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AN APPROXIMATION OF SOLUTIONS
OF THE FIRST FOURIER PROBLEM
FOR THE HEAT EQUATION WITH AN APPLICATION
OF THE ORTHOGONALIZATION PROCEDURE

1. Introduction

In the papers [1], [2] some methods for solving approximately the Fourier
problems for certain parabolic equations have been proposed. Those meth-
ods, based on the least squares method, led to linear systems of equations.

In this paper the above-mentioned methods are applied to a numerical
analysis of the first Fourier problem for the heat equation in one space vari-
able. In view of “bad” properties of the systems received, a new method is
proposed. An orthogonalization of a system of functions forming an approx-
imate solution basis is an important tool in this new method.

2. Preliminaries
In [3] it was proved that the polynomials

[i/2] pi=2kgk
(1) h (‘T t)—J E 2k)'k" J =0a172a°"a

form a complete system in the space of strong solutions of the heat equation
(by a strong solution we mean that it is of class C? with respect to = and
of class C! with respect to ?)

In order to solve the initial boundary value problem (the first Fourier prob-
lem) for (2) with conditions

h(—l,t) = f](t), O0<t< to,

h(l,t) = f2(t), 0<t <,

h(z,0)=g(z), -1<z<1

(3)
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we can apply an approximate method based on the least squares method
(see [1], [2]). Thus we will seek the approximate solution AV(z,t) as a linear
combination of the first N + 1 functions of the form (1), i.e.,

N
(4) hN(:z:,t) = chhj(z7t)’
j=0
where the coefficients ¢p,...,cny are evaluated from the linear system of

N + 1 equations received by minimizing the function

(5) S(coy---reN) = fo [fi(r) = RN (=1, 7))%dT+

to 1
+ [ [f(r) - AN, m)Pdr+ [ [9(€) - KV (€,0)]%dE.

That system has the form
(6) Ac=b,
where

A= [a,-j]f\szo, ¢ = [co,- - .,cN]T, b= [bo,...,bN]T,

aij = fo[hi(—laT)hj(—l,T)+hi(l,T)hj(l,T)]dT+ J 9(&)hj(€,0)de,
0 -1

b; = fo[fl(T)hj(—l,T)+fZ(T)hj(laT)]dT‘l' J 9(&)hy(g,0)de.

0
After some calculations, we get
0, when i+ jis odd,

[i/2)(i/2] kL1
(N ai=0gl 1 413 % E
i+7+1 e (- 2k) (i — 2Dkl (k+ 1+ 1) ]

when 7 + j is even.

3. Conditioning of the linear system of equation

Our goal will be a numerical analysis of the system (6) and in particular
an analysis of the conditioning of that system. In general, a numerical prob-
lem is ill-conditioned, if “small” changes in the problem input data produce
“large” changes in the solution (see for example [4], [6]). Usually for a nu-
merical problem a so-called condition number is defined. It is the ratio of
variations in solutions to input data perturbation. Certainly, an attempt to
solve problems with a big condition number is very risky. Due to roundoff
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errors, one can obtain results completely different from the exact solution.
In the case of linear systems of equations the condition number is defined
by the formula (see for example [5])

(8) cond(4) = ||4] - |47,

where || - || is a matrix norm.

Let us come back to our system (6). The explicit form (7) of the elements
of the matrix A may suggest the ill-conditioning of the system (6), because
the term ;ql_ﬁ occurs in the well-known Hilbert matrix (see for example [5]).
Actually the condition numbers of the system (6) are big. It is illustrated in

the case of the spectral norm ||A}j; = max /A by the following table.
AESp(AT A)

=

cond(A)
14
1.9-10°
9.4.108
4
2.7-10%
4.7-10°
10
2.1-104
5.2- 1011
35
2.4.10°
7.2-1013
2.9.10°
6.7-108
9.2.1018

—

—

—

to = 2

—

O U NOC OO T OO Ot N

—

4. Orthogonalization

It is obvious that, dealing with so ill-conditioned problem, one should
seek the approximation h™V(z,t) in another way than by solving the system
(6). One of such ways is the Gram-Schmidt orthogonalization of the system
of functions (1) with respect to the scalar product

©® (= [ H-Lng-Lndrt [0, nr

+ [ £(£,0)g(¢,0)de.
-1
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It is clear that after the orthogonalization, i.e., substituting the functions
ho, ..., hn by functions go,...,gn satisfying

_JOo fori#yj,
(gi’gj)_{ej fori=j,e; #0,

the approximation A"V (z,t) will be given by the formula
N
(10) WN(z,t) = ) djgi(z,1),
7=0

where
to 1
(11) d; = eij[ S [A(Dgi(=1,7) + fa(r)gi(1,7ldr + [ g(€)gi(€,0)dE|.

