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TIME-SPACE FINITE ELEMENTS METHOD
FOR MIXED HYPERBOLIC PROBLEM

In many technical applications (see e.g. [2] ) the space — time finite ele-
ments method is used, neverless without any theoretical explanations of its
convergence. The aim of this work is to prove that it can be applied to some
mixed hyperbolic problem. The results of this paper generalize in some sense
the results obtained in [3]-[5] for the ordinary differential equation initial
problem.

1. The problem
Let T > 0 and L > 0 be fixed constants. Let

f:(0,T)x(0,L)x R — R

be a continuous function and let it satisfy the Lipschitz conditions in the

last argument .
(1) (35 > 0)(V(t,z) € (0,T) x (0, L))(Vu,v € R)
| f(t,2,u) - f(tz,0) [S S |u-v].

For any ug,u; € C({0, L)) consider the mixed problem (for ¢ € (0,7T) and
z € (0,L))

(2) Utt — Ugz = f(tvza u)7

(3) u(2,0)=0,u(¢t,L)=0

and

(4) u(0,2) = up(z), u(0,2) = uy ().

Assume that the solution of the given problem exists and is of the class
C%((0,T) x (0, L)). Introduce the finite elements method by the standard
procedure. Choose any natural integers M, N, and let 7 = %, h = % Define
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functions ¢7,p=0,1,2,..., M, by the formula

(

;—p+1 for t € (pr — r,pr > N(0,T)

(5) %= —£+p+1 for t € (pr,pr+ )N (0, T)
0 ’ otherwise
and similar functions
(2 _rt1 for z € (rh — h,rh > n(0, L)
A h
(6) ¥r = —%+r+1 for z € (rh,rh+ k) N (0, L)
\ 0 otherwise.

The function u™" will be called the approximate solution if it satisfies
the boundary conditions

(7) u™(t,0) = 0,u""(t, L) =0
fort=kr, k=0,1,..., M, the initial conditions
(8) u™*(0,2) = uo(x), u;"(0, ) = w(z),

for the points ¢ = lh,l =0, ..., N and the “Galerkin rule”
T L a X P
0 0

- ®T(1)¥ () (1, a:,u(t,:z:))}da:dt =0

fork=1,...,.M—-1land!l=1,...,N-1.
We look for an approximate solution u”™" of the form
M-1N-1

(10) wht,z) = Y Y ap i) ¥i(),

k=0 I=1
where aZ:f are unknown constants for £=0,1,2,...,M and /=0,1,2,..., N.

In the sequel we will write o instead of aZ:f‘. Notice that

(11) oy = u"h(kr, IR).
Let
h
12 -
(12) T<3
and
(13) L h<
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Under these conditions we show that the the approximate solutions u”"

tend to the solution u of the problem (2)-(4) when h and 7 tend to zero in
a some norm which will be given later.

2. The approximate scheme
It is easy to see that the function u™" satisfies the boundary conditions
(7) if and only if

(14) ‘oo =0, apn =0, k=0,...,.M.

From the initial conditions (8) we have
1
(15) ag, = uo(lh), ;(al,; —agy) = wi(lh), 1=0,...,N.

Now let us examine the condition (9). The functions ®} have the support
‘on {lh — h,lh + h), the function ¥7 on (kT — 7,k7 + 7) and thus

lht+h kr+T 9
w [ f {——@’(tw"(m)u "(t,) + BE(1) 5 V@D (t, )~

lh—h k-7
—®I(t)¥r(2)f(t, =, u"h(t,:z:))}dtda: =0.

Inserting u™* from (10) into (16), taking into account that in the inter-
val (lh — h,lh + k) only three functions: ¥? ,, ¥} ¥} . and in the interval
(kT — 7,kT 4+ 7) only the functions ®}_,,®}, ®;,, aren’t identically equal
to zero, after some transformations we obtain

1 4
(17) T_z(ak—l,l—l —2ag,-1 + Qp41,-1) + ;_—2(011:-1,1 - 20+ ap410)+
+ (k1,41 = 200 141 + Qhy1,41) = — 75 (Qko1,-1 — 20010 + Qk_1,041)—

4 1
- h—2(ak,l—1 =204 + o 41) — E‘f(ak+1,l-—l = 2ak41,0 + Ckt1,041) =

th4+h k471 k+1 41
f [ o) W)z, Y D o B5(t)¥E(2))dtdz,
lh h kr—7 p=k-1r=i-1

k=1,2,...,.M-1,1=1,2,...,N — 1.

