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COINCIDENCE AND FIXED POINT THEOREMS 
ON PRODUCT SPACES 

In this paper we establish a coincidence theorem for systems of multi-
valued and single-valued maps on the finite product of metric spaces. Fixed 
point theorems for multivalued maps are also derived. Our results include 
fixed point theorems of Czerwik [6], Kaneko-Seesa [16], Ray [21], Reddy-
Subrahmanyam [22], Reich [23] and others. 

1. Introduction and preliminaries 
Let (Y, d) be a metric space, T : Y —> Y and P : Y —> CL(Y), the set of 

(nonempty) closed subsets of Y. Consider the following conditions on P for 
x, y in Y and some positive number k < 1, 

(1.1) H(Px, Py) < kd(Tx, Ty) 

and 

(1.2) H(Px,Py) < kmax{d(Tz,Ty),D(Ty,Py), 
[D(Tx,Py)] + D(Ty,Px)}/2}, 

where H is the generalized Hausdorff metric induced by d (see below). 
The above conditions are generally termed as byhrid contractions (see, 

for instance, [1], [20]). Note that (1.1) implies (1.2). 
We say that a point z in Y is: 
(i) a coincidence point of P and T iff Tz € Pz\ 
(ii) a fixed point of P and T iff z = Tz e Pz 

and 
(iii) a hybrid fixed point iff Tz € PTz. 

Mathematics subject classifications (1991): 54H25, 54C60, 47H10. 
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We have to emphasize that P and T satisfying (1.1) with P(Y) C T(Y) 
need not have a common fixed point in complete Y even if T and P are con-
tinuous and commuting, i.e., TPx C PTx,x € Y (cf. Itoh-Takahashi [12]). 
We refer [16], [20], [27] and [31] for counterexamples and a good discussion 
on this aspect. Further, the condition (1.1) with Tx = x,(x 6 Y) contains 
the Nadler's (now classic) multivalued contraction [19]. Interesting gener-
alizations of Nadler's contraction [op. cit.] due to Ciric [4], Iseki [11], Ray 
[21] and Reich [23], are the special cases of (1.2). For example, the condition 
(1.2) with Tx = x(x € Y) was first studied by Ciric [op. cit.]. The condition 
(1.2) with P : X X and Tx - x(x G Y) is the condition (21') of Rhoades 
[24, P. 267] (see also [10, p. 22], [26], [31], and [33]). 

The study of hybrid contractions was essentially initiated, during 1981-
1983, independently by Hadzic [8]. Singh-Kulshrestha [32] and Bhaskaran-
Subrahmanyam [3] (see also [27, Remark 2.3]). These and similar conditions 
were further studied, among others, by Beg-Azam [2], Hadzic [9], Kaneko-
Seesa [15]—[16], Khan et al. [17], Naimpally et al. [20], Rhoades et al. [25], 
Sastry et al. [27] and Singh-Pant [34], 

The theory of multivalued maps has wide applications to game theory, 
mathematical economics, optimization theory, multifunctional equations, 
etc. A substantial place in the theory of multivalued maps, mainly due to its 
applications to functional equations, is claimed by the study of fixed points 
of nonlinear multivalued contractions (see, for instance, Wegrzyk [36]). Re-
cent investigations of Corley (see, for instance, [5]) give a good relationship 
between hybrid fixed points and optimization problems. 

In particular, he has shown that a Pareto type of maximization problem 
is equivalent to a hybrid fixed point problem. So, this is additional motiva-
tion for the results of this paper. 

The main result of [32] contains the following coincidence theorem (see 
also [10, Th. 13]). 

T H E O R E M 1 .1 . Let Y be a metric space and P a multivalued map from 
Y to CL(Y). If there exists a map T from Y to Y such that P(Y) C 
T(Y),T(Y) is a complete subspace of Y and (1.2) holds, then P and T 
have a coincidence point, i.e., there exists z £ 7 such that Tz 6 Pz. 

