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TIME-SPACE FINITE ELEMENTS METHOD 
FOR MIXED HYPERBOLIC PROBLEM 

In many technical applications (see e.g. [2] ) the space - time finite ele-
ments method is used, neverless without any theoretical explanations of its 
convergence. The aim of this work is to prove that it can be applied to some 
mixed hyperbolic problem. The results of this paper generalize in some sense 
the results obtained in [3]-[5] for the ordinary differential equation initial 
problem. 

1. The problem 
Let T > 0 and L > 0 be fixed constants. Let 

/ : (0,T) x (0 , L ) x R ^ R 

be a continuous function and let it satisfy the Lipschitz conditions in the 
last argument 

(35 > 0)(V(i,z) € (0 ,T) x {0, L))(Vu,v 6 R) 
| f(t, x, u) - f(t, X, v) |< S I u - v I . 

For any uq, U\ £ C((0, L)) consider the mixed problem (for t G (0,T) and 
x G ( 0 ,L)) 

(2) utt - uxx = f(t,x,u), 
(3) u(t,0) = 0,u(t,L) = 0 

and 

(4) «(0, x) = u0(x), ut(0, x) = ui(x). 
Assume that the solution of the given problem exists and is of the class 
C2((0,T) x (0, L)). Introduce the finite elements method by the standard 
procedure. Choose any natural integers M, N, and let r = -ft, h = -4. Define 
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functions = 0 , 1 , 2 , . . . , M, by the formula 

t 
p + 1 for t € (pr — r,pr > fl(0, T) 

(5) 

and similar functions 

(6) = 

— + p + 1 f o r / G (pT,pr + r ) fl ( 0 , T ) 
T 

> 0 otherwise 

^ - r + 1 for x € (rh — h , r h > f l (0 ,L) 

+ 1 for x e (rh, rh + h) D (0, L) 
ih 

0 otherwise. 

The function uT'h will be called the approximate solution if it satisfies 
the boundary conditions 

( 7 ) uT'h(t, 0 ) = 0 , uT>\t, L) = 0 

for t = kr, k = 0 , 1 , . . . , M, the initial conditions 

(8) t»T'fc(0, x) = tio(x), uTt'h( 0, x) = u x(x) , 

for the points x = lh,l = 0 , . . .,N and the "Galerkin rule" 

( 9 ) 1 1 { - x ) + 
0 0 ^ 

- $Tk(t)V't(x)f(t,x,u(t,x))^dxdt = 0 

for k = 1,...,M- 1 and / = 1 , . . . , N - 1. 
We look for an approximate solution uT'h of the form 

A f - l N-1 

(10) x) = J 2 E « i : f * i ( o * f ( « ) , 
fc=0 i = l 

where a^'j1 are unknown constants for k = 0 , 1 , 2 , . . . , M and / = 0 , 1 , 2 , . . . , N. 
In the sequel we will write akti instead of Notice that 

( 1 1 ) aktl = uT'h(kr,lh). 

Let 

(12) 

and 

(13) r < 

r < 

1 h < 1 
i t t t ' h ^ r ^ r -6108t55 2 
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Under these conditions we show that the the approximate solutions uT'h 

tend to the solution u of the problem (2)-(4) when h and r tend to zero in 
a some norm which will be given later. 

2. The approximate scheme 
It is easy to see that the function uT,h satisfies the boundary conditions 

(7) if and only if 

(14) otk,o = 0, ctktN = 0, A; = 0 , . . . , M. 

From the initial conditions (8) we have 

(15) a0ti = u0(lh), - ( a l t i - a 0 , i ) = ux(lh), l = 0,...,N. 
T 

Now let us examine the condition (9). The functions have the support 
on (Ih — h,lh + h), the function on (kr — r,kr + r ) and thus 

lh+h fcr+r ( a a 
(16) J J \ + 

lh-h fcr-r 

-$l(t)Vt(x)f(t,x,uT'h(t,x))^dtdx = 0. 

