

Dinh Van Ruy, Nguyen Thanh Long, Duong Thi Thanh Binh

ON A NONEXISTENCE OF POSITIVE SOLUTION
OF LAPLACE EQUATION IN UPPER HALF-SPACE

1. Introduction

Consider the following Laplace equation in the upper half-space

$$(1.1) \quad \Delta u = 0, \quad (x, y, z) \in R_+^3 = \{(x, y, z) \in R^3 : z > 0\}$$

with a nonlinear boundary condition of the form

$$(1.2) \quad -u_z(x, y, 0) = f(x, y, u(x, y, 0)), \quad (x, y) \in R^2.$$

In [1] there was studied the Laplace equation of axial symmetry form

$$(1.3) \quad u_{rr} + \frac{1}{r}u_r + u_{zz} = 0, \quad r > 0, z > 0,$$

with a nonlinear boundary condition

$$(1.4) \quad -u_z(r, 0) = I_0 \exp(-r^2/r_0^2) + u^\alpha(r, 0), \quad r \geq 0,$$

where I_0, r_0, α are given positive constants. The problem (1.3), (1.4) is a stationary case of the problem relative to ignition by radiation. In [1] it was proved that the problem (1.3), (1.4) in the case $0 < \alpha \leq 2$ has no positive solution. Afterwards, this result has been extended in [2] for more general nonlinear boundary condition

$$(1.5) \quad -u_z(r, 0) = g(r, u(r, 0)), \quad r \geq 0.$$

In this paper we consider the problem (1.1), (1.2) with a given function f which is continuous, nondecreasing and bounded below by the power function of order α with respect to the third variable. By constructing a suitable functional sequence, we prove that for $0 < \alpha \leq 2$ the problem (1.1), (1.2) has no positive solution. This result is a relative extension of that from [1], [2].

2. Hypotheses and statement of the main result

We omit the definition of a usual function space. Put

$$R_+ = \{x \in R : x \geq 0\}.$$

Assume that the function $f : R^2 \times R_+ \rightarrow R$ satisfies the following conditions:

(H₁) f is continuous,

(H₂) f is nondecreasing with respect to third variable, i.e.,

$$(f(x, y, u) - f(x, y, v))(u - v) \geq 0, \quad \forall x, y \in R, \quad \forall u, v \in R_+,$$

(H₃) there exist two positive constants α and M such that

$$f(x, y, u) \geq Mu^\alpha, \quad \forall x, y \in R, \quad \forall u \in R_+,$$

(H₄) the integral $\int \int_{R^2} \frac{f(x, y, 0) dx dy}{1 + \sqrt{x^2 + y^2}}$ exists and is positive.

Besides, the solution of the problem (1.1), (1.2) is supposed to satisfy the following conditions:

(S₁) $u \in C^2(R_+^3) \cap C(\overline{R_+^3})$, $u_z \in C(\overline{R_+^3})$, where

$$\overline{R_+^3} = \{(x, y, z) \in R^3 : z \geq 0\},$$

(S₂) u is regular at infinity, i.e.,

- (i) $\max_{x^2 + y^2 + z^2 = R^2} |u(x, y, z)| \rightarrow 0$, as $R \rightarrow +\infty$,
- (ii) there exists a constant $C > 0$ such that

$$|\operatorname{grad} u(x, y, z)| \leq \frac{C}{x^2 + y^2 + z^2}$$

as $x^2 + y^2 + z^2$ is sufficiently large.

The solution u of the problem (1.1), (1.2) satisfying the conditions (S₁), (S₂) can be represented by (see [3])

$$(2.1) \quad u(x, y, z) = A[f(\xi, \eta, u(\xi, \eta, 0))](x, y, z), \quad \forall (x, y, z) \in R_+^3,$$

where A is the linear operator defined by

$$(2.2) \quad A[v(\xi, \eta)](x, y, z) = \frac{1}{2\pi} \int \int_{R^2} \frac{v(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^2 + (y - \eta)^2 + z^2}}.$$

We state the main result of this paper as follows.