Following Jungck [13]—[14]; Kaneko-Seesa [16] and Beg-Azam [2] intro-
duced the concept of compatibility (cf. Def. 1.5 below) of single-valued and 
multivalued maps. Kaneko-Sessa [op. cit.] established the following, wherein 
Y and (so) CB(Y) are complete: 

T H E O R E M 1 .2 . Let Y be a complete metric space, T :Y —• Y and P : Y 
—• CB(Y), the set of nonempty closed bounded subsets o f Y , be compatible 
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continuous maps such that P(Y) C T(Y) and (1.2) holds. Then there exists 
a point z 6 Y such that Tz 6 Pz. 

Recently Baillon-Singh [1], motivated by the work of [5]-[9], [18], [22], 
[28], [30] and [31], have introduced coordinatewise weakly commuting sys-
tems of single- and multi-valued maps on the product of n(> 2) metric spaces 
and established coincidence and hybrid fixed point theorems for such systems 
of maps. In this paper we introduce the concept of coordinatewise asymptot-
ically commuting systems of single- and multi-valued maps on the product of 
n(> 2) metric spaces (cf. Definition 1.4) and give a coincidence theorem for 
such a system of multivalued maps and two systems of single-valued maps 
on the product of n metric spaces (cf. Theorem 2.1). Fixed point theorems 
for multivalued maps are also obtained (cf. Corollaries 2.1-2.3). Several co-
incidence and fixed point theorems including Theorem 1.2 (above) may be 
obtained as special cases (see Remarks 2.1-2.4 and corollaries of this paper). 

Throughout this paper we shall use the following notations and defini-
tions: 

Let (Y, d) be a metric space. 
CL(Y) = {A : A is a nonempty closed subset of F}; 
CB(Y) = {A : A is a nonempty closed and bounded subset of Y}; 
N(e, A) = {x € Y : d(x, a) < e for some a 6 A, e > 0, A e CL(Y)} 

and for A,B £ CL(Y), 

H(A B)= Iinf 6 > ° : A C c N(e> A)> i f t h e infimum exists 
' \ oo, otherwise. 

H is called the generalized Hausdorff metric induced by d. D(x,A) will de-
note the ordinary distance between x G X and a nonempty subset A C X. 

Let (aik) be an n X n square matrix with nonnegative entries. Define (cf. 
[6], [18]) 

<L3> M i - « , , i h = i 

n - I c i i c i+M+i + ci+I,IcM+I> ^ k 

^ ' i k ~ 1 rf r* - rl r, , , i - b 

t = l,...,n — l, i, k = 1,..., n — t. 

Let 
(1.5) 4 - > 0, t = l,...,n, i = l,...,n-t + l. 

Throughout this paper we shall assume that (Xi, d,) are metric spaces 
(CL(Xi), Hi) the generalized Hausdorff metric spaces induced by d{. Fur-
ther, let Pi and Qi stand for multivalued maps from X := X^ x . . . X Xn = 
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to CL(Xi), and T{ : X Xifi = 1 , . . . , » . For X D A = 
(J4I, . . . , A n) , we (as in [1]) use the notation T(A) = (TiAi,. ..,TnAn). 

DEFINITION 1 .1 [2]. Two systems of maps { T i , . . . , T n } and { P i , . . . , P „ } 
are coordinatewise commuting (or simply commuting) at a point x G X if 
and only if 

Ti{PlX,...,Pnx) C PiiTiX,...,^), i = l , 2 , . . . , n . 

For n = 1, this definition is that of Itoh and Takahashi [12]. For n = 1, the 
following definition is investigated in [15] and [31]. 

DEFINITION 1 .2 [1]. Two systems of maps { T i , . . .,Tn} and { P i , . ..,Pn} 
are coordinatewise weakly commuting (or simply weakly commuting) at a 
point x £ X if and only if 

Hi(Ti(P1x,...,Pnx),Pi(T1x,...,Tnx)) < Di(PiX,Tix), i=l,...,n. 

Two systems are coordinatewise weakly commuting on X if and only if they 
are coordinatewise weakly commuting at every point of X . 

An equivalent formulation of Definition 1.2 for two systems of single-
valued maps on X appears in [7]. 

We should remark that, in general, coordinatewise weakly commuting 
systems of maps need not to be coordinatewise commuting. However, the 
commuting systems are necessarily weakly commuting (see [1], [7], [30]). 