Inserting uT'h from (10) into (16), taking into account that in the inter-
val {lh — h,lh + h) only three functions: i f , and in the interval 
(kr — r,kr + t) only the functions aren't identically equal 
to zero, after some transformations we obtain 

1 4 
( 1 7 ) -r(QJt-i,i-i - 2ajk,/-i + ajt+i,/_i) + -j(ak.lit - 2ak,i + ajfc+i,/)+ T* T 

+ 7?(ajt-i,/+i - 2ak,i+i + afc+i>l+i) p-(«k-i, /-i - 20^-1,/ + a f c _i ) ( + i ) -
4 1 

- (afc,/-i - 2«^,; + ak,i+1) - ^-(o!fc+i,/-i - 2ak+\,i + afc+i.z+i) = 

fi lh+h kr+r fe+1 /+1 

= Vh J I * i ( * )»? (* ) / ( * , * , E E <*P,r*;mhr(z))dtdx, 
lh-h kT-T p=k-l r=i—1 

k = 1 , 2 , . . . , M - 1, / = l , 2 , . . . , j V - 1. 

The resulting system (17) with conditions (14),(15) will be now treated as 
a diiference scheme for the problem (2)-(4) and thus for the proof of "legal-
ity" of the application of time-space finite elements method it is sufficient to 
proof that this scheme approximates the problem (2)-(4) and is stable ([1]). 
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3. The approximation 
T H E O R E M 1. Under given conditions the scheme (14),(15),(17) approx-

imates the mixed problem (2)-(4)-
P r o o f . Let us denote by u the exact solution of the problem (2),(3),(4). 

Notice that u is of the class C2((0,T) X (0,2/)). To prove that the scheme 
(14),(15),(17) approximates the problem (2),(3),(4) we must proof that the 
given below expressions So, Si and 62 tend to zero as r and h tend to zero. 
These expressions are equal to 
(18) S0 = u(0, x) - u0(x), x = h,..., (N - 1 )h, 

(19) = ~(u(t, x) - u(0, x)) - U!(x), x = h,..., (N - 1 )h, 
T 

(20) S2-S21-S22 , 
where 

(21) ¿21 = \(u(t — t,x — h) — 2u(t, x-h) + u(t + r,x- h))+ 
4 

+ ~Tix)~ 2u(t, x) + u(t + t, »))+ 

+ ^(u(t -T,x + h)~ 2u(t , x + h) + u(t + t,x + h))-

— J^(u(t — t,x — h) — 2u(t — T, x) + u(t — T,X + h)) — 4 
— j-^(u(t, x — h) — 2u(t, x) + u(t, x + h))— 

— Tr(u(t + t,x — h) — 2u(t + r , x) + u(t + t,x + h)) 

and 

(22) 

h2 

x+h t+T 

S22 = ± f f *i(a)*?(v), rh 
x — h t — T 

1 1 
f(s>y> J2 2 u(t + PT,x + rh)$T

p(s)yZ(y))dsdy, 
p=—1 r=—1 

where x = h,..., (N - 1 )h, t = r , . . . , (M - l ) r . 
Observe, that S0 = 0. From (19) for some 9 € (0,1) we have 

(23) ¿1 = ut(0r, x) - Uf(0, x) 0, 
as t —> 0, because u is of the class C2 on (0 , T ) X (0, L). 

If t and h tend to zero then the terms in (21) tends to u i t and ux 
correspondingly, and 621 tends to 

6(uu(t,x) - uxx(t,x)), 
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which is equal to 6/( / , x, u(t, a;)). Thus we have to prove that 

877 

(24) ¿3 = 

tends to zero. 
It is easy to see that 

X+h t+T 

( 2 5 ) f ( t , x , u ( t , x ) ) = — J j $ l ( s ) * i ( y ) f ( t , x , u ( t , x ) ) d s d y , 
x - h t — T 

and that for (5, y) belonging to the region of integration 

fc+i /+i 
(26) £ E * ; ( « ) * * ( » ) = 

p = k - 1 r = l - 1 

and thus that 
x + h t + T 1 1 

( 2 7 ) S3<— f f \ f ( s , y , J2 E <t + PT,x + rh)$;(s)H!h
r(y))-

x-h t-T p=-lr=-l 
1 1 

- / (*> E E I dsdy = 
p=—1 r=—1 

1 1 
= 4 | f ( s , y , E E + ® + ^ W p i ^ r i v ) ) -

p= —1 r=—1 

p=—1 r=—1 

for some y G (2: — /i,x + /i), s G (£ — r, t + r ) . The functions f and u are con-
tinuous. If h —• 0 and r —> 0, then s t and y x, and the last righthand 
part of the inequality (27), and thus also S3 tends to zero. 

