (2.6).

(2.7) (2kug, v) = ((2k + 2)ug,v), 0< v <27,

This proves (2.4), and (2.5) is similarly proved. Let us suppose indirect
that there exists a further pole (u;,v) € M2, 0 < v < 2, of (u,v) such
that uy is the smallest number with the property u; > up > 0. There
exists a non negative integer k such that (2k 4+ 1)up < u1 < (2k + 2)ug or
(2k 4+ 2)up < uy < (2k + 3)up. In the first case we have —up < uy < 0, where
u2 = (2k + 1)ug — u1. By (1.6) we get

(2.8) ((2k+1)up —uz,v) ~ ((2k+ L)up + ug, (v+ m)mod27), 0< v < 27.
Hence

(2.9) (u1,v) = (2(2k + 1)uo — u1, (v + 7)mod27), 0< v < 2m,
From (1.7) applied to the left side of (2.9) (see (2.2)) and (2.9) it follows

(2.10)  (2(2k + l)uo — u1, (v + 7)mod27) = (2(2k + 1)up — u1,v)
= ((2k + Dup + uz,v), 0<Lv<2m,
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and 2kug < uz < (2k + 1)ug, where uz = (2k + 1)ug + uy. From (2.9) and
(2.10) it follows

(2.11) (u1,v) = (uz,v), 0<v<2T.

Therefore, (u3,v) € M2, 0 < v < 2m, is a further representative of the pole
defined by (u;,v) € M?,0 < v < 2, and u; > ug > 0. This contradicts the
definition of u;, and therefore (0, v), (4, v) € M2, 0 < v < 2, are the only
poles of (u,v). The proof in the second case is the same.

By

2

T

2.12 do? = du® + u—osin2 —udv?, —-co<u<oo, 0<w<?2m,
2 2 Ug

we denote the Riemannian metric of the sphere 52(%2) with radius & writ-

ten in a polar, geodesic coordinate system (u,v) with poles (0,v), (uo,v) €

52(%), 0 < v < 2m, such that the identifications (1.3), (1.4), (1.6), (1.7)

hold. We define M? — §2(%2) setting that corresponding points are defined

by the same equivalence classes of coordinates of (u,v). This is a diffeomor-

phism onto the sphere, analytic if B(u,v) is analytic. This ends the proof.
The Gauss curvature of (1.1) has the form

B"(u,v)

(2.13) K(u,v)=— Blu,0)

We have the following
THEOREM 2.2. By the assumptions of Theorem 2.1, if

BII 5 . BII 9
(2.14) -5 < —c* respectively — 5 >c¢, ¢>0,
then
1
(2.15) B(u,v) > zshcu

and M? is diffeomorphic with E* respectively M? is diffeomorphic with the
sphere S2.

Proof. From the first inequality of (2.14) it follows
(2.16) B" - B =7, v(u,v)>0.
The solution of (2.16) has the form

1 1 r 1 r
) B =-sh Z — =
(2.17) oS cu + cshcu 6[ ychendn cchcu (! shendn
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and
u Uu
(2.18) B' = cheu + cheu f ychendn — sheu f yshendn.
0 0
Since cheu > shceu, it follows
u u
(2.19) f = cheu f ychendn — sheu f ~shendn > 0.
0 0
From (2.18) and (2.19) follows
(2.20) B= f B'dn = l:shcu+ fu fdn > lshcu.
0 ¢ 0 S

Hence, (2.15) is proved, and therefore (u,v) has a single pole (0,v) ¢ M?,
0 < v < 27. Now, the first part of Theorem 2.2 follows from the first part
of Theorem 2.1.

From the second inequality of (2.14) it follows
(2.21) B"+ B =7, 7(u,v)<0.
The solution of (2.21) has the form

1

1 1 U u
2.22 B = —si —si dn— - i dn.
( ) csmcu+ CSIHC“J'YCOSCTI n ccoscu Offysmcn n

From (2.22) and v < 0, it follows

(2.23) B(%, v) = 7 sin cudu < 0.

ol
Sty

From (1.9) and (2.23) it follows that there exist numbers 0 < up < I,
0 < vy < 27, such that B(up,v) = 0, and therefore by our assumption
B(ug,v) = 0 for every v, ¢ < v < 2r. Hence, it follows that (ug,v) € M?,
0 < v < 27, is a second pole of the coordinate system (u, v). Now the second
part of Theorem 2.2 follows from the second part of Theorem 2.1. This ends
the proof.