DEFINITION 1 .3 . Two systems of maps { T i , . . . , T „ } and { P i , . . . , Pn} are 
coordinatewise asymptotically commuting (or simply asymptotically com-
muting) if and only if 

ffi(Pi(2\xm,..., Tnxm), Ti(PlX
m,..., Pnxm)) -H. 0 (as m oo), 

whenever { x m } is a sequence in X such that 

PiXm Mi e CL(Xi) and TiXm
 X i G Mi. 

As a special case of the above definition (n = 1) we have the following: 

DEFINITION 1 .4 . The mappings Tx : Xx -»• Xx and : Xx CL(X1) 
are asymptotically commuting (called compatible in [2] and [16] for Ti : 
Z i Xi and Px : -»• CB(Xi)) if and only if H^Ttx™^P^™) 0 
(as m oo) whenever { x m } is a sequence in X\ such that Pixm —>• M\ 6 
CL(Xi) and TlX

m «i € Mx. 
If the map Pi in this definition is single-valued then M\ has just a single 

element u\ , and we get the definition of asymptotically commuting (or com-
patible) single-valued maps independently introduced by Tivari-Singh [35] 
and Jungck [13]. Since a sequence in the limiting tone is the main aspect 
in Definitions 1 . 3 - 1 . 4 , the name „asymptotically commuting maps" seems 
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to slightly better fit to the situation than „compatible maps". So, following 
[35], we shall henceforth prefer the name „asymptotically commuting". 

R e m a r k 1.1. The class of asymptotically commuting maps includes 
commuting and weakly commuting maps. Commuting maps are necessar-
ily weakly and asymptotically commuting both (see, for instance, [1]—[2], 
[13]—[16], [28]—[31] and the following example). 

EXAMPLE . Let X\ = [l,oo) and X2 = [0,oo) be metric spaces with the 
absolute value metric. Let x := (x\,x2), Pix — [ 1 , P 2 x = [x2/A,x2 ¡2], 
T\x = 2x3 — 1 and T2x = x2/5. It can easily be verified that the systems of 
maps {P i , /^} and {Tj ,T 2 } are not coordinatewise weakly commuting but 
coordinatewise asymptotically commuting on X := X\ X X2. Note that the 
above two systems are coordinatewise commuting at x = (1,0). 

R e m a r k 1.2. At any point of coincidence of two (or two systems of) 
maps, their commutativity, weak commutativity and asymptotic commuta-
tivity are equivalent at that point (see [1], [14] and [15]). 

2. Coincidences and fixed points 

THEOREM 2 . 1 . Let (Xi,di), i = 1 ,...,n, be complete metric spaces and 
assume that Pi : X —> CL(Xi), Si, T{ : X —• X,, i = 1,..., n, are continuous 
maps such that 

(2.1) Pi{X) C Si(X) n Ti(X), i = 1 , . . . , n; 
(2.2) the system {Pi,..., Pn} is asymptotically commuting with both the 

systems {5i,..., Sn } and {Tu...,Tn}. 
If there exist non-negative numbers b < 1 and a^ defined in (1.3) and 

(1.4) such that (1.5) and the following hold: 
n 

(2.3) Hi(PiX, Piy) < max { J ] aikdk(Skx, Tky), 
k= 1 

b max{Di(SiX, P{x), Di(Tiy, Piy), 

[ D i { S i X , P i y ) -f D { ( T i y , P , - x ) ] / 2 } j 

for all x := (xi,.. .,xn), y = (yi,...,yn) £ X, then there exists a point 
u G X such that 

(2.4) SiU G PiU and T{u € P{u, i=l,...,n. 