It has been proved that the scheme (14),(15), (17) approximate the prob-
lem (2)-(4). 

4. Transformations of the scheme 
Let 

( 2 8 ) am = (am>i,aTO>2,...,am>N-i)T 

for m = 0 , . . . , M, let 

g^22 - f ( t , x , u ( t , x ) ) 
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(29) 

( ax «2 0 0 . . 0 0 \ 
0-2 ai a2 0 . . 0 0 

A = 
0 a2 Oi a2 . . 0 0 

0 0 0 0 . . ai a2 

^ 0 0 0 0 . . a2 a\ J 

( h b2 0 0 . . . 0 0 \ 
b2 bi b2 0 . . . 0 0 

B = 
0 b2 h b2 . . 0 0 

0 0 0 0 .. h b2 

V o 0 0 0 . . b2 b j 

where 
, o n . 4 2 1 1 . 8 8 . 2 4 
(30) a i = ^ + - ^ , a 2 = - - = - j - ¥ , b 2 = ^ + 

be (N — 1,N — 1) matrices and let F m = Fm(otm 1 , Qmi ^771+1) be a vector 
of the form 

(31) Fm — (.fm, 1) /to,2? • • • t fm, N-1) , 

where f m j = f m , i ( a m - i , a m , a m + 1 ) are given by the formula 
(32) 

lh+h tot+t to+1 /+1 
f m , l = J J - ) f ( t , X , Y , E <*P,r*;(Whr(x))dtdx. 

Ih—h mr—T p=m—1 r=l—1 

Let 

( 3 3 ) Uj = ( u j ( h ) , . . . , u j ( N h - h ) f , j = 0 , 1 . 

Now the system (14),(15),(17) can be written in the form 

/oa\ TT a i _ o ; 0 TT (34) a 0 = U0, = U u 
T 

( 3 5 ) Aam+1 - B a m + A a m - 1 = — ^ F m ( a m - i , a m , a m + i ) 

for m = 1 , . . . , M — 1. 

5. The solvability of the scheme 
The proof of the solvability of the system (34)-(35) will be presented in 

a more general case. Take 

(36) em € Rn_1, m = 0 , 1 , . . .M. 
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and consider the perturbed system 

(37) 
g 

Afim+1 - Bf3m + A/3m-1 = —^Fm((3m-i,{3m,(3m+i) + em+1, 

T H E O R E M 2 . Under our assumptions the system ( 5 7 ) is uniquely solv-
able. 

P r o o f . In the appendix to this work it is proved that under the given 
assumptions the matrix A is invertible, so the last equations in (37) can be 
written in the form 

G 
(38) An+1 - A^BPm + /?m_! = — A-1Fm(pm-l,pm,pm+1) + i 4 _ 1 e m + i , 

m = 1,...,M - 1. 

Observe that /?o and j3\ are given by the first two formulas in (37). Sup-
pose that we have already found • • • •¡Pm- For the vector pm+i we 
have the equation (38). Consider the operator T : RN~X —> RN~1 given by 

(39) Tu = — A-iFniPm-uP^u) + A~xBpm - Pm-i + A~xem+1. 

Let us denote by || || the Euclidean norm in RN~X and the spectral 
norm of the matrix (induced by this vector norm). For two given vectors 
W,W £ RN~1 using (1) we have 

G 
—A-1 (Fm(pm-1 ,/3m,w) — Fm((3m-1 ,Pm,w)) < ( 4 0 ) \\TW-TW\\ 

< 725| |A - 1 | | | |«; — w||. 