The assertion of the second part of Theorem 2.2 is the same as in the
theorems of Berger, Klingenberg and Toponogov (see [2], §§7.3, 7.8) in the
case n = 2. However the assumptions in these theorems are entirely different
from the ones in Theorem 2.2.
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PROPOSITION 2.1. By the assumptions of Theorem 2.1, if the Gauss cur-
vature of (1.1) satisfies

(2.24) K(u,v) < 0,
then M? is diffeomorpgic with E2,
(2.25) ulirréo(B(u, V) —u) = 00

and B(u,v) is a concave function for every v, 0 < v < 2. If

(2.26) K(u,v)>0, lim K(u,v)=0
uU—00

then M? is diffeomorphic with E?,
(2.27) lim (v — B(u,v)) = o0

U=—+00
and B(u,v) is a convez function for every v, 0 < v < 27.

Proof. In the case (2.24) we prove at first that
(2.28) B"(u,v)>0 for u>0, B"(0,0)=0, 0<v<2r.

From (1.2), (1.9), (2.13) and (2.24) it follows that there exists a number
ug > 0 such that

(2.29) B’(u,v)>0 for 0<u<wuy, B"(0,v)=0, 0<v<2r.

Let us suppose indirect that up < oo is the greatest number such that (2.29)
holds. From (2.29) it follows that B(u, v)is a concave function for 0 < u < ug
and fixed v, 0 < » < 27, and since B(0,v) = 0 it follows

(2.30) B(up,v) >0, 0<wv<2rT.
From (2.13), (2.24) and (2.30) it follows
(2.31) B"(up,v) >0, 0<v<2m,

contrary to the definition of ug. This proves (2.28). From (1.2) and (2.28) it
follows

(2.32) f(u)=B(u,v)—u>0foru>0, f(0)=0, v=const, 0 < v < 2r.

Since f"(u) = B"(u,v) > 0 for v > 0, it follows that f(u) is a positive
concave function for u > 0. Hence, f(u) tends to infinity with « — oo, and
(2.25) follows. From (2.30), where ug > 0 is arbitrary, it follows that the
coordinate system (u, v) has a single pole (0,v) € M%,0 < v < 27, and by
Theorem 2.1 it follows that M? is diffeomorphic with EZ.
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In the case (2.26) we have
(2.33) B(u,v) >0 forevery u>0, 0<wv<2r.

Let us suppose indirect that there exists a number ug > 0 such that B(uq,v)
=0, 0 < v < 2, then (u,v) has 2 different poles, and by Theorem 2.1 M2
is diffeomorphic with the sphere §2. Since §2 is compact it follows from the
inequality (2.26) that there exists a constant A > 0 such that K(u,v) > A
for every point (u,v) € M? contrary to the second condition in (2.26). From
(2.13), (2.26) and (2.33) it follows

(2.34) B"(u,v)<0 for >0, B"(0,v)=0, 0<wv<2n.
From (1.2) and (2.34) it follows
(2.35) g(u)=u— B(u,v) > 0foru>0, g(0)=0, v=const, 0 <v<2r.

Since ¢"(u) = —B"(u,v) for u > 0, it follows that g() is a positive con-
cave function for u > 0, and therefore g(u) tends to infinity with » — oc.
Hence, (2.27) follows, and from (2.33) and Theorem 2.1 it follows that M?
is diffeomorphic with E2. This ends the proof.

3. A system of partial differential equations

The differentiation with respect to Bdv we mark by a dot. We assume
K (u,v) # 0 for every point (u,v) € M?, where K(u,v) is the Gauss curva-
ture (2.13).

