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ON A NONEXISTENCE OF POSITIVE SOLUTION
OF LAPLACE EQUATION IN UPPER HALF-SPACE

1. Introduction
Consider the following Laplace equation in the upper half-space

(1.1) Au =0, (a:,y,z)eR‘?*_:{(z,y,z)€R3:z>0}
with a nonlinear boundary condition of the form

(1.2) ~u,(z,9,0) = f(z,y,u(z,y,0)), (z,y)€ R%.

In [1] there was studied the Laplace equation of axial symmetry form

1
(1.3) Upr + ~Ur +u,, =0, 7>0, 2>0,
with a nonlinear boundary condition
(1.4) —u,(r,0) = Lezp(—r*/rd) + u*(r,0), r >0,

where Ig, 7o, are given positive constants. The problem (1.3), (1.4) is a
stationary case of the problem relative to ignition by radiation. In [1] it was
proved that the problem (1.3), (1.4) in the case 0 < o < 2 has no positive
solution. Afterwards, this result has been extended in [2] for more general
nonlinear boundary condition

(1.5) —u,(r,0) = g(r,u(r,0)),r > 0.

In this paper we consider the problem (1.1), (1.2) with a given function f
which is continuous, nondecreasing and bounded below by the power func-
tion of order a with respect to the third variable. By constructing a suit-
able functional sequence, we prove that for 0 < & < 2 the problem (1.1),
(1.2) has no positive solution. This result is a relative extension of that
from [1], [2].
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2. Hypotheses and statement of the main result
We omit the definition of a usual function space. Put

Ry={z€eR:z>0}.

Assume that the function f : R?x R, — R satisfies the following conditions:
(H,) f is continuous,
(Hs) f is nondecreasing with respect to third variable, i.e.,

(H3) there exist two positive constants o and M such that
f(z,y,u) > Mu*, Vz,y€ R, VYu€ Ry,

(H4) the intergal [ [ ilgj,_y,OL\/%; exists and is positive.
R? ey
, ?eﬁides, the s((i)lution of the problem (1.1), (1.2) is supposed to satisfy
the following conditions:

(51) uwe C*(RI)N C(R ), uz € C’(R3) where
R?,_ = {(z,y,2) € R®: 2 > 0},

(S2) u is regular at infinity.,i.e.,
(1) maxgz2qy24,2=p2 [u(z,y,2)| — 0, as R — 400,
(ii) there exists a constant C > 0 such that

C

lgradu(z,y, 2)| < m

as 22 + y? + 2% is sufficiently large.
The solution u of the problem (1.1), (1.2) satisfying the conditions (S;),
(S2) can be represented by (see [3])

(2.1) u(z,y,2) = A[f(&n,u(€n,0)](z,y,2), V(z,y,2)€ R,
where A is the linear operator defined by

(22) A&z y2) = o f J \/(x_”@”?)d&dn

O +@y-nr+27
We state the main result of this paper as follows.

THEOREM 1. Suppose that f satisfies the hypotheses (Hq)-(Hy) with
0 < a < 2. Then the problem (1.1), (1.2) has no positive solution satis-

fying (S1), (S2).
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3. Proof of Theorem 1

Suppose, by contradiction, that the problem (1.1), (1.2) has a positive
solution u(z,y, z) satisfying (S1), (S2). Let z — 04 in the integral equation
(2.1) and put u(z,y,0) = u(z,y). Then we obtain

(3.1) u(z,y) = A[f(& n, w(&m)l(=z,y),
where A is a linear operator defined by
v(ﬁ, dfdn
f f V(- -
Construct a recurrent functional sequence {un(:v y)} defined by
my f(§7 7, dé‘dn
33) w(z,y)=—FF—==, m ,
O e = S ™ fmfum
(3.4) Unt1(2,y) = A[f(& 7, un(§, n))](w,y), n> 1.
Then, we have two following lemmas.
LEmMMaA 1.
(3.5) Alf(&n,0)](z,y) > wi(z,y), Vz,y€R.
Proof. From the inequalities
(3.6) 1 !

>
Ve=-2+y-n? " JVa+yr+/E€+n?
1 1
> .
Tl al g 1+ 2

Vz,y,€ n € R,

by (3.3), we obtain (3.5).

LEMMA 2. The functional sequence {un(z,y)} defined by (3.3), (3.4) sat-
isfies the following conditions:
(i) {un} is nondecreasing.,i,e.,

(3.7) un(z,y) < tny1(z,y), YREN, Vz,yeR.
(i) {un} is bounded above by u(z,y). i€,

(3.8) un(z,y) <ulz,y), VneN, Vr,yeR.
(iil) un(z,y) converges pointwise and satisfies

(3.9) nl_lvg-loo un(z,y) < u(z,y), Vez,y € R.
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Proof. Runs easily by recurrence on n.

By means of (3.8), (3.9), the Theorem 1 will be proved, if we can show
that

(a) there exists n € N such that un(z,y) = +o0, Vz,y€ R,or

(b) there exists (z,y) such that lim, 4 un(z,y) = +o0.