In the case of r < h the absolute values of the eigenvalues of the ma-
1 2 L 2 

trix A are not greater than (Appendix, Theorem 3), so the norm 
||A -11| is bounded from above by this value. Under our assumptions (12), 
(13) the operator T is contractive, hence from the Banach Principle there 
exists a unique solution of the equation 
(41) TAJ = U, 

i.e. a unique solution - vector P m +i of the equation (38). 
The proof is completed. 

6. The stability 

T H E O R E M 3. Under given assumptions the scheme (37) is stable. 
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P r o o f . The eigenvalues of the matrix A are simple, equal to 
/t?7T 

(42) XAk = oi - 2a2 c o s — — , k = 1 , . . . , n, 7 n + 1 
and similarly for B we have 

ktir 
(43) XBk = bi - 262cos ^-p-y, k= l , . . . , n . 

The eigenvectors for the matrices A and B that correspond to AAk and ABk 
(with the same k) are the same and equal to 

A/7T 

(44) Xk<p = v{-lf smp—, k,p=l,...,N-l, 

where v is an arbitrary constant. To make these v unitary take 

(«) - = 
Let AJ4, Kb be diagonal matrices with the eigenvalues of the matrices A 
and B on their diagonals, correspondingly. Let W be a matrix with vectors 
X i , . . . , Xyv-i as a columns. 

The matrix W is orthonormal, W - 1 = WT and thus 

(46) WtA = A a W t , WtB = A b W t . 

Denote 

(47) 7m+i = •^Fm(am-1,am,am-1),Km - WT(3m,6m = W T f m . 

After the multiplication of the last equation in (37) by the matrix WT we 
obtain the following vector difference equation 

(48) A^K t o + i — AB«m + A^/im_i = ¿TO+l, Km, € . 

Introduce now the complex numbers 

pk — cos(j>k + ¿s in^ fc , k = 1, ...,N— 1 

where 

fAr>\ j. ^Bk • i \J 4A2
Ak — \2

Bk (49) cos<j>k = ——,sm (f>k = - — - r f — , 
ZAAk 

and the diagonal matrices P and P such that 

(50) P = diag(pi,...,pN-i),P = diag(pu.. .,Pn-i)-

From the first two equations in (37) we can find the vectors /3q and {3\, thus 
we can treat as given the vectors 

(51) k0 = Wt/30,K1 = WtP1. 
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The solution of the vector difference equation (48) with initial conditions 
given by (51) is equal 

TO — 1 
( 5 2 ) Km = ( I M P y 1 (LM{Pm{KX - Pk0)) + A ^ 1 £ I m ( P m ~ r ) 6 r + . 

r=l 

By the orthonormality of the matrix W we have 

( 5 3 ) Pm = WKm,im = WSm. 

Then (the matrix PP is unit in the considered case) 

( 5 4 ) /3m = (W(ImP)-1Im(Pm))WTfa - W((ImP)-1Im(Prn-1))WT(30+ 
m—1 

+ £ W((ImP)-1A-A
1Im(Pm-r))WT

lr+1. 
r—1 

Analogously 

( 5 5 ) am = (W(ImP)-1Im(Pm))WTa1 - W{(ImP)-1Im(Pm-1))WTa0+ 
m — 1 

+ ]T W{{ImP)-lA.^lIm{Pm-r))WTar+l. 
r= 1 

Note that 
A> - "o = eo,Pi - <*i = eo + rei 

and then 

(56) f 3 m - am = 

= TW((ImP)-1Im(Pm))WTe1 + 

+ W({IrnP)-x(Irn(Pm - Irn(Pm-1)))WTe0+ 
m—1 

+ £ W{{ImP)-iK-A
1Im{Pm-r))WT{lr+1 - ar+1). 