THEOREM 1. *Suppose that f satisfies the hypotheses (H₁)–(H₄) with $0 < \alpha \leq 2$. Then the problem (1.1), (1.2) has no positive solution satisfying (S₁), (S₂).*

3. Proof of Theorem 1

Suppose, by contradiction, that the problem (1.1), (1.2) has a positive solution $u(x, y, z)$ satisfying (S_1) , (S_2) . Let $z \rightarrow 0_+$ in the integral equation (2.1) and put $u(x, y, 0) = u(x, y)$. Then we obtain

$$(3.1) \quad u(x, y) = A[f(\xi, \eta, u(\xi, \eta))](x, y),$$

where A is a linear operator defined by

$$(3.2) \quad A[v(\xi, \eta)](x, y) = \frac{1}{2\pi} \iint_{R^2} \frac{v(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^2 + (y - \eta)^2}}.$$

Construct a recurrent functional sequence $\{u_n(x, y)\}$ defined by

$$(3.3) \quad u_1(x, y) = \frac{m_1}{1 + \sqrt{x^2 + y^2}}, \quad m_1 = \frac{1}{2\pi} \iint_{R^2} \frac{f(\xi, \eta, 0) d\xi d\eta}{1 + \sqrt{\xi^2 + \eta^2}},$$

$$(3.4) \quad u_{n+1}(x, y) = A[f(\xi, \eta, u_n(\xi, \eta))](x, y), \quad n \geq 1.$$

Then, we have two following lemmas.

LEMMA 1.

$$(3.5) \quad A[f(\xi, \eta, 0)](x, y) \geq u_1(x, y), \quad \forall x, y \in R.$$

Proof. From the inequalities

$$(3.6) \quad \begin{aligned} \frac{1}{\sqrt{(x - \xi)^2 + (y - \eta)^2}} &\geq \frac{1}{\sqrt{x^2 + y^2} + \sqrt{\xi^2 + \eta^2}} \\ &\geq \frac{1}{1 + \sqrt{x^2 + y^2}} \cdot \frac{1}{1 + \sqrt{\xi^2 + \eta^2}}, \end{aligned} \quad \forall x, y, \xi, \eta \in R,$$

by (3.3), we obtain (3.5).

LEMMA 2. *The functional sequence $\{u_n(x, y)\}$ defined by (3.3), (3.4) satisfies the following conditions:*

(i) $\{u_n\}$ is nondecreasing., i.e.,

$$(3.7) \quad u_n(x, y) \leq u_{n+1}(x, y), \quad \forall n \in N, \quad \forall x, y \in R.$$

(ii) $\{u_n\}$ is bounded above by $u(x, y)$, i.e.,

$$(3.8) \quad u_n(x, y) \leq u(x, y), \quad \forall n \in N, \quad \forall x, y \in R.$$

(iii) $u_n(x, y)$ converges pointwise and satisfies

$$(3.9) \quad \lim_{n \rightarrow +\infty} u_n(x, y) \leq u(x, y), \quad \forall x, y \in R.$$

Proof. Runs easily by recurrence on n .

By means of (3.8), (3.9), the Theorem 1 will be proved, if we can show that

- (a) there exists $n \in N$ such that $u_n(x, y) = +\infty$, $\forall x, y \in R$, or
- (b) there exists (x, y) such that $\lim_{n \rightarrow +\infty} u_n(x, y) = +\infty$.

Further, we consider three cases of different values of α . (see (H₃)).

Case 1. $0 < \alpha \leq 1$.

LEMMA 3. *For $0 < \alpha \leq 1$ we have*

$$(3.10) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha}](x, y) = +\infty, \quad \forall x, y \in R.$$

Proof. Using the first inequality in (3.6) and then changing to polar coordinates, we obtain

$$\begin{aligned} (3.11) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha}](x, y) &\geq \frac{1}{2\pi} \iint_{R^2} \frac{d\xi d\eta}{(1 + \sqrt{\xi^2 + \eta^2})^\alpha (\sqrt{\xi^2 + \eta^2} + \sqrt{x^2 + y^2})} \\ &= \int_0^{+\infty} \frac{r dr}{(1 + r)^\alpha (r + \sqrt{x^2 + y^2})} \\ &= +\infty. \end{aligned}$$

From Lemma 3 and the hypothesis (H₃) we have

$$u_2(x, y) \geq Mm_1^\alpha A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha}](x, y) = +\infty.$$

Hence, the Theorem 1 is proved in Case 1.

Case 2. $1 < \alpha < 2$.

