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COINCIDENCE AND FIXED POINT THEOREMS
ON PRODUCT SPACES

In this paper we establish a coincidence theorem for systems of multi-
valued and single-valued maps on the finite product of metric spaces. Fixed
point theorems for multivalued maps are also derived. Our results include
fixed point theorems of Czerwik [6], Kaneko-Seesa [16], Ray [21], Reddy-
Subrahmanyam [22], Reich [23] and others.

1. Introduction and preliminaries

Let (Y, d) be a metric space, T:Y — Y and P:Y — CL(Y), the set of
(nonempty) closed subsets of Y. Consider the following conditions on P for
z,y in Y and some positive number k < 1,

(1.1) H(Pz,Py) < kd(Tz,Ty)
and
(1.2) H(Pz, Py) < kmax{d(Tz,Ty), D(Ty, Py),

[D(Tz, Py)] + D(Ty, Pz)]/2},

where H is the generalized Hausdorff metric induced by d (see below).
The above conditions are generally termed as byhrid contractions (see,
for instance, 1], [20]). Note that (1.1) implies (1.2).
We say that a point zin Y is:
(i) a coincidence point of P and T iff Tz € Pz;
(ii) a fixed point of P and T iff z = Tz € Pz
and
(iii) a hybrid fixed point iff Tz € PTz.
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We have to emphasize that P and T satisfying (1.1) with P(Y) C T(Y)
need not have a common fixed point in complete Y even if T and P are con-
tinuous and commuting, i.e., TPz C PTz,z € Y (cf. Itoh-Takahashi [12]).
We refer [16], [20], [27] and [31] for counterexamples and a good discussion
on this aspect. Further, the condition (1.1) with Tz = z,(z € Y') contains
the Nadler’s (now class1c) multivalued contraction [19]. Interesting gener-
alizations of Nadler’s contraction [op. cit.] due to Cirié [4], Iséki [11], Ray
[21] and Reich [23], are the special cases of (1.2). For example, the condition
(1.2) with Tz = z(z € Y) was first studied by Cirié [op. cit.]. The condition
(1.2) with P: X — X and Tz = z(z € Y) is the condition (21') of Rhoades
[24, P. 267] (see also [10, p. 22|, [26], [31}, and {33]).

The study of hybrid contractions was essentially initiated, during 1981-
1983, independently by Hadzié [8]. Singh-Kulshrestha [32] and Bhaskaran-
Subrahmanyam [3] (see also [27, Remark 2.3]). These and similar conditions
were further studied, among others, by Beg-Azam [2], Hadzi¢ [9], Kaneko-
Seesa [15]-[16], Khan et al. [17], Naimpally et al. [20], Rhoades et al. [25],
Sastry et al. [27] and Singh-Pant [34].

The theory of multivalued maps has wide applications to game theory,
mathematical economics, optimization theory, multifunctional equations,
etc. A substantial place in the theory of multivalued maps, mainly due to its
applications to functional equations, is claimed by the study of fixed points
of nonlinear multivalued contractions (see, for instance, Wegrzyk [36]). Re-
cent investigations of Corley (see, for instance, [5]) give a good relationship
between hybrid fixed points and optimization problems.

In particular, he has shown that a Pareto type of maximization problem
is equivalent to a hybrid fixed point problem. So, this is additional motiva-
tion for the results of this paper.

The main result of [32] contains the following coincidence theorem (see
also [10, Th. 13]).

THEOREM 1.1. Let Y be a metric space and P a multivalued map from
Y to CL(Y). If there exists a map T from Y to Y such that P(Y) C
T(Y),T(Y) is a complete subspace of Y and (1.2) holds, then P and T
have a coincidence point, i.e., there exists z € Y such that Tz € Pz.

Following Jungck [13]-{14]; Kaneko-Seesa [16] and Beg-Azam [2] intro-
duced the concept of compatibility (cf. Def. 1.5 below) of single-valued and
multivalued maps. Kaneko-Sessa [op. cit.] established the following, wherein
Y and (so) CB(Y') are complete:

THEOREM 1.2. Let Y be a complete metric space, T :Y — Y and P:Y
— CB(Y), the set of nonempty closed bounded subsets of Y, be compatible
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continuous maps such that P(Y) C T(Y') and (1.2) holds. Then there exists
a point z € Y such that Tz € Pz.

