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ON A NONEXISTENCE OF POSITIVE SOLUTION 
OF LAPLACE EQUATION IN U P P E R HALF-SPACE 

1. Introduction 
Consider the following Laplace equation in the upper half-space 

(1.1) Au = 0, (x,y,z)£Rl = {{x,y,z)eR3 :z>Q} 

with a nonlinear boundary condition of the form 

(1.2) -uz(x,y,0) = f(x,y,u(x,y,0)), (x,y)eR2. 

In [1] there was studied the Laplace equation of axial symmetry form 

(1.3) urr + -ur + uzz = 0, r > 0, z > 0, 
r 

with a nonlinear boundary condition 

(1.4) -uz(r,0) = I0exp(-r2/r2
0) + ua(r,Q), r > 0, 

where Io , ro ,a are given positive constants. The problem (1.3), (1.4) is a 
stationary case of the problem relative to ignition by radiation. In [1] it was 
proved that the problem (1.3), (1.4) in the case 0 < a < 2 has no positive 
solution. Afterwards, this result has been extended in [2] for more general 
nonlinear boundary condition 

(1-5) ~uz{r,0) = g(r,u(r,0)),r> 0. 

In this paper we consider the problem (1.1), (1.2) with a given function / 
which is continuous, nondecreasing and bounded below by the power func-
tion of order a with respect to the third variable. By constructing a suit-
able functional sequence, we prove that for 0 < a < 2 the problem (1.1), 
(1.2) has no positive solution. This result is a relative extension of that 
from [1], [2], 
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2. H y p o t h e s e s and s tatement of the main result 
We omit the definition of a usual function space. Put 

R+ = {x G R : x > 0}. 

Assume that the function / : R2 x R+ —»• R satisfies the following conditions: 
(Hi) / is continuous, 

(H2) / is nondecreasing with respect to third variable, i.e., 

(f(x,y,u)~ f(x,y,v))(u- v) > 0, Vz, y £ R, Vu,v e R+, 

(H3) there exist two positive constants a and M such that 

f ( x , y, u) > Mua, V®, y £ R, Vu £ R+, 

(H4) the intergal / / exists and is positive. 
R2 H~V X 

f(x,y,Q)dxdy 

R2 

Besides, the solution of the problem (1.1), (1.2) is supposed to satisfy 
the following conditions: 

(Si) u £ C\R\) n C(R^),uz £ CCRj) , Where 

= { ( x , 2 / , 2 ) e J R 3 : ^ > 0 } , 

(S2) u is regular at infinity.,i.e., 
(i) ma,xx2+y2+z2-R2 \u(x,y,z)\ 0, as R ->• +00, 
(ii) there exists a constant C > 0 such that 

( j 
| g r a d u ( ® , y , * ) | < 

x* + y1 + zi 

as x2 + y2 + z1 is sufficiently large. 
The solution u of the problem (1.1), (1.2) satisfying the conditions (Si), 

(S2) can be represented by (see [3]) 

(2.1) u(x, y, z) = 77, u(£, rj, 0))](x, y, z), V(x,y, z) £ Rs
+, 

where A is the linear operator defined by 

(2.2) AM, * ) ] ( , , „ , , ) = I- J J y . . 2-2tt J r J - 0 2 +(2/ -T?)2 + 

We state the main result of this paper as follows. 

Theorem 1. Suppose that f satisfies the hypotheses (Hi)-(H4) with 
0 < a < 2. Then the problem (1.1), (1.2) has no positive solution satis-
fying (Si), (S2). 
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3. Proof of Theorem 1 
Suppose, by contradiction, that the problem (1 .1) , (1 .2 ) has a positive 

solution u(x,y,z) satisfying ( S i ) , ( S 2 ) . Let z 0+ in the integral equation 
(2 .1 ) and put u(x, y, 0) = u(x, y). Then we obtain 

( 3 . 1 ) u(x, y) = A[/(£, rj, t t ( f , rj))](x, y), 

where A is a linear operator defined by 

(3 .2 ) A H ( , „ ) } ( * , J f 
27r V y/{x - 0 2 + (y - v)2 

Construct a recurrent functional sequence { u n ( x , y ) } defined by 

ri t ^ 7711 1 r r /(£>*/> 3 . 3 ) u^x.y) = — , rai = — J J 
1 + y/x2 + y2 2tt 1 + + v2 

( 3 . 4 ) un+1(x,y) = A[f(£,rj,un(£,T]))](x,y), n > 1. 

Then, we have two following lemmas. 

L e m m a 1. 

(3 .5 ) 0) ) ] (®,y) > U l ( ® , 2/), V®, y G fl. 

P r o o f . From the inequalities 

(3-6) „ J , , > 1 

- O 2 + ( y - v)2 ~ V ^ f + V^TÏ* 
l l > 

1 l + y / e + V5' 

7? € 

by (3 .3) , we obtain (3 .5) . 

L e m m a 2 . The junctional sequence {un(x, y ) } defined by ( 3 . 3 ) , ( 3 . 4 ) sat-
isfies the following conditions: 

( i ) {un} is nondecreasing.,i,e., 

( 3 . 7 ) un(x,y) < un+1(x,y), Vn £ N, Vz , y e R. 

( i i ) {un} is bounded above by u(x,y).,i.e., 

(3 .8 ) un(x, y) < u(x, y), Vrc e N, Vz, y £ R. 

(i i i) un(x,y) converges pointwise and satisfies 

( 3 . 9 ) l im un(x,y) < u(x,y), Vz , y € R. 
n—• -{-00 
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P r o o f . Runs easily by recurrence on n. 
By means of (3.8), (3.9), the Theorem 1 will be proved, if we can show 

that 
(a) there exists n £ N such that un(x,y) = +oo, € R, or 
(b) there exists (x ,y ) such that limn_>+oo un(x,y) = +oo. 