T= 1 

Introduce in the space RN~X a norm of the type 

(57) H = 
P = l 

Then 

( 5 8 ) | | / 3 m - a m | | < r\\W((ImP)-1Im(Pm))WT\\ 

+ ||W((IrnP)-\lm(Pm - Im(Pm-l)))WT\\ ||e0|| + 

771 — 1 
+ 2 \ \ W ( { I m P ) ~ l I m ( P m ~ r ) ) W T \ \ | |(7r+i - * r + i ) | | , 

T— 1 

where the norm of the matrix is the spectral one. 
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For any matrix C the matrices C and WCWT = WCW~l are similar, 
and then they have the same eigenvalues. Thus 

( 5 9 ) ||/3m - a m | | < rW^ImP)-1 Im(Pm))\\ ||Cl||+ 

+ |\((ImP)-\lm(Pm - /m(P m _ 1 ) ) )|| ||e0||+ 
TO —1 

+ £ || ( ( Jmir 1 AI 1 /m(P" l - r ) )|| ||(7r+i - *r+i)||. 
r=1 

The quadratic matrices P and A^ are diagonal and pk and A* are their 
eigenvalues. Then the diagonal matrices 

( / m P ) - 1 / m ( P m ) , (ImP)-1[Irn(Pm)-Im(Pm-1)], ( / m P ) " 1 A ^ 1 / m ( P m " r ) 

have on their diagonals the elements 

k = 1 , . . . , N — 1 correspondingly. In this case 

(lm(pk))-\lm(pl) - Im(p3k~1)) = ^ ' ¡ ^ 
COS 2 

and 

sin 
Taking into account (30),(42),(43), (49) and the assumption that h > 2r we 
have 

' fe2~r2 I 
> /i2 + 2r 2 > 2 

a n d \{Im{Pk))-\lm{P%) - /TO^"1))! < ^ 2 -

Observe that 

s in .** = | g C 0 B ( 2 f c _ , + 1 ) ^ | < , . 

k=0 
sin 

From Theorem 3 in the appendix we have 

r 2 h 2 
max|A^| <2{2h2 + T 2 y 

Thus 

||(/mP) - 1/m(Pm)|| < to, 

||(/rnP)-1(/TO(Pm) - /MiP" 1 " 1 ) ) ! ! < V2, 
T2h2 

||(/TOP)-1A^1/TO(Pm-r)|| < max |A^fc|(m - r) < - r). 
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From (59) we have (rm < tM = T) 
(60) | |^ -a r o | |<T| |e 1 | | + v/2||eo|| + 

+ 2 ( 2 t f + r » ) " r ) l l ( 7 r + 1 " a r + l ) l 1 

where 
g 

(61) 7 r + i - <Tr+1 = - e r + i + —(Fr(f3r-i,(3r, f3r+1) - F r ( a r _ i , ar, ar+i)). 

Thus 
lh2 

( 6 2 ) ||/3m - a m | | < T | M + V2||Co|| + 2 ( J 2 + r 2 ) £ ( m - r ) | | e r + 1 | | + 

+ 2 h 2 r 2 r)\\(Fr(Pr-l,Pr,Pr+l) ~ ^ ( « t - I , « r , <*r+l ))|| • 
r = l 

Observe that 

( 6 3 ) \(fm,l(Pm-l,0m,Pm+l) ~ fm,l(a™-l, " m , «ra+1 ))| < 
m+1 i+1 

< 4 S r h £ E \^r~ap,r\ 
p=m—1 r=i—1 

and then 
( 6 4 ) \\(Fm(f3m-i,(3m,(3m+i) - Fr(am_i,am,am+1))|| < 

m + l 

K U V ^ S r h \\PV — ap||, 
p=m—1 

SO 

(65) ||/?m -am | |<r||€ 1 | | + ^||€0||+ 

+ T S H£H-ill + 2 f e 2 + r 2 E ( m - r + ^ H ^ " ^ H -
r = l r = l 

From (13) it follows that l w
2)fi+Zl l< hence 

TT M _ 1 

(66) ||/3m - am\\ < 2T||€l|| + 2 ^ | | £ o | | + T E I K + i l l + 
r = l 

2 1 6 ^ S t W Z ? , 
+ + r 2 E ( m - r + " « r l l -

r = l 
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Since n62$+fih2 < 108\/35r2 and m - r - 1 < m, the last term in the 

inequality (66) is not greater than 10S\/3STT WPR ~ ttr||, and thus 

TT 771-1 

(67) \\flm - am|| < 2T||e1|| + 2v̂ ||e0|| + — £ lkr+i||+ 
T-l 

m—1 
+ m V s S T r J 2 ll)®r-ar||. 