The resulting system (17) with conditions (14),(15) will be now treated as
a difference scheme for the problem (2)—(4) and thus for the proof of “legal-
ity” of the application of time—space finite elements method it is sufficient to
proof that this scheme approximates the problem (2)-(4) and is stable ([1]).



876 K. Litewska, J. Muszyiski

3. The approximation

THEOREM 1. Under given conditions the scheme (14),(15),(17) approz-
imates the mized problem (2)—(4).

Proof. Let us denote by u the exact solution of the problem (2),(3),(4).
Notice that u is of the class C2({0,T) X (0, L}). To prove that the scheme
(14),(15),(17) approximates the problem (2),(3),(4) we must proof that the
given below expressions dp, 41 and 6, tend to zero as 7 and h tend to zero.
These expressions are equal to

(18) 8o = u(0,2) — wo(z),z = h,...,(N = 1)h,

19) b= ~(ur,2)~ w(0,2) - 1a(2),z = hy..., (N = Dh,
(20) by = 831 — 032,

where

(21) 6y = T—lz(u(t — 1z h) = 2u(t,z — B) + u(t + 7,2 — b))+
+ S (u(t = 7,2) = 2u(t,2) 4 u(t +7,2))+
+ Tiz(u(t—r,zm)— 2u(t,a + k) + u(t + 7,2 + h))—
- ]3—2(u(t—r,z— B) = 2u(t — 7,2) + u(t — 7,3+ b))
- %(u(t, 2~ h) - 2u(t, z) + u(t, s + b))

1
- h—z(u(t+r,m—h)—2u(t+r,z)+u(t+7,z+h))

and
6 z+h t+71
b = — f HOMEOR
r~h t—1
(22) ) )
F(s,9, Y Y u(t+pr, o+ rh)®](s) ¥ (y))dsdy,
p=—1lr=-1

where 2 = h,...,(N - 1)k, t=7,...,(M - 1)r.

Observe, that 6o = 0. From (19) for some 6 € (0,1) we have
(23) 61 = ue(0r,2) — u(0,2) — 0,
as T — 0, because u is of the class C* on (0,T) x (0, L).

If 7 and h tend to zero then the terms in (21) tends to us; and ugy
correspondingly, and 62; tends to

6(ut(t, ) — upe(t, 2)),
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which is equal to 6 f(¢,z, u(t,z)). Thus we have to prove that

%522 _ f(t,z, u(t, 2))

(20) b =|

tends to zero.
It is easy to see that

1 z4+h t+71
(25)  f@zute)= = [ [ L)Wt 2, u(t,z))dsdy,
r—h t—T

and that for (s,y) belonging to the region of integration

E+1 141
(26) Y ek = 1,
p=k—1r=Ii-1
and thus that
1 TR ottT
(27) &< f J 1 f(s.9, Z Z u(t + pr, @ + rh)@7 ()} (y))-
—h t—71 p=-1lr=-1
— fltoz, D Y u(t,@)®p(s)¥1(y)) | dsdy =
1 1
=4[ (58 > Y ult+pr,z+rh)®;(3)TH(H))-
—fte S Y u(t, ) AE) |
p=~1r=-1

for some § € (z —h,z+ h),3 € (t — 7,t+ 7). The functions f and u are con-
tinuous. If A — 0 and 7 — 0, then § — ¢t and § — =z, and the last righthand
part of the inequality (27), and thus also 83 tends to zero.

It has been proved that the scheme (14),(15), (17) approximate the prob-
lem (2)-(4).

4. Transformations of the scheme
Let

(28) Cm = (am,l’ Om 290y am,N—l)T

form=0,...,M,let
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ay as 0 0 ‘o 0 0
Q:2 ay as 0 P 0 0
A= 0 a a a ... 0 0 ’
0 0 0 0 a a
0 0 0 0 a; a
(29) by b, O 0 0 0
b by by 0 0 0
B = 0 b by by 0 0
0 0 o0 0 by by
0 0 0 0O by by
where
4 2 1 1 8 8 2 4

(B0 am=m+ge=g - b= g k=5t

be (N — 1, N — 1) matrices and let Fy, = Fyp(0m=1,@m,@n+1) be a vector
of the form

(31) Fm :(fm,hfm,?v---,fm,N—l)T’

where fr1 = fm,i(@m-1,Qm, @m41) are given by the formula
(32)

lh+h mr+1 m+1  I+1
fai= [ [ @U@ (ta, Y D ape@p(H)¥i(e))dida.
th—h mr—71 p=m-1r=[-1
Let
(33) Uj = (uj(h),...,uj(Nh—h))T, j=0,1.