Recently Baillon-Singh [1], motivated by the work of {5]-{9], (18], [22],
[28], [30] and [31], have introduced coordinatewise weakly commuting sys-
tems of single- and multi-valued maps on the product of n(> 2) metric spaces
and established coincidence and hybrid fixed point theorems for such systems
of maps. In this paper we introduce the concept of coordinatewise asymptot-
ically commuting systems of single- and multi-valued maps on the product of
n(> 2) metric spaces (cf. Definition 1.4) and give a coincidence theorem for
such a system of multivalued maps and two systems of single-valued maps
on the product of n metric spaces (cf. Theorem 2.1). Fixed point theorems
for multivalued maps are also obtained (cf. Corollaries 2.1-2.3). Several co-
incidence and fixed point theorems including Theorem 1.2 (above) may be
obtained as special cases (see Remarks 2.1-2.4 and corollaries of this paper).

Throughout this paper we shall use the following notations and defini-
tions:

Let (Y,d) be a metric space.

CL(Y)={A: Ais a nonempty closed subset of Y'};

CB(Y)={A: Ais a nonempty closed and bounded subset of Y};

N(e,A)={z €Y :d(x,a) < ¢ for some a € A,e > 0,4 € CL(Y)}
and for 4, B € CL(Y),

infe >0: AC N(¢,B)&B C N(¢, A), if the infimum exists
00, otherwise.

HL&B):{

H is called the generalized Hausdorff metric induced by d. D(z, A) will de-
note the ordinary distance between z € X and a nonempty subset A C X.
Let (a;x) be an n X n square matrix with nonnegative entries. Define (cf.

[6], [18])

1 ik, lr/:k . _ .
(13) cik—{l—aik, i=k z,k—-l,...,n,

i At t :
(1.4) c@zl _ {cilc;‘+1,k+1 + C;‘+1,1cl,k+1’ l #k
' C11Cit1 k41 — Cit1,1C1,k+1, E= K,
t=1,...,n-1, ¢k=1,...,n-1.
Let
(1.5) ¢, >0, t=1,...,n, i=1,...,n—t+1.

Throughout this paper we shall assume that (X;,d;) are metric spaces
(CL(X;), H;) the generalized Hausdorff metric spaces induced by d;. Fur-
ther, let P; and @; stand for multivalued maps from X := X; x ... x X,, =



18 U. C. Gairola, S. N. Mishra, S. L. Singh

(X1,...,Xp) to CL(X;),and T; : X — X;,e=1,...,n. For X D A =
(A1,...,A,), we (as in [1]) use the notation T(A4) = (T141,...,TnAn).

DEFINITION 1.1 [2]. Two systems of maps {T4,...,T,} and {Py,..., P}
are coordinatewise commuting (or simply commuting) at a point z € X if
and only if

T Pz,...,Px) C P(Tiz,...,Thz), i=1,2,...,n.

For n = 1, this definition is that of Itoh and Takahashi [12]. For n = 1, the
following definition is investigated in [15]) and [31].

DEFINITION 1.2 [1]. Two systems of maps {Ty,...,T,} and {Py,..., P,}
are coordinatewise weakly commuting (or simply weakly commuting) at a
point ¢ € X if and only if

Hi(Ti(Pla:, ceay an), Pi(Tl.’B, . ,an)) S D,‘(P,'ZB,TZ'(L‘), ¢ = 1, I (8

Two systems are coordinatewise weakly commuting on X if and only if they
are coordinatewise weakly commuting at every point of X.

An equivalent formulation of Definition 1.2 for two systems of single-
valued maps on X appears in [7].

We should remark that, in general, coordinatewise weakly commuting
systems of maps need not to be coordinatewise commuting. However, the
commuting systems are necessarily weakly commuting (see [1], [7], [30]).

DEFINITION 1.3. Two systems of maps {11,...,T,} and { Py, ..., P,} are
coordinatewise asymptotically commuting (or simply asymptotically com-
muting) if and only if

Hi(Pi(The™,...,Tpa™), Ti(Piz™,..., Paz™)) — 0 (as m — o0),
whenever {z™} is a sequence in X such that
Piz™ — M; € CL(X;) and T;2™ — z; € M;.
As a special case of the above definition (n = 1) we have the following:

DEFINITION 1.4. The mappings T3 : X; — X; and P; : X1 — CL(X,)
are asymptotically commuting (called compatible in [2] and [16] for T} :
X1 — Xy and P, : X7 — CB(X4)) if and only if Hy(PiT1z™, Ty Piz™) — 0
(as m — oo) whenever {¢™} is a sequence in X; such that Piz™ — M, €
CL(X,) and Thae™ — uy € M;.

If the map P; in this definition is single-valued then M; has just a single
element uq, and we get the definition of asymptotically commuting (or com-
patible) single-valued maps independently introduced by Tivari-Singh [35]
and Jungck [13]. Since a sequence in the limiting tone is the main aspect
in Definitions 1.3-1.4, the name ,asymptotically commuting maps” seems
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to slightly better fit to the situation than ,compatible maps”. So, following
[35], we shall henceforth prefer the name ,asymptotically commuting”.