r = l 

Let c = 216 \ /3Sr 2 . Introduce the next norm in R N ~ 1 x R M _ 1 : if 
/? = (/3i,.. .,/3m-i), Where f3k e RN~\ then let 

(68) 

where 

= max(»/(*)||/y) 
k 

(69) 

Then 

(70) 

T](k) = exp 

,(m)||0m - Q„|| < 2T||(,|| + 2V2|||€|||+ 
m—1 

+ 

and (because ekx — 1 > kx for k < 0) 

(71) |||/3-a|||<2r||€l|| + 2^||H|| + 

Thus 

(72) lll/3-a|||<4r||€l|| + jr||H|| 

where K = 4\/2 + 2 1 6 ^ 5 - The scheme is stable. 
This concludes the fact that the solutions of the considered scheme con-

verge to the solution of the problem (2)-(4). 

Appendix 

T H E O R E M 1. Let Bn be the (n,n) matrix of the form 

( d 1 0 0 . . . 0 \ 

Bn = 

1 d 1 

0 1 d 

0 0 0 

0 
1 

0 
0 
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for some n € N and d € R. If \d\ ^ 2 then detBn 0. The eigenvalues of 
Bn are simple, real,and are given by the formula 

kir 

Afc = d - 2 cos — , k = 1 , . . . , N - 1. 

P r o o f . For the matrix Bn in the case where |d| > 2 we have 

detBn — ~t=?=t(/>2+1 — P\+l) 
where 

and 

y/d2^4 

d±(d2 - 4 ) 5 
Pi ,2 = 

detBn = ( ¿ r a + n) 

if |<i| = 2. In the first case we have p\ p2, so detBn / 0. The same is in 
the second case. 

If \d\ < 2 then 

where 
sin 4> 

sin <(>= i ( 4 - d 2 ) ? , 
The equality detBn = 0 takes place only if sin N<j> = 0. In this case 

(n + 1)0 = kir, k £ Z, and d = 2 cos</> = 2cos-£^, k 6 Z. From the period-
icity of the function cos it follows that it is possible to restrict ourselves to 
k = 1,...,JV-1. 

The eigenvalues of the matrix Bn are the solution of the equation 
d - A 1 0 . . . 0 

1 d-X 1 . . . 0 
det(Bn - AE) = 

0 0 0 
By the given analysis it is possible only if 

kir 

d - X 

= 0, 

d-A = 2 cos 
n + 1 

Hence the eigenvalues of Bn are equal to 
kir 

, k = 1,.. .,n. 

Ai. = d — 2 cos , k = 1,..., n. 71+ 1 
T H E O R E M 2 . In the case r < h the matrix A is convertible. 

P r o o f . If T h we have detA = — p - ) n d e t B n , where Bn is the 
same as in Theorem 1 with d = . In the considered case r < h and 
then d > 2. Thus |ci| > 2 and from theorem 1 we obtain that detBn / 0, 
thus detA / 0, the matrix A is convertible. 



886 K. Litewska, J. Muszynski 

T H E O R E M 3 . I f r < h then the eigenvalues of the matrix A 1 are positive 
2 l2 

not greater than 2/^+4t2 • 

P r o o f . The matrix A is real and symmetric, so its eigenvalues A are 
real. In the case where r ^ h we have 

det{A - XI) = - ^)ndetBn, 

where d = - A ^ . If r < h and A < 

Ah2 + 2r 2 2/t2 + r 2 _ 0 

> h2 — T2 h? — T 2 

In this case we have > 2; from Theorem 1 it follows that detBn ^ 0 and 
thus det(A - A I ) £ 0. The values A < in the case of r < h can't 
be the eigenvalues of the matrix A, so all of them are positive and greater 
than 2 h

T ^ T . Thus for r < h the eigenvalues As of the matrix A satisfy: 

- 2 h2 + 4 r 2 

A s - r * h 2 • 
If ( A i , . . . , At) is the collection of the eigenvalues of the matrix A then the 

collection ( A i , . . . , A f c ) , where A; = ( A ; ) - 1 , is the collection of the eigenvalues 
of the matrix A - 1 . Thus we have: if r < h then As are positive and 

A < 
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