Let

(3.1) z:D(w) — E3 D(ug) C M%, wp >0,

denotes an isometric immersion, where D(uq) is defined by (1.12). By e,
ez, e3 we denote the unit vectors of the Frenet frame of a curve z(u,v),u =
const. The unit tangent vector t to the curve z(u,v),v = const, can be
written in the form

(3.2) ' =t=—eycosp—ezsing, 0<p<2T.
By the Frenet formulas we have
(3.3) (z") =t = kcosper + (w + ¢)(e2 sin p — e3 cos ),

where k(u, v), w(u,v) denote the curvature and torsion function of the curve
z(u,v),u = const, respectively. On the other hand we have

!
(3.4) ¢ =e; anditfollows e] = —%el +(z').
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From (3.3) and (3.4) it follows

B . .
(3.5) kcosp = L el = (w + ¢)(eq sin @ — e3 cos ).
We have k(u,v) > 0. Indeed, we have k(u,v) > 0. Let us suppose indirect
that there exists a point (u,v) € D(up) such that k(u,v) = 0. Then from
(2.13) and the first formula of (3.5) we get by differentiation with respect

to u
I/

B
(3.6) k' cosp = i # 0.

From (3.6) it follows k'(u,v) # 0, and therefore there exists such a number
Au # 0 that k(v + Au,v) < 0. This contradiction proves that k(u,v) > 0.
Now from (1.9) and the first formula of (3.5) it follows 0 < ¢ < Z.

Since e;, e3 are unit vectors, it follows

(37) 6’2 = aez + ,3161, 65 = Yé€2 + 5161.

We have o + 7 = (e3 - e3)' = 0. From the second formula of (3.5) and (3.7)
it follows

(3.8) fr+(w+@)sing = (er-e2)' =0, 65— (w+)cosp = (e1-e;) = 0.
Thus, we have
(3.9) a=—v, [fy=0siny, 6 =-~fcosp, w+e+p=0,
and (3.7) can be written in the form
(3.10) en = aez + Osinpe;, e = —ae; — B cos pe;.
THEOREM 3.1. For every isometric immersion (3.1) the functions k, w,
@, a, [ satisfy the following system of partial differential equations
[ _ ,Bsintp+,82 cos=k' + k%’,

Bcoscp-{— B%sin ¢ = ak,
(3.11) 4

!

I
d+ﬂ%=w'+w%,

BI
w+ @+ =0,kcosp = R
Proof. We have

(3.12) @) = -2+ (.
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From (3.10), (3.12) and the Frenet formulas it follows

BI

(3.13) (1) = kf@g + k'e; + akez + Bsin pe;.
Differentiating the second formula of (3.5) with respect to Bdv and using
Frenet formulas we get
(3.14) (e}) = (w+ ¢)(e2sinp — e3cos )

+(w + @)[(—ke1 + wes) sin ¢ + ez cos p + w cos ey + Psin pes).
The comparison of coefficients by e, ez, e3 of (3.13) and (3.14) leads to the
first two equations of (3.11) and to the first equation in the last row of

(3.11).
We have
(3.15) (&) = ——62 + (e5)".
Applying Frenet formulas to the left and right side of (3.15) we get
(3.16) (&) = —k'ey — ke + w'ez + wel,
B B’ B’
(3.17) ——=ér+ (&) =k—e —w—e3+ (&)

B B B
From (3.10), (3.15), (3.16), (3.17) and the Frenet formulas, it follows

! !

(3.18) dez —awesr + B sin wey + B cos ey + Bk sin pey + k%el — ’w§€3

= —k'e; — k(w+ ¢)(ezsinp — e3 cosp) + w'eg — w(aey + B cos ey ).

The comparison of coefficients by e, e, e3 in (3.18) leads to the first and
third equations of (3.11). The second equation of the last row of (3.11) is
defined by the first formula of (3.5). This ends the proof.

From (3.2) and (3.10) it follows

(3.19) t' = ((,0' + a)(€2 sin ¢ — e3 cos ) = x»n,

where » = ¢’ + « is the curvature function of the curve z(u,v),v = const,
and n denotes the principal normal of this curve. The principal normal »
coincide with the normal vector to the surface z(D(uo)) at z(u,v). We have

(3.20) n' = (¢’ + a)(ez cosp + ez sin ) + fe; = —sxt + Pey.