Now the system (14),(15),(17) can be written in the form

(34) Qg = Uo, 217 %

= Ula

6
(35) Aam+l - Bam + Aam—l = ;}—l m(am—l,am’am-i-l)

form=1,...,.M - 1.

5. The solvability of the scheme

The proof of the solvability of the system (34)-(35) will be presented in
a more general case. Take

(36) €m €ERNY, m=0,1,... M.
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and consider the perturbed system

B — Bo

T

= Ul +éa,

6
(37) A,Bm+1 - B,Bm + A,Bm—l = EFm(,Bm—l, ﬂma ﬂm+l) + €m+1,

m=1,...,M - 1.

Bo = Up + €0,

THEOREM 2. Under our assumptions the system (37) is uniquely solv-
able.

Proof. In the appendix to this work it is proved that under the given
assumptions the matrix A is invertible, so the last equations in (37) can be

written in the form
6

(38) ﬂm+1 - A_lBﬂm + ﬂm—l = ;'EA—lFm(ﬁm—l7ﬂm)ﬂm+l) + A_1€m+1,
m=1,....M — 1.

Observe that §p and f; are given by the first two formulas in (37). Sup-
pose that we have already found Sy, fi,...,0m. For the vector §,,4+1 we
have the equation (38). Consider the operator T : RN~! — RN-! given by

6
(39) Tw= ;EA_IFM(IBm—l,,Bm7w) + A_lBﬂm - ﬂm—l + A_15m+1-

Let us denote by || || the Euclidean norm in RV~! and the spectral
norm of the matrix (induced by this vector norm). For two given vectors
w,® € RN~ using (1) we have

(40) Tw = Tl = |5 A~ (Fn(Bnts o 0) = (Bt By )| <
< 7254w ~ .

In the case of 7 < h the absolute values of the eigenvalues of the ma-
2,2
trix A~1 are not greater than ﬁ’;#; (Appendix, Theorem 3), so the norm

|A~1|| is bounded from above by this value. Under our assumptions (12),
(13) the operator T is contractive, hence from the Banach Principle there
exists a unique solution of the equation

(41) Tw = w,

i.e. a unique solution - vector 41 of the equation (38).
The proof is completed.

6. The stability

THEOREM 3. Under given assumptions the scheme (87) is stable.
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Proof. The eigenvalues of the matrix A are simple, equal to
kr
=ay —2 — k=1,...
(42) Aak = a1 — 2a; cos I R N
and similarly for B we have
k

—7r——, k=1,...,n.
n+1
The eigenvectors for the matrices A and B that correspond to A 4% and Apy
(with the same k) are the same and equal to

(43) /\Bk = bl - 2b2 cos

k
(44) Xep :u(-1)Psion”, kp=1,...,N—1,
where v is an arbitrary constant. To make these v unitary take
2
4 =4/=.
(45) v=1/+

Let A4,Ap be diagonal matrices with the eigenvalues of the matrices A
and B on their diagonals, correspondingly. Let W be a matrix with vectors

Xi,...,XN-1 as a columns.
The matrix W is orthonormal, W~! = W7T and thus
(46) WTA=AWT, WTB = ApWT.
Denote

6
(47) TYm+1 = ;EFm(am—lyam,am—l)>Km = WTﬂma Om = WT7m~
After the multiplication of the last equation in (37) by the matrix W7T we
obtain the following vector difference equation
(48) AA"‘“m+1 - AB"""rn + Afi"""m-l = 6m+l, Km, 6177. € RN—l-
Introduce now the complex numbers

pr=cosdr +isingg, k=1,...,N—-1

where
ABk . \/4/\A§k—/\32k
4 = =V "4k "Bk
(49) COS P 2/\Ak,sm oy 2Aan ,
and the diagonal matrices P and P such that
(50) P = diag(pl’ .- '7PN—1)7 P = dia’g(pb .. "ﬁN—l)'

From the first two equations in (37) we can find the vectors 8y and f;, thus
we can treat as given the vectors

(51) Ko = WT B, 51 = WIS
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The solution of the vector difference equation (48) with initial conditions

given by (51) is equal
m—1

(52)  Km = (ImP)™} (Im(P"‘(m - Pro))+ ALY Im(Pm"")6r+1).
r=1

By the orthonormality of the matrix W we have

(53) B =Wk, Ym = Wp,.