LEMMA 4. *For $\alpha > 1$ we have*

$$(3.12) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha}](x, y) \geq \frac{1}{2(\alpha - 1)(1 + \sqrt{x^2 + y^2})^{\alpha-1}}.$$

Proof. Similarly as in (3.11) we have

$$(3.13) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha}](x, y) \geq \int_{\sqrt{x^2 + y^2}}^{+\infty} \frac{r dr}{(1 + r)^\alpha (r + \sqrt{x^2 + y^2})}.$$

From the inequality

$$(3.14) \quad \frac{r}{r + \sqrt{x^2 + y^2}} \geq \frac{1}{2}, \quad \forall r \geq \sqrt{x^2 + y^2}$$

we obtain (3.12) and Lemma 4 is proved.

Using now the recurrent relation (3.3), (3.4), hypothesis (H₃) and Lemma 4, we obtain

$$(3.15) \quad u_2(x, y) \geq A[Mu_1^\alpha(\xi, \eta)](x, y) \geq m_2(1 + \sqrt{x^2 + y^2})^{-\lambda_2}$$

where

$$(3.16) \quad \lambda_2 = \alpha - 1, \quad m_2 = Mm_1^\alpha/2\lambda_2$$

By recurrence, we can prove that

$$(3.17) \quad u_n(x, y) \geq m_n(1 + \sqrt{x^2 + y^2})^{-\lambda_n}$$

with

$$(3.18) \quad \lambda_n = \frac{1 - (2 - \alpha)\alpha^{n-1}}{\alpha - 1}, \quad m_n = \frac{Mm_{n-1}^\alpha}{2\lambda_n}, \quad \forall n \geq 2.$$

Since $1 < \alpha < 2$, we can choose a natural number N (depending on α), such that

$$\frac{-\ln(2 - \alpha)}{\ln \alpha} \leq N < 1 - \frac{\ln(2 - \alpha)}{\ln \alpha},$$

namely we choose N such that $0 < \alpha\lambda_N \leq 1$. By hypothesis (H₃) and Lemma 3, we have

$$(3.19) \quad u_{N+1}(x, y) \geq Mm_N^\alpha A[(1 + \sqrt{\xi^2 + \eta^2})^{-\alpha\lambda_N}](x, y) = +\infty.$$

Therefore, Theorem 1 is proved in Case 2.

Case 3. $\alpha = 2$.

LEMMA 5. *We have*

$$(3.20) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-2}](x, y) \geq \frac{\ln(1 + \sqrt{x^2 + y^2})}{4\sqrt{x^2 + y^2}}.$$

Proof. Similarly as in (3.11) we have

$$(3.21) \quad A[(1 + \sqrt{\xi^2 + \eta^2})^{-2}](x, y) \geq \int_1^{+\infty} \frac{r dr}{(1 + r)^2(r + \sqrt{x^2 + y^2})}.$$

Using the inequality

$$(3.22) \quad \frac{r}{(1+r)^2} \geq \frac{1}{4r}, \quad \forall r \geq 1,$$

we have (3.20).

LEMMA 6. *Putting*

$$(3.23) \quad v_n(x, y) = \begin{cases} 0, & x^2 + y^2 \leq 1, \\ \frac{C_n}{\sqrt{x^2 + y^2}} (\ln \sqrt{x^2 + y^2})^{2^{n-2}}, & x^2 + y^2 \geq 1, \end{cases}$$

where

$$(3.24) \quad C_n = M^{2^{n-1}-1} \left(\frac{1}{2} m_1 \sqrt{\ln 2} \right)^{2^{n-1}} \frac{1}{\ln 2},$$

we have

$$(3.25) \quad u_n(x, y) \geq v_n(x, y), \quad \forall x, y \in R, \quad \forall n \geq 2.$$

P r o o f. First, observe that the inequality (3.25) holds for $n = 2$. Indeed, using Lemma 5, we have

$$(3.26) \quad \begin{aligned} u_2(x, y) &\geq M m_1^2 A[(1 + \sqrt{\xi^2 + \eta^2})^{-2}](x, y) \\ &\geq \frac{C_2}{\sqrt{x^2 + y^2}} \ln(1 + \sqrt{x^2 + y^2}). \end{aligned}$$