From (3.20) it follows that § is the torsion function of the curve z(u,v),v =
const, and e; is the binormal vector of this curve. Thus, (3.2), (3.19),
(3.20) and the second formula of (3.5) are the Frenet formulas of the curve
z(u,v),v = const, 0 < v < 2.
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From (3.2), (3.4) and (3.10) it follows that the second quadratic form of
(3.1) has the form

(3.21) n.d’z = (¢' + a)du® + 2B(w + ¢)dudv + B*k sin pdv®.
4. The system (3.11) at the pole (0,v) € M?,0< v < 27

In this section we assume that (3.1) is regular also at the pole (0,v) €
M?,0 < v <2, ie. that there exists an isometric immersion

(4.1) x:D¥(up) — E3, D?*(u) C M2
From (1.2), (1.9) and the second equation of the last row of (3.11) it follows

(4.2) lin%) k(u,v) =00, 0<v<2m.

The function kcos¢ is the geodesic curvature of z(u,v),u = const, and
ksin ¢ is the (first) normal curvature of z(D?(ug)) in the direction tangent
to this curve at (u,v) € D?(up). By 51, 32 we denote the principal curvatures
of the surface 2(D?*(uo)) at (0,v) € M?,0 < v < 27,and v = 0,v = £ define
the corresponding principal directions at (0,v) € M2, 0 < v < 27. We have

4.3 lim ksin ¢ = s cos? v + xzysinv, 0< v < 27,
. u—0 14

From (4.2) and (4.3) it follows
(4.4) lirrh o(u,v)=0, 0<v<2r.

From (1.2), (1.9) and (4.4) it follows

. ... sing B
(4.5) 11}_1% ksing = 313%) B wosg

From (4.3) and (4.5) it follows

= (pI(O,’U), 0 <ov<L 2r.

(4.6) @'(0,v) = sy cos® v + sy sin’v, 0<v< 2m.

By (3.19) is s = ¢’ + & the (second) normal curvature of z(D%(u)) C E® in
the direction tangent to z(u,v), v = const, at the point (u,v) € M?. Hence,
we have

(4.7) ©'(0,v) 4+ a(0,v) = s sin® v + s cos’ v, 0< v < 27,
From (4.6) and (4.7) it follows
(4.8) a(0,v) = —(s — »9)cos2v, 0<v<2r.

We have the following
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THEOREM 4.1. For every isometric immersion (4.1) we have
(4.9) w(0,v) = g(xl —xy)sin2v, 0<wv<2m,
(4.10) B(0,v) = —%(xl — ) sin 2v.

Proof. We have by (4.6)

. . Op(u,v) 0 (. p(u,v)
(4.11) lim ¢(u,v0) = lim B(u,%)dv|,_,, 00 g, B(u, %)/ |,e,
!
= W = —(3 — 33)sin2vy, 0< vy < 27.

Since B(u,v)is the torsion function of z(w, v), v = const, at the point (u,v) €
M? it follows that B(u,v) together with their derivatives with respect to u
exists at (0,v) € M? for every v, 0 < v < 27. Hence, by (4.11) from the first
equation of the last row of (3.11), it follows

(4.12) E_%(w + @+ 8) = w(0,v) — (31 — 32)sin 2v + B(0,v) = 0.

From (4.12) it follows that a finite limit of w(u,v) at (0,v) € M?,0 < v < 2,
exists.
The third equation of (3.11) can be written in the form

BI
(4.13) B +205 + (¢ +a) =0
From (4.13) we have
(4.14) g%(Bﬂ' + BB + %(Lp' +a)) = 0.

From (1.2), (4.7) and (4.14) it follows (4.10). From (4.12) and (4.10) it
follows (4.9). This ends the proof.

Remark 4.1. The formula (4.9) can be proved directly, applying the
known formula of the torsion function to the curve z(u,v), u = ug, ug > 0,
ug — 0. The formula (4.10) is a known theorem of O. Bonnet.

5. Complete surfaces of negative Gauss curvature in Euclidean
3-dimensional space

Let k,w,p,a,B denote a solution of the system (3.11) in the disk
D?*(up) C M?2. By the fundamental theorem of surfaces theory the first
quadratic form (1.1) and the second quadratic form (3.21) define (up to mo-
tions of E3) a unique surface z(D?(ug)) C E? for sufficiently small ug > 0.
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The equation of lines of curvature of 2(D?(ug)) C E? has the form
(5.1) Bdu? + B((¢' + ) — ksin p)dudv — BBk sin pdv? = 0.