Then (the matrix PP is unit in the considered case)

(54) Bm = (W(ImP)  Im(P™)WT B, — W((ImP) ' Im(P™ 1 )YWT B+

m-1
+ 3 W(ImP) A Im(P™ ) )Wy,
r=1
Analogously
(55) am = (W(ImP)  Im(P™)WTay — W((ImP)  Im(P™ ) )YWTap+
m—1
+ ) W(ImP) A Im(P™ )W o,
r=1
Note that
Po—ao=¢€,01—a1 =€ +Te
and then

(56) /Bm — Qm =
= TW((ImP) " Im(P™))WTe +
+ W((ImP)Y(Im(P™ — Im(P™ )W e+
+ Y W(ImP) A Im(P™ )W (1,41 — orp1).

r=1

Introduce in the space RV~ a norm of the type

N-1 ;
(57) ol = (3 hsd)¥.
Then
(58) [18m = om|l < TIW((ImP) Im(P™))WT|| [ler]+
+ W ((ImP) (Im(P™ = Im(P™"1))W || |leo|+
m—1
+ Y W (ImP) A Im(P™"YWWT|| (441 = org)),
r=1

where the norm of the matrix is the spectral one.
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For any matrix C the matrices C and WCWT = WCW ™! are similar,
and then they have the same eigenvalues. Thus
(59) 1Bm = otm|| < 7l ((TmP) " Im(P™)]| [leall+
+ [((ImP)" (Im(P™ ~ Im(P™ )| [leoll+

m-=1

+ > IImP) AL Im(P D (Y1 = o).

r=1
The quadratic matrices P and A4 are diagonal and p; and A; are their
eigenvalues. Then the diagonal matrices

(ImP)~ Im(P™),(ImP) " {Im(P™)—Im(P™ V)], ImP) A Im(P™"")
have on their diagonals the elements
(Im(pi)) ™ Im(p}), (Im(pi)) " Im(pf =7~ ), Al (Im(pa)) ~ Im(p} ),
k=1,...,N —1 correspondingly. In this case
_ s . cos(s — 1@,)
(Im(px)) " (Im(p}) — Im(py™")) = W

and . \
(Im(p) I (pey™=") = 2=
sin ®

Taking into account (30),(42),(43), (49) and the assumption that h > 27 we
have )
cosl(I> >h2_T2 >1
2°%) ThTyaort ” 2

and |(Im(px)) " (Im(p}) — Im(py~)] < V2.
Observe that

sin s®
sin &,

s=1 -
= ‘Zcos(2k — s+ 1) < s.
k=0

From Theorem 3 in the appendix we have
7.2 h2
max |Ay] Wl < 2@ +17)°
Thus
I(ImP) Im(P™)]| < m,

|(ImP)! (Im(P™) — IM(P™ )] < \/—

—15-1 m—r -1 —
I(FmP)™ Az Im(P™")|| < max |A|(m 7‘)<2(2h2 y(m =)
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From (59) we have (rm < 7M =T)
(60) 18m = amll < Tllex] + V2ol +
s 2 (= MO = orl
where
(61) Yr41 — Or41 = —€rpa + - (F (Br-1,Br, Br1) — Fr(ar-1, 07, ary1)).
Thus

m-—1
T2h?

(62) [16m = amll < Tllesll + V2lleoll + 5ror——ps 30h% £ 17) 2- Z(m Mliersall+

m-1

3rh Z(m—r)”(F (ﬂr 1 ﬂr’ﬂr+1)_F(ar l,ar,ar+1))”

T 2h? 4+ 12
Observe that
(63) l(fm,!(ﬂm—lngma :Bm+l) - fm,l(am—laam, am+1))' S

m+1 41
<4Sth Z Z |Bp,r — apr|
p=m-1r=|-
and then
(64) ”(Fm(ﬂm—l,ﬂm’ ﬂm+1) - Fr(am—l,am,am+l))” S
m+1
<12v3Sth ) |1Bp — ayll,
p=m-—1
SO
(65) 1Bm = am|l < Tle ]l + V2|60l +

108v3572A%
Z “ 7‘+1“ 2h2 + ) Z( -r+ 1)”/31' - ar”