Proof . First we note that the system (1.5) and 
n 

^2<iikrk <ri, i = l,...,n, 
k=1 
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are equivalent for some positive numbers r{,i = 1 , . . . , n. Further, if we put 
n 

h - m a x ( r ' 1 ^ a i k r k ) 

then h 6 (0,1) and so we may choose a system of positive numbers r i , . . . , rn 

such that 
n 

( 2 . 5 ) ^ a i h T k < h r i , i = l , . . . , n ; 

k=1 

(see [6], [18]). 
Now we shall construct sequences { x ™ } and { z ™ } , i = l , . . . , n , in 

Xi. Pick x® in Xi. By (2.1), we can find an element x 1 in X such that 
z\ Six 1 G PiX°. If PiX° — PiX1 then x 1 becomes a coincidence point of 
Pi and Si,i = 1 , . . . , n. So let PjZ° ^ P^x1. Then we can choose an element 
a;3 in X such that zf := T j X 2 6 P{X 2 and 

d i ( z j , z 2 ) < c - 1 / 2 H i ( P i X 0 , P i X 1 ) < r u i = 1 , . . , , n , 

where c = max{/i, b}. 
If P{X2 — PiX1 then x2 is coincidence point of P,- and Tj. So let P^x2 ^ 

P i X 1 . Then we can choose an element x 3 in X such that zf :— S i x 3 € PiX 2  

and 
d i { z \ , z } ) < c ~ x l ' l R i ( P i x i , P i x ' 1 \ i = l , . . . , n . 

Continuing in this manner we choose sequences {a:™} and {.z™} such that 

z 2 m + 1 := 5 i X 2 m + 1 G P j i c 2 m , 

and 
< c ~ 1 / 2 H ^ P i X 2 ™ - 1 , P i X 2 m ) , 

d i ( z 2 m + 1 , z 2 m + 2 ) < c " 1 / 2 ^ ^ ^ ® 2 " 1 , ^ ® 2 ^ 1 ) , 

« = 1 , . . . , n; m = 1,2, 

We may assume without any loss of generality, that 

di(z\,z 2) < r u i — 1 , . . . , n . 

From (2.3) and (2.5), we have 

( 2 . 6 ) d i { z \ , z \ ) < c " 1 / 2 ^ ^ ^ ^ , ^ 2 ) 

n 

< c~1 / 2 max | aifcdfc(5fca:1, ffco:2), ¿>max{£?t(5ia:1, PjX1), 
fc=i 

Di(TiX2, PiX2), [Di(S{X1, P{X2) + ^¿(Tja;2, P ,x 1 ) ] /2} | 
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n 

< c-1'2 m a x { Y , a i k d k ( z l z l ) , b m a x { d i ( z } ^ ) , di{z},z\), [*(*<« *?)]/2}} 
k=1 

< c - 1 / 2 m a x ^ r , - , bd{(z},z?), bdi(z2,zf)}. 

Now if d i ( z j , z f ) < d { ( z f , z f ) , then 

di(z?,z?) < c - 1 / 2 max{hri,bdi(zf, z f ) } < c ' ^ h n < cx'2ru 

since otherwise we get a contradiction. 
If di(z},z?) > d i ( z ? , z f ) then d i ( z 2 , z f ) < c " 1 / 2 max{hrit bri)} < c1'2^. 

Similarly f rom (2.3), we have 

( 2 . 7 ) d i ( z f , z f ) < c-^HiiPiX^PiX3) 

= c - ^ 2 H i ( P i x \ P l x 2 ) 

n 

k=1 

This, as before, gives us 

^ 3 , 4 ) < c 1 / V / 2 r i ) = c2/2r,, i = 1,..., n. 

By the induction argument we conclude tha t 

< cm'2ru m= 1 , 2 , 3 , . . . ; i = l , . . . , n . 

So each {2™} is a Cauchy sequence and therefore it converges to some point 

Ui G Xi, i = 1 , . . . , n. 

From the above relations (see also (2.6)—(2.7)), it follows tha t { P j 2 m } is 
also a Cauchy sequence in CL(Xi), i = 1 , . . . , n. So there exist Mi in CL(X¿) 
such tha t PiXm —>• Mj , i = 1 , . . . , n. Thus Di(ui,Mi) < diiu^Siix2"1^)) + A ( S i ( z 2 m + 1 ) ) , M i ) 

< di{ui,Si{x2Tn+1)) +Hi(Pi(x2m),Mi) -»• 0 a s m - » • 00. 