Remark 1.1. The class of asymptotically commuting maps includes
commuting and weakly commuting maps. Commuting maps are necessar-
ily weakly and asymptotically commuting both (see, for instance, [1]-[2],
[13]-[16], [28]-[31] and the following example).

EXAMPLE. Let X; = [1,00) and X; = [0,00) be metric spaces with the
absolute value metric. Let z := (z1,23), Piz = [1,2%], Pz = [2%/4,2%/2),
Tiz = 223 — 1 and Tz = 2%/5. It can easily be verified that the systems of
maps {Py, P»} and {T1,T} are not coordinatewise weakly commuting but
coordinatewise asymptotically commuting on X := X; X X3. Note that the
above two systems are coordinatewise commuting at z = (1,0).

Remark 1.2. At any point of coincidence of two (or two systems of)
maps, their commutativity, weak commutativity and asymptotic commuta-
tivity are equivalent at that point (see [1], [14] and [15]).

2. Coincidences and fixed points
THEOREM 2.1. Let (X;,d;), : = 1,...,n, be complete metric spaces and
assume that P; : X — CL(X;), S;,T; : X — X;,1=1,...,n, are continuous
maps such that
(21) P,(X) C S,(X) N Tl(X),l =1,...,m
(2.2) the system {Py,...,P,} is asymptotically commuting with both the
systems {S1,...,5:.} and {T1,...,Ty.}.

If there exist non-negative numbers b < 1 and a;x defined in (1.3) and
(1.4) such that (1.5) and the following hold:

n

(2.3) H,(P;z, P,y) < max { Z aixdi(Skz, Try),
k=1
bmax{D;(S;z, Piz), Di(T;y, P;y),

[Di(Siz, Py) + DTy, Pia)}/2}}

forallz = (z1,...,24), ¥ = (y1,...,Yn) € X, then there ezists a point
u € X such that

(2.4) Siu € Pouand Tyu € Piu, i =1,...,n.
Proof. First we note that the system (1.5) and

n
E aTE <1 t=1,...,m,
k=1
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are equivalent for some positive numbers r;,72 = 1,...,n. Further, if we put

n
-1
h = m?x (7'1' Z a,-krk)
k=1

then h € (0,1) and so we may choose a system of positive numbers r1,...,7,
such that

n
(2.5) Zaikrk <hrg, i=1,...,m;
k=1
(see [6], [18])-

Now we shall construct sequences {z™} and {z*}, ¢ = 1,...,n, in
X;. Pick 29 in X;. By (2.1), we can find an element z'! in X such that
21 = S;z! € P;z0. If P;2® = P;z! then 2! becomes a coincidence point of
P;and S;,i=1,...,n. Solet P;z° # P;z'. Then we can choose an element
z3 in X such that 2? := T;2? € P;z? and

di(2},22) < c_1/2Hi(Pix0,Pia:1) <r, 1=1,...,n,

17
where ¢ = max{h, b}.

If P,z* = P;z! then z? is coincidence point of P; and T;. So let P;z? #
P;z!. Then we can choose an element 2 in X such that 2} := §;23 € P;z?
and

d,-(z-2 23) S C_l/zﬂi(Piwl,Pizz), 1= 1,...,n.

1771

Continuing in this manner we choose sequences {z/"} and {2} such that
Z?m+1 = Si$2m+1 = Piz2m,
zi2m+2 - Til'2m+2 € Pil‘2m+l,
and
di(ziZm’ z?m-{-l) < 6_1/2H,'(P,':L'2m_l,Pi-’I?2m),
di(z?m+1, z?m+2) _<_ 0_1/2H1'(P,‘1‘2m,Pi5172m+1),
t=1,...,n; m=12,....
We may assume without any loss of generality, that

1.2 .
di(z,2;) <riy, 1=1,...,n.

From (2.3) and (2.5), we have
(2.6) d,’(z-2 Z3) S 6—1/2H5(P,'.’1:1,Pi11}2)

1?1
n

< ¢ max { Y aikdi(Sat, Tre?),bmax{Dy(Siz’, Piz'),
k=1

Di(Tiz?, Piz?),[Di(Siat, Pix®) + Di(Tia?, Pﬂl)]/?}}
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n
< ¢V max { Z aixdi(2h, 22), bmax{d,(z}, 2), di(#, Z), [di( 2}, zf)]/?}}
k=1
< ¢ max{hr;, bdi(2}, 2}),bdi(22, 23)}.
Now if d;(2}, 2?) < d;(22%, 2}), then
di(22,23) < ¢ max{hr;, bdi(2},2})} < ¢ V2hr; < iy,

since otherwise we get a contradiction.