Further, we consider three cases of different values of a. (see (H3)).
Case 1. 0<a<1.

LEMMA 3. For 0 < a <1 we have
(310) A1+ VE D) Ye,9) = +o0, Va,y€R.

Proof. Using the first inequality in (3.6) and then changing to polar
coordinates, we obtain

(3.11)  A[1+VE + 7)™ )(z,9)
>5[ J S
T g (L VEE)WE T+ VR 4y

_ 390 rdr
; T+ ot i)
=4 oo.
From Lemma 3 and the hypothesis (H3) we have
uz(2,y) 2 MmiA[(1+ V& + 7?)"°|(z,y) = +oo.

Hence, the Theorem 1 is proved in Case 1.
Case 2. 1<a<?2.

LEMMA 4. For a > 1 we have

2 —a 1
(3.12) AL+ VE +72) (2, 9) 2 Na-D(1t Vot

Proof. Similarly as in (3.11) we have

too rdr

(G13) AQHVELDNe 2 [ e e

z2+y?
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From the inequality

T 1
3.14 ——>, Vr>Val+y?

we obtain (3.12) and Lemma 4 is proved.

Using now the recurrent relation (3.3), (3.4), hypothesis (H3) and Lemma
4, we obtain

(3.15) uz(2,y) > A[Mui(§,n)](z,y) > ma(1 + /a2 +y2) 7

where

(3.16) M=a-1, my=Mm/[2)

By recurrence, we can prove that

(3.17) Un(2,y) 2 ma(1+ V22 +y2) 7

with

(3.18) A, = 1- (2a—_a1)an—1, . M%i‘l, vn> 2.

Since 1 < a < 2, we can choose a natural number N (depending on &), such
that

—In(2-a) <N<1_ln(2—a)

Ina Inha °’

namely we choose N such that 0 < aAy < 1. By hypothesis (H3) and
Lemma 3, we have

(319)  unii(e,9) 2 MmGA[(L+ VE+ )" M](a,y) =

Therefore, Theorem 1 is proved in Case 2.
Case 3. a=2.

LEMMA 5. We have

(3200 AL+ VE+7)N(2,y) 2 ‘“(1 + V72 +47)

2+y

Proof. Similarly as in (3.11) we have

(3:21) A1+ VE+ )% (z,y) 2 f 1+ )z(,.rf\/m)‘
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Using the inequality

(3.22) (1: 72 211_ Vr > 1,
we have (3.20).
LEMMA 6. Putting
0, 2 +y? <1,
(3.23) v(z,y) = x2+ 2(lnm2 Loyt
where
(3.24) Cn=M*"" "1(—m vin2)" 1
we have
(3.25) un(z,y) > vn(z,y), Vz,y€ R, Vn>2.

Proof. First, observe that the inequality (3.25) holds for n = 2. Indeed,
using Lemma 5, we have

(3.26) up(z,y) 2 MmiA[(1+ V€ +n?)*)(z,y)

\/C2Tln (1+ /22 + 2).

Hence, from (3.23), (3.26) we have

(3.27) uz(z,y) > vo(2,y), Va,y € R.
Suppose that (3.25) holds for a fixed n. It is easy to see that
(3.28) unt+1(2,y) >0, Vz,y€ R.

With 22 + y2 > 1, we have

(3:29)  unpa(2,9) > MAPE(E D)](2,Y)

T (Inr)2"dr

> MC2
ﬁ{y r(r+ Vel +9?)

+0c0

> MCi (/22 [
S

dr
r(r+ /2% +4?)
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2 e
_ MCnan(lIl \/m)z 1
72 +y2

N

=G0 JET )T, VayeR,
/1122 +y2

because MC21n2 = Cpry1, by (3.24).
From (3.23), (3.28) we obtain

un+1($vy) _>_ 'vn+1(z’y)) V:v,y € R.

This fact shows by induction that Lemma 6 is true.
By (3.23), (3.24), we rewrite v,(z,y) for * + y* > 1 in the form

1 1 n—1
vz, y) = —Mmy\/In2In /22 +42)% .
w(009) = 3y M a2 V)

Choose z,y such that %Mml In2ln+/z2+ 9% > 1, 0r
z? + 4% > exp(8/M*miln2) = r3.

(3.30)

Then we have

. . _ 2, .2 2
ngr-}r-loo un(zay) 2 nllor-lr-loo ?)n(II?, y) = +to00,z" + ¥y~ > 715.
Hence Theorem 1 is proved in Case 3.

Combining Cases 1-3 we see that Theorem 1 holds for 0 < a < 2.

Remarks: (i) In [1], the function v,(z,y) is given in the form of a
functional series and is more complicated than (3.23).

(ii) The conclusion does not hold for & > 2. For example let a = 3 and
f(z,y,u) = ku®, where k is a given positive constant. Of course, f does not
satisfy the hypothesis (Hy). The function v(z,y,2) = (22 +y? + (2 +k)?)~1/2
is a positive solution of the problem (1.1), (1.2) satisfying (S;1), (S2).
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