From (13) it follows that %ﬁh—z < 1, hence
Tr o=
(66) 1B — omll < 2Tler]] + 2V2le0ll + - D llersall+
r=1

216v/3572R%
+_W Z(m =7+ DllBr — er|-
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Since %"—2 < 108v/357% and m — r — 1 < m, the last term in the
inequality (66) is not greater than 108v/357T E,_l ||,3r a||, and thus

(67) 1B = emll < 2Tlex] + 220l + I Z Hervall+

r=1
m-1 )
+108v3STT > 18, — |-
r=1

Let ¢ = 2164/3ST?. Introduce the next norm in RN-! x RM -1
8= (P1,...,0m-1), where By € RN-1, then let

(68) 11511} = max(n(k)||Bl)
where
(69) n(k) = exp ( - c%)
Then
(70) n(m)llﬂm = an| < 2Tjel]| + 2\/_|||€|||+
ﬂ — n(m) < n(m)
el 2 S+ 108V T 16 -l Z e
and (because ek — 1> kz for k < 0)
(71) I8 - alll < 2Tllel] + 2v2|lell] + 432\/“5”' elll + |||ﬂ - alf}.
Thus
(72) 118 ~ ol < AT ||er]] + K][lell]

where K = 4/2 + m. The scheme is stable.
This concludes the fact that the solutions of the considered scheme con-
verge to the solution of the problem (2)-(4).

Appendix

THEOREM 1. Let B,, be the (n,n) matriz of the form
d 1 o o0 ... O
1 d 1 0 ... 0
0 1 4 1 ... 0

0o 0 0 o ... d
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for somen € N and d € R. If |d| # 2 then detB,, # 0. The eigenvalues of
B, are simple, real,and are given by the formula

km
=d-2co0s—, k=1,...,N~1.
Ap=d cosN, yeans

Proof. For the matrix B, in the case where |d| > 2 we have

detBy = —me(p}*! = o)
where it (d2 B 4)%
M= —"F"—
2
and

detB, = (g)”(l + n)

if |d| = 2. In the first case we have p; # p2, so detB, # 0. The same is in

the second case.
If |d| < 2 then ) )
detB, = Em(7_’_+_)_¢,
sin ¢

where 1 .
sin ¢ = 5(4 -d*)z,

The equality detB, = 0 takes place only if sin N¢ = 0. In this case
(n+l)p=kr,ke Z,and d =2cos¢p = 2cosn+1,k € Z. From the period-
icity of the function cos it follows that it is possible to restrict ourselves to
k=1,...,N-1.

The eigenvalues of the matrix B, are the solution of the equation

d— A 1 0 0
B, ap)=| L 4=r 1 .0 |y
0 0 0 d— )

By the given analysis it is possible only if
d—)A=2cos — kr , k=1,.
+
Hence the eigenvalues of B,, are equal to

Ar=d—2cos km

,k=1,...,n.
n+1
THEOREM 2. In the case T < h the matriz A is convertible.
Proof. If 7 # h we have detA = (— — %)"detB,, , where B, is the

same as in Theorem 1 with d = —h&r In the considered case 7 < h and
then d > 2. Thus |d| > 2 and from theorem 1 we obtain that detB, # 0,
thus detA # 0, the matrix A is convertible.
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THEOREM 3. If 7 < h then the eigenvalues of the matriz A~ are positive
2,2
not greater than ﬁg—#.

Proof. The matrix A is real and symmetric, so its eigenvalues X are
real. In the case where 7 # h we have

det(A — AI) = (;17 - %)"detBn,

where d = 4’;;i‘2’_;2 - ~ph2_'rj2' If r < hand S < %ﬁ,
p 4h? +2r2 2R 4 7?
> B2 — 72 hpZ_ g2 =2

In this case we have |d| > 2; from Theorem 1 it follows that detB, # 0 and
thus det(A — AI) # 0. The values A < %&%“{—2 in the case of 7 < h can’t
be the eigenvalues of the matrix A, so all of them are positive and greater
than %’—2. Thus for 7 < h the eigenvalues A; of the matrix A satisfy:
2h2 + 472

2h2

If (A1, ..., \g) is the collection of the eigenvalues of the matrix A then the
collection (A, ..., Ax), where A; = (A;)~1, is the collection of the eigenvalues
of the matrix A~!. Thus we have: if 7 < h then A, are positive and

h21’2
<——-.

As < 272 + 4h?

As >
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