From the first two equations and the second equation in the last row of the
system (3.11), it follows the Gauss equation

"

(5.2) B = 5 + (¢’ + @)k sin .

We have the following

LEMMA 5.1. If the Gauss curvature (2.13) is negative for all (u,v) €
D?(uy), then there exists a number u1, 0 < uy < ug, such that the 2 geodesic
lines z(u,v), v =0, v =%, —uy < u < uy, are plane lines of curvature.

Proof. From (4.10) it follows that there exists a number 4y, 0 < u; < uo,
such that for every %, 0 < ¥ < wuj, there exist 4 points (@, 7;) € D%(uy),
¢ = 1,2,3,4, such that §(%,v;) = 0 and %(ﬁ,%}) # 0. From the implicit
function theorem it follows that for every %, 0 < % < u;, there exist numbers
0 < uz < uz < uy such that u3 < % < uy and differentiable functions
v;i = vi(u), ug < u < ug, v;i(¥) = v;, such that flu,v;(u)) = 0, ug <
u < ug, ¢ = 1,2,3,4. From (2.13) and (5.2) it follows that ¢’ + a and
ksin ¢ are principal curvatures at points (u,v) € D?(u;) C M? such that
B(u,v) =0, ie. ((¢'+ a)— ksin ) # 0. Hence, from (5.1) it follows dv = 0
for du = Au = uy — uz > 0, and therefore v;(u) = v; for vz < v < us,
¢ = 1,2,3,4. This means that the line of curvature which passes through
the point x(u v;) € 2(D?*(u1)),us < u < uz, is tangent to the geodesic line
z(u,v), v = v;, at the point a:(u v;) € z(D*(uy)). Therefore the direction
of the geodesic line z(u,v), v = v;, at z(u,v;), uz < u < Uz, is a principal
direction, and it follows that the geodesic line z(u,v), v = ¥;, uz < u < us,
is a plane line of curvature (8(u,v;) = 0) for ¢ = 1,2,3,4. By the indirect
argument we extend the curve z(u,v), v = 7;, u3 < u < u2, to a plane line
of curvature z(u,v), v = v;, 0 < u < uy. Since v = 0,v = 5 define the
pr1nc1pal directions at (0,v) € Dz(ul), 0 <u<2nm,it follows v; = 0 or
v,_ -72101"01—71’01"012 ‘gﬂ’ t = 1,2,3,4. Therefore we can set v; = 0,
Dy = T, V3 =T,04 = —7r From this w1th the use of (1.3) Lemma 5.1 follows.

We have the followmg

THEOREM 5.1. Let us suppose that the Gauss curvature (2.13) is negative
for every point (u,v) € M?. For every solution k,w,p,a,f of the system
(3.11) on M2\ {(0,v)}, 0 < v < 27, and every isometric immersion

(5.3) y: M — E* MCN*\{0,v)}, 0<v<2nr,
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of an open, connected set M, such that (1.1) and (3.21) are the first and
second quadratic forms of (5.3) respectively, there does not exist an extension
of (5.3) to an isometric immersion

(5.4) z: M? - E?

such that (1.1) and (3.21) are the first and second quadratic forms of (5.4)
respectively.

Proof. Let us suppose indirect that (5.4) exists. By Lemma 5.1 there
exists a number u; > 0 such that z(u,v),v=0,v=F, —u; < u < uy, are
plane lines of curvature on z(M?) C E?. By the theorem of Hadamard ([2],
§7.2) the point (u1,0) € M? can be chosen as a new pole of a new polar,
geodesic coordinate system of M2. Applying Lemma 5.1 to the system (3.11)
written in the new polar geodesic coordinate system, it follows that the plane
line of curvature z(u,v), v = 0, 0 < u < uy, can be prolonged to a plane
line of curvature z(u,v), v = 0,0 < u < uy + uz, us > 0. In this way,
by the indirect argument it follows that the curves z(u,v), v = 0, v = I,
—00 < u < 00, are plane lines of curvature which together are geodesic lines
on the surface z(M?) C E3. Since, by the theorem of Hadamard the pole of a
polar, geodesic coordinate system can be chosen arbitrary on M?, it follows
that every line of curvature on z(M?) is a plane geodesic line. Therefore
the Riemann metric of M? induced by the isometric immersion (5.4) can
be written in the form ds? = dw? + dw?, where (w;,w;) are parameters
on the lines of curvature. Hence, z(M?) is a surface with Gauss curvature
K(wy,wy) = 0 contrary to our assumption. This ends the proof.