If di(z},22) > di(2%,2}) then di(2?,2}) < ¢™1/2 max{hr;,br;)} < /%1,

1% 1%
Similarly from (2.3), we have

(27) d,-(z?,zf) S 6—1/2H2'(P,':L'2,Pi.’173)
= c'l/zH,-(P,-z3, P,-:vz)

n

<2 max{ Zaikdk(zi,zi),bdi(z?,zf),di(zf,z?)}, i=1,...,n.
k=1
This, as before, gives us
di(23,25) < (M) = Py, i=1,...,0.
By the induction argument we conclude that
di(z 1, 22 < ™%, m=1,2,3,...; i=1,...,n.
So each {z*} is a Cauchy sequence and therefore it converges to some point
wEeX;,, 1=1,...,n.

From the above relations (see also (2.6)—(2.7)), it follows that {P;z™} is
also a Cauchy sequence in CL(X;),? = 1,...,n. So there exist M; in CL(X;)
such that Pia™ — M;,i=1,...,n. Thus

Di(ui, M;) < di(ui, Si(2™™+1)) + Di(Si(a™+1)), M)
< di(ug, Si(2>™ 1)) + Hy(Pi(2*™), M;) — 0 as m — oo.
This yields u; € M; fori =1,...,n.

By (2.2) and the continuity of the systems of maps {S1,...,5,} and
{Pla LR P'n.} we get Hi(Pi(Sl(x2m+1)’ .. -aSn($2m+1))’ Si(P1($2m+1)’ LR
P,(z*™*t1))) - 0 as m — o0. So Pi(u) = Si(My,..., M,). Consequently

Si(ury..ytn) € Pi(u1,...,un), t=1,...,n.
Similarly
Pi(ul,. ..,un) = Ti(M],...,Mn)
and
Ti(ut, ... un) € Pi(ug,...,un), i=1,...,n.
This completes the proof.
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Remark 2.1. It is worth noting (see the above proof) that S;(u) need
not to be equal to T;(u), u = (u1,...,Us), % = 1,...,n. Further, if §;(u) = u;
{respectively T;(u) = u;}, i =1,...,n, then evidently u; € P;u and

(u1,...,un) = (S1%,...,5.u) € (Pu,..., Pyu)
{respectively (u1,...,un) = (T1u,...,Thu) € (Pu,..., Pyu)}.
Remark 2.2. Theorem 2.1 extends and generalizes several coincidence

and fixed point results on metric spaces (cf. Hadzi¢ (8], Jungck [13], Kaneko
[15], Kaneko-Sessa [16] and others).

COROLLARY 2.1. Theorem 1.2 (above).

Proof. Its slightly improved version follows from Theorem 2.1 with
(Y,d) = (X,d;), P=P,, T=85;=T;,¢ =1,...,n,and n = 1, wherein
k = max{a11,b}. Its derivation is akin to [30, p. 799].

Remark 2.3. If Si(z) = Ti(z) = =i, ¢ = 1,...,n, in Theorem 2.1 then
the continuity conditions on P;, ¢ = 1,...,n, are not needed. So the fol-

lowing fixed point theorem is an immediate consequence from Theorem 2.1
when Si(z) =Ti(z) =z, i=1,...,n.

COROLLARY 2.2. Let (X;,d;), i = 1,...,n, be complete metric spaces. If
maps P; : X — CL(X;),i=1,...,n, satisfy (1.3), (1.4), (1.5) and

n
(2.8) Hi(Piz, Piy) < max{ Y aikdi(er, yr),
k=1

bmax{D;(z;, P;z), Di(yi, Piy), [Di(zi, Piy) + Di(ys, Pﬂ?)]/Q}}
forallz .= (z1,...,25),y := (Y1,-.-,Yn) € X; then the system of inclusions
u; € Piu, v = (U1,...,Un), 1 = 1,...,n, has a solution.

COROLLARY 2.3. Let Y be a complete metric space and take a mapping
P:Y — CL(Y). If there ezists a constant k, 0 < k < 1, such that for all
z,y€Y,

H(Pz, Py) < kmax{d(z,y), D(z, Pz), D(y, Py), [D(z, Py) + D(y, Pz)]/2},
then P has a fized point in Y .

Proof. It follows from Corollary 2.2 when (Y,d) = (X;,d;), P = P;,
i=1,...,n,and n = 1, wherein ¥ = max{a;1,b}.

Remark 2.4. Fixed point theorems from Beg-Azam [2], Ciri¢ [4], Iseki
[11], Nadler [19], Ray [21], Reich [23] and Rus [26] for multivalued maps on
metric spaces (see Corollary 2.3), and those from Czerwik [6], Matkowski

[18], and Singh et al. [30], [33] on product of metric spaces may be obtained
as special cases from Corollary 2.2.
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