Hence, from (3.23), (3.26) we have

$$(3.27) \quad u_2(x, y) \geq v_2(x, y), \quad \forall x, y \in R.$$

Suppose that (3.25) holds for a fixed n . It is easy to see that

$$(3.28) \quad u_{n+1}(x, y) \geq 0, \quad \forall x, y \in R.$$

With $x^2 + y^2 \geq 1$, we have

$$(3.29) \quad \begin{aligned} u_{n+1}(x, y) &\geq M A[v_n^2(\xi, \eta)](x, y) \\ &\geq M C_n^2 \int_{\sqrt{x^2+y^2}}^{+\infty} \frac{(\ln r)^{2^{n-1}} dr}{r(r + \sqrt{x^2 + y^2})} \\ &\geq M C_n^2 (\ln \sqrt{x^2 + y^2})^{2^{n-1}} \int_{\sqrt{x^2+y^2}}^{+\infty} \frac{dr}{r(r + \sqrt{x^2 + y^2})} \end{aligned}$$

$$\begin{aligned}
&= \frac{MC_n^2 \ln 2}{\sqrt{x^2 + y^2}} (\ln \sqrt{x^2 + y^2})^{2^{n-1}} \\
&= \frac{C_{n+1}}{\sqrt{x^2 + y^2}} (\ln \sqrt{x^2 + y^2})^{2^{n-1}}, \quad \forall x, y \in R,
\end{aligned}$$

because $MC_n^2 \ln 2 = C_{n+1}$, by (3.24).

From (3.23), (3.28) we obtain

$$u_{n+1}(x, y) \geq v_{n+1}(x, y), \quad \forall x, y \in R.$$

This fact shows by induction that Lemma 6 is true.

By (3.23), (3.24), we rewrite $v_n(x, y)$ for $x^2 + y^2 \geq 1$ in the form

$$(3.30) \quad v_n(x, y) = \frac{1}{M \sqrt{x^2 + y^2} \ln 2} \left(\frac{1}{2} M m_1 \sqrt{\ln 2 \ln \sqrt{x^2 + y^2}} \right)^{2^{n-1}}.$$

Choose x, y such that $\frac{1}{2} M m_1 \sqrt{\ln 2 \ln \sqrt{x^2 + y^2}} > 1$, or

$$x^2 + y^2 > \exp(8/M^2 m_1^2 \ln 2) = r_0^2.$$

Then we have

$$\lim_{n \rightarrow +\infty} u_n(x, y) \geq \lim_{n \rightarrow +\infty} v_n(x, y) = +\infty, x^2 + y^2 > r_0^2.$$

Hence Theorem 1 is proved in Case 3.

Combining Cases 1-3 we see that Theorem 1 holds for $0 < \alpha \leq 2$.

Remarks: (i) In [1], the function $v_n(x, y)$ is given in the form of a functional series and is more complicated than (3.23).

(ii) The conclusion does not hold for $\alpha > 2$. For example let $\alpha = 3$ and $f(x, y, u) = ku^3$, where k is a given positive constant. Of course, f does not satisfy the hypothesis (H_4) . The function $v(x, y, z) = (x^2 + y^2 + (z + k)^2)^{-1/2}$ is a positive solution of the problem (1.1), (1.2) satisfying (S_1) , (S_2) .

Acknowledgement. The authors would like to thank the referee for his corrections and suggestions.

References

- [1] F.V. Bunkin, V.A. Galaktionov, N.A. Kirichenko, S.P. Kurdyumov, A.A. Samarsky, *On a nonlinear boundary value problem of ignition by radiation*, J. Comp. Math. Phys. 28 (1988), 549-559. (in Russian).
- [2] Nguyen Thanh Long, Dinh Van Ruy, *On a nonexistence of positive solution of Laplace equation in upper half-space with Cauchy data*, Demonstratio Math. 28 (1995), 921-927.

[3] V.S. Vladimirov, *Equations of Mathematical Physics*, Mir Publishers Moscow, 1984.

Addresses of authors:

Dinh Van Ruy
COOPERATOR AT DEPARTMENT OF APPLIED MATHEMATICS,
POLYTECHNIC UNIVERSITY OF HOCHIMINH CITY,
268 Ly Thuong Kiet str. dist. 10
HOCHIMINH CITY, VIETNAM

Nguyen Thanh Long
DEPARTMENT OF APPLIED MATHEMATICS
POLYTECHNIC UNIVERSITY OF HOCHIMINH CITY
268 Ly Thuong Kiet str. dist. 10
HOCHIMINH CITY, VIETNAM

Duong Thi Thanh Binh
DEPARTMENT OF PHYSICS-MATHEMATICS
UNIVERSITY OF MEDICINE AND PHARMACY OF HOCHIMINH CITY,
217 An Duong Vuong str. dist. 5
HOCHIMINH CITY, VIETNAM

Received April 14, 1995.