COROLLARY 5.1. If the Gauss curvature (2.13) is negative for every point
(u,v) € M2, then every solution of the system (3.11) on M? \ {(0,v)},
0 < v < 27, has a singularity at the pole (0,v) € M?, 0 < v < 27, in
the following sense. For every ug > 0 an isometric immersion (3.1) such
that (1.1), (3.21) are the first and second quadratic forms of x(D(ug)) C
E? cannot be prolonged to an isometric immersion (4.1). Indeed, otherwise
applying the global version of the fundamental theorem of surface theory to
(1.1) and (3.21) we get (5.4).

Remark 5.1. From Theorem 5.1 it follows that an isometric immersion
of a connected manifold M? provided with a complete Riemannian metric
g defined by (1.1), of negative Gauss curvature at every point of M? cannot
be a solution of (3.11). This implies that by means of (3.11) we cannot
prove e.g. that the complete Riemannian metric induced from E® on the
hyperbolic paraboloid z = zy and written in polar geodesic coordinates
can be a Riemannian metric of a complete surface in E3 isometric with the
hyperbolic paraboloid.
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Moreover by the same reason, there does not exist a proof of the theorem
of Hilbert [3] which asserts that the Lobachevski plane L?,i.e. B = shu in
(1.1), cannot be isometrically immersed in E?, discussing the system (3.11).
More generally, discussing the system (3.11) we cannot get a proof of the
theorem of Efimov [3], which asserts that there does not exist a complete
surface in E3 such that K(u,v) < —c?, ¢ #0, (u,v) € M2

The attempt to get a proof of the theorems of Hilbert or Efimov by
means of the system (3.11) fails because the theorema egregium in the polar,
geodesic coordinate system (u, v) is reduced to the simple formula (2.13) and
the Codazzi-Mainardi equations are identically satisfied by (3.11), they do
not deliver a further condition in addition to (3.11). From Theorem 5.1 it
follows that these difficulties cannot be avoided.

6. Examples

a) Let B(u,v) =siny, 0 <u <7, 0< v < 2r. We suppose w(u,v) =0
identically and ¢(u,v) = ¢(u). Thus from the first equation of (3.11) it
follows

(6.1) k(u) =

D
——, d>0, D =const.
sin 4

From & cos ¢ = ctgu and (1.9) we get
(6.2) D cos ¢ = cos u.

If D > 1, then from (6.2) it follows
1 1 =«

. — << — + - = et
(6.3) arccos 5 S p <arccos 5+ 5, @ o
The formulas (6.3) characterize the spherical surfaces of revolution of the
elliptic type.

If 0 < D < 1, then from (6.2) we have ~D < cosu < D and therefore

oS u

(6.4) arccos D < u < arccos D + g, ¢ = arccos

The formulas (6.4) characterize the spherical surfaces of revolution of the
hyperbolic type.

b) Let K(u,v) > ¢2, ¢ # 0, w(u,v) = 0 identically, ¢(u,v) = ¢(u) on
D?(ug) C M?,up > 0. We suppuse that (ug,v) € M?, 0 < v < 27, is the
second pole of (u,v). Then x(ﬁ2(u0)) C E3 is a convex surface of revolution

with the axis of revolution passing through the poles; fz(uo) denotes the
closure of D?(ug) C M?2.

Indeed, from Theorem 2.1 it follows that M? is diffeomorphic with S2.
From (1.9) and (2.13) it follows that B’(u,v) is a decreasing function of u,
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and from (1.2) and (1.11) it follows

(6.5) 1< B'(u,v) <1 for 0<u<u, 0<v< 2.
The system (3.11) takes the form

! B/
(6.6) k'+k%:0, w=a=0=0, kcosgazf.

From (6.6) it follows
C(v)
B(u,v)’

From (1.2) and (4.4) it follows for v = 0 and consequently for every u,
0 <u < up, C(v) = 1. Hence

(6.7) k(u,v) = C(v) cosp(u) = B'(u,v).