Further, we consider three cases of different values of a . (see (H3)). 
C a s e 1. 0 < a < 1. 

LEMMA 3 . For 0 < a < 1 we have 

( 3 . 1 0 ) + Vx,yeR. 

P r o o f . Using the first inequality in (3.6) and then changing to polar 
coordinates, we obtain 

(3.11) A[(l + ^ e + l f ) - a } ( x , y ) 

- oZ 11 d£dr] 

V f i + •/( ' ' + ' / 2 ) " iV( J + v- + <J*- + <r) 

' I 
+0° rdr 
J (1 + r)a(r+y/x2+y2) 

= + 00. 

From Lemma 3 and the hypothesis (H3) we have 

u2(x,y) > Mm?A[( 1 + Ve + ^)~a](x, y) = +00. 

Hence, the Theorem 1 is proved in Case 1. 
C a s e 2. 1 < a < 2. 

LEMMA 4 . For a > 1 we have 

(3.12) A [ ( l + V / e n M i T a ] ( z , 2 / ) > 
2(a — 1)(1 + -y/a:2 + y2)01-1' 

P r o o f . Similarly as in (3.11) we have 

(3.i3) ¿ [ ( l + y) > 7 ° — 7 — ^ 7 = — . 
(1 + r)"(r + y/x^+y2) 
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From the inequality 

(3.14) > I, Vr > y/x2 + y2 

we obtain (3.12) and Lemma 4 is proved. 
Using now the recurrent relation (3.3), (3.4), hypothesis (H3) and Lemma 

4, we obtain 

(3.15) u2(x,y) > A [ M < ( £ , r?)](x, y) > m2( 1 + y/x2+y2)~x* 

where 

(3.16) A2 = a - 1, m2 = Mm?/2\2 

By recurrence, we can prove that 

(3.17) un(x, y) > mn( 1 + A A 2 + 2 / 2 ) " a » 

with 

(3.18) A ^ ' - ^ - f " - ' , « . - ^ = 1 , Vn > 2. 
a - 1 2An 

Since 1 < a < 2, we can choose a natural number N (depending on a) , such 
that 

In a In a ' 

namely we choose N such that 0 < < 1. By hypothesis (H3) and 
Lemma 3, we have 

(3.19) y) > Mma
NA[( 1 + y) = +00. 

Therefore, Theorem 1 is proved in Case 2. 
C a s e 3. a = 2. 

L EMMA 5 . We have 

(3.20) A [ ( I + V I ^ R I ( „ ) > M i l i t e . 

P r o o f . Similarly as in (3.11) we have 

(3.21) A[(1 + VeT^r2](x, y)> J Z rnrTv 
* (1 + r)2{r + y/x2 + y2) 

+0° rdr 
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Using the inequality 

(3-22) ^ > 1 , W > 1, 

we have (3.20). 

LEMMA 6. Putting 

* 0, x2 + y2 < 1, 
(3.23) vn(x,y) = 

where 

Cn (lnV
/iTT^)2""2, x2 + y2 > 1, 

\Jx2 y 

(3.24) CB = M a " " , - 1 ( i m 1 V £ 2 ) a " - 1
i ^ , 

we have 

(3.25) un(x,y) > vn(x,y), \/x,y 6 R, Vn > 2. 

P r o o f . First, observe that the inequality (3.25) holds for n = 2. Indeed, 
using Lemma 5, we have 

(3.26) u2(x, y) > Mm\A[{l + y) 

- + 

v® + f 

Hence, from (3.23), (3.26) we have 

(3.27) u2(x,y) > v2(x,y), Vx,y £ R. 

Suppose that (3.25) holds for a fixed n. It is easy to see that 

(3.28) « n + i ( s , ! 0 > 0 , Vx,yeR. 

With x2 + y2 > 1, we have 

(3.29) un+1 (x,y)> MA[v2
n{£, 7,)](z, y) 

>MCl 7 - H p L 
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MCl In 2 / 
(In V x2 + r ) 

= . C ; + 1 i l n y ^ T ^ ) 2 " " 1 , V z . y e J Z , 
V 1 + f 

because MC2n In 2 = C„+i , by (3.24). 
From (3.23), (3.28) we obtain 

" n + i ( ® , » ) > ®n+i(®, y), V®, y e R. 

This fact shows by induction that Lemma 6 is true. 
By (3.23) , (3 .24) , we rewrite vn(x,y) for x2 + y2 > 1 in the form 

(3.30) vn(x,y) = J — l n 2 1 n + ^ ) 2 " " \ 
My/x2 + y2 ln2 ^ 

Choose œ, y such that \Mm,\ 2 In -^ir2 + ?/2 > 1, or 

x 2 + y2 > exp(8/M2ml In 2) = rjj. 

Then we have 

lim un(x,y)> lim vn(a:, y) = +oo, a;2 + y2 > r^. 
n—*+oo n—»+oo 

Hence Theorem 1 is proved in Case 3. 
Combining Cases 1-3 we see that Theorem 1 holds for 0 < a < 2. 

R e m a r k s : (i) In [1], the function vn(x,y) is given in the form of a 
functional series and is more complicated than (3.23). 

(ii) The conclusion does not hold for a > 2. For example let a = 3 and 
f(x, y, u) = ku3, where A; is a given positive constant. Of course, / does not 
satisfy the hypothesis (H4). The function v(x,y,z) = (x2 + y2 + (z + k)2)~1/2 

is a positive solution of the problem (1.1), (1.2) satisfying ( S i ) , (S2). 

A c k n o w l e d g e m e n t . The authors would like to thank the referee for his 
corrections and suggestions. 
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