This yields Ui G M j for i = 1 , . . . , n. 
By (2.2) and the continuity of the systems of maps {5" i , . . . , Sn} and 

{Pu...,Pn} we get ^ • ( P ! ( 5 1 ( x 2 ' " + 1 ) , . . . , 5 n ( a : 2 " l + 1 ) ) , S i ( P 1 ( * 2 m + 1 ) , . . . , 
P n ( a : 2 m + 1 ) ) ) -s- 0 as m 00. So Pi(u) = Si(Mi,. ..,Mn). Consequen t ly 

Si(ui,...,un) G P , • ( « ! , . . . , u n ) , i = l , . . . , n . 

Similarly 
P i ( « i , . . . , u n ) = T i ( M \ , . . . , M n ) 

and 
7 i ( i i l , . . . , « n ) e P , • ( « ! , . . . , « „ ) , i = l , . . . , n . 

This completes the proof. 
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R e m a r k 2.1. It is worth noting (see the above proof) that Si(u) need 
not to be equal toTj(u) , u = ( u i , . . . , u n ) , i = 1 , . . . , n . Further, if S i ( u ) = Ui 

{respectively Ti(u) = Ui}, i — 1 , . . . ,n , then evidently Wj € P{U and 

( « ! , . . . , « „ ) = ( S i u , . . . , S n u ) e ( P i u , . . . , P n u ) 

{respectively ( « ! , . . . , « „ ) = ( T x u , . . . , T n u ) € (P^u,.. , , P n u ) } . 

R e m a r k 2.2. Theorem 2.1 extends and generalizes several coincidence 
and fixed point results on metric spaces (cf. Hadzic [8], Jungck [13], Kaneko 
[15], Kaneko-Sessa [16] and others). 

C O R O L L A R Y 2 . 1 . Theorem 1 . 2 (above). 

P r o o f . Its slightly improved version follows from Theorem 2.1 with 
( Y , d ) = ( X i , d i ) , P = P i , T = Si = T{, i = l , . . . , n , and n = 1, wherein 
k = max{an,6}. Its derivation is akin to [30, p. 799]. 

R e m a r k 2.3. If Si(x) = T t(x) = Xi, i = 1 , . . , ,n , in Theorem 2.1 then 
the continuity conditions on P i , i = 1 , . . . , n , are not needed. So the fol-
lowing fixed point theorem is an immediate consequence from Theorem 2.1 
when S i ( x ) = T i ( x ) = X i , i — 1 , . . . , n. 

C O R O L L A R Y 2 . 2 . Let ( X i , d i ) , i = 1 , . . .,n, be complete metric spaces. If 

maps Pi : X —> C L ( X i ) , i = l , . . . , n , satisfy (1.3), (1.4), (1.5) and 

n 

( 2 . 8 ) H i ( P i X , P i y ) < m a x j ^ a i k d k ( x k , y k ) , 

k=1 

b m a x { D i ( x i , P { x ) , D i { y i , P i y ) , [ D i ( x i , P i y ) + A(2/i, Pi^)}/2} j 

for all x := .. . , x n ) , y := ( y \ , . . . , yn) 6 X ; then the system of inclusions 

Ui £ P i U , u = ( u i , . . . , u n ) , i = 1,..., n, has a solution. 

C O R O L L A R Y 2 . 3 . Let Y be a complete metric space and take a mapping 

P : Y C L ( Y ) . If there exists a constant k , 0 < k < 1 , such that for all 

x , y e Y , 

H ( P x , Py) < k m a x { d ( x , y), D(x, P x ) , D(y, P y ) , [D(x, Py) + D(y, P x ) ) / 2 } , 

then P has a fixed point in Y . 

P r o o f . It follows from Corollary 2.2 when ( Y , d ) = ( X u d i ) , P = P i , 

i = 1 , . . . , » , and n = 1, wherein k = max{an,&}. 

R e m a r k 2.4. Fixed point theorems from Beg-Azam [2], Ciric [4], Iseki 
[11], Nadler [19], Ray [21], Reich [23] and Rus [26] for multivalued maps on 
metric spaces (see Corollary 2.3), and those from Czerwik [6], Matkowski 
[18], and Singh et al. [30], [33] on product of metric spaces may be obtained 
as special cases from Corollary 2.2. 
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