__ 1 - B
(6.8) k(u,v) = Blu,v)’ cos ¢p(u) = B'(u,v).
From (6.5) and (6.8) it follows that ¢(u) is defined for 0 < u < uy and
(6.9) B'(u,v) = B'(u).

From (6.9) it follows
(6.10) B(u,v)= [ B'(n)dn+ D(v).
0

Since B(0,v) = D(v) = 0 it follows

(6.11) B(u,v) = B(u), k(u,v)= 0 < u < .

1
B(u)’
Since B'(u) is a decreasing function such that B'(0) = 1, B'(ug) = ~1, it
follows that there exists such a number u;, 0 < ¥y < ug, that B'(uy) = 0.
Therefore the function B(u) is increasing for 0 < v < uy and decreasing
for uy < u < ug. Hence, (6.11) and K(u,v) > c? define a convex surface of
revolution of positive Gauss curvature.

¢) Let K(u,v) < —c?,¢ # 0, w(u,v) = 0,9(u,v) = ¢(u). From (2.18) it
follows

(6.12) B'(u,v)>1, lim B'(u,v)=oo.
U000
The solution of the system (3.11) has the form (6.7). However because of

(6.12) this solution has a singularity at » = 0. Indeed, from the second
formula of (6.7) it follows

(6.13) 1 < B'(u,v) < C(v)
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and for every vg, 0 < vp < 27, there exists a number up = u(vp) such that
(6.14) B'(ug,v0) = C(vo).

From (1.9) and (2.13) it follows that B'(u,v) is an increasing function of u.
Therefore from (6.14) it follows

(6.15) 1< B'(u,v) < C(vp) for 0<u< ug.

Hence C(vo) > 1, and therefore
1
= = =1
(6.16) cos ¢(0) T’ cos ¢(ug)

From the second formula of (6.7) it follows that ¢(u) is a decreasing function
such that

(6.17) C_(lvo—j <cosp(u)<1l for 0<u< up.
From (6.16) it follows that (4.4) is not satisfied, and therefore at (0,v) € M?,
0 < v < 2, the solution (6.7) has a singulatiry.

If we suppose B(u,v) = B(u) and u(vg) = const = ug > 0, 0 < vy < 27,
then (6.7) define a surface of revolution. Let L(u) denotes a plane curve
u = const, 0 < u < ug. The length of L(u) is

2m

(6.18) [ B(u)dv = 27 B(u).
0

From the first formula of (6.7) it follows that the radius r(u) of the circle

L(u) is equal r(u) = Béu), where C = C(v) > 1, 0 < v < 27. Hence

27 B(u) > 27r(u). This implies that in the case K(u,v) < —c?,¢c # 0, the

solution (6.7) of (3.11) defines a surface of revolution which partly overlaps.
d) Let

(6.19) z: D*(up) = E3, D%(up) C L%, up > 0,

denotes an immersion of the geodesic disk D?(ug) of the Lobachevski plane
L? in E3 with the property that the geodesic circle u = ug is isometrically
mapped on a metric circle in E3 (or more generally on a closed plane curve
without selfintersections). Then (6.19) cannot be an isometric immersion.
Indeed, the length of the circle u = ug is 2mshug. Since (6.19) is an isometric
mapping for u = ug, this is also the length of the metric circle (or another
simple closed curve) z(ug,v), 0 < v < 27. For Au > 0 sufficiently small
there exists a tubular neighborhood of z(ug,v), 0 < v < 27 such that the
disks with centers z(ug,v), 0 < v < 2w, have radius Au. The length of
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z(up — Au,v),0 < v < 2, is 2wsh(ug — Au). Let e(v), 0 < v < 27, denotes
a vector field of unit vectors along the curve z(up,v), 0 < v < 27, such that
dz(ug,v) - e(v) = 0. Then z(ug,v) + Aue(v), 0 < v < 27, is a closed curve
contained in the toroidal surface defined as the boundary of the tubular
neighborhood of z(ug, v),0 < v < 27. The length of the shortest closed surve
of the form z(ug, v)+Aue(v),0 < v < 27, is 2r(shug—Au) > 2rsh(ug—Au).
Hence, (6.19) cannot be an isometric immersion.
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