The Gram-Schmidt procedure is given by the formula

(12) go(.'lt,t) = ho(d?,t), N
i—1 (hi,g; .
gi(e,t) = hi(=, 1) = i et gi(a,1), i=1,2,..., N,

where (-, ) is the scalar product (9).
As we see, the most important point here is to evaluate scalar products
(hi,g;) and (g;,9;). We will deal with this problem in next two sections.

5. Recurrence formulae for the polynomials h;(z,t)

We will now determine recurrence relations for the polynomials h;(z,t)
very useful in evaluating the values of these polynomials at a point (z,t).
By the formula

hj(z,t) = (~t)i/2 . H"((_-‘;)_‘”)’

where H;(z) is the Hermite polynomial (see [1] or [3]), and by the recurrence
formula for the Hermite polynomials

Hj(2) = 2zH;-1(2) — 2(j — 1)Hj-2(2),

we get

= (~)i/? [2(—4%)17;(—t)—<f-1>’2hj-1(z,t)—z(j—1)(—t)-<f-2>/2hj-z(w,t)]
=zhj_1(z,t) - 2(j — 1)thj_2(=,1).
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Thus

ho(z,t) =1, hy(z,t) =z,
(13) {h%u% — ohy 1(0.0) — 20 — Dthya(2t), j=2,3,...

6. Algorithm for finding the approximation A"V (z,1)

The recurrence formula (13) yields a simple algorithm for determining
values of the polynomials hj(z,t). Therefore it is convenient to seek the
functions g;(z,t) as linear combinations of the functions ho,..., Ak, i.e.,

(14) 9i(z,t) = hi(=,1) + E_:ﬂijhj(xat)a

3=0

where 3;; are unknown coeflicients to be determined. Setting

(15) aij = (hivgj),
(95,95)
we can write the formula (12) as
i-1
(16) gi(z,t) = hi(z,t) + Y _ aijgi(z,1), i=1,2,...,N.
j=0

If now in this formula we substitute (14) for g;(z,t), then changing the order
of summation we get

i-1 i-1
gi(e,t) = hi(z, 1) + ) _ o [hj(l‘,t) + Zﬂjkhk(l’,t)] =
j=0 k=0

i1 i—1
= hi(z, 1)+ ) [ai,- + 3 aikﬂkj] hj(z,t).

j=0 k=j+1

Comparing that with (14), we get a recurrence formula for the coefficients

B;; as follows
i1
(17)  By=aij+ Y @by, i=1,2,...,N;5=0,1,...,i—1.
k=j+1

So the coefficients §;; can be evaluated if a;; are known. However, substi-
tuting the relations (14) into (15), we get

1 i
ai; = —(hi,9;)/(95,95) = _;(hi,h]’ + Zﬂjkhk) =
J k=0
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- [(h,,h )+ Z Bin(hi, b))

k=0

Let us remark that (h;, h;) = a;j, where a;; are given by (7). Therefore we
are entitled to write

(18) oij = —— [a,J + Zﬂ]kazk]

k=0
The coefficients e; can be computed in the following fashion

(19) e; = (95,95) = (h + zﬁjkhk’h + zﬂ]khk)
k=0
-1j5-1

= ajj + 2zﬁ]ka]k + Z Z ﬂjkﬂ]lakl

k=0 I=0

As seen, the problem of computing «;; and §;; is reduced to the evaluation
of the elements a;;. These can be in turn found from the following formula
being a consequence of (7)

0, when ¢ + j is odd,
li/2][i/2]
(20) @ = 1 Tk L
2[i+j+1+ k+l+1]’ when ¢ + j is even,
=0 k=0
where

k=2 2k)'(z — 2l)'k'l'
It is convenient to complete the coefficients r;; with the algorithm

Too = 1o,
—2D0)(r—-21 -1 .
"'l+l,0 = to (z )l(fl- 1 )1"1,0, l = 0, 1, ey [1/2],
1 —2k)(7 -2k -1 .
TLk+1 = to U )k(]+ 7 )rl,k, 1=0,1,...,[2/2],

k=0,1,...,[j/2] - 1.

Taking into account (14), we will propose another form of the formula (10)
yielding the approximation h". Substituting (14) into (10) and changing
the order of summation, we get

W (z,t) = Zd,g,(z t) = Zd sz, )+ Zﬂ,khm ) =

=0 j=0
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N
= Zd hi(z,t) + Z ( > dkﬂkj)hj(z’t) =

j=0 k=j+1
N-1
= dyhn(z,t) + [d + Z diBis | hs(z, ).
7=0 k=j+1
Hence setting
N
(21) 7j=dj+ Z dk'ﬂkja j=0,1a"',N_11

k=j+1
we can rewrite the formula (10) in the following form

N-1
(22) hN(z,t) = dyhn(z,t) + Z v;hji(z,t).

3=0

We propose the following algorithm for finding the approximation AN (z,1):

1° Fori,j =0,1,..., N compute a;; according to the formula (20) (remark:
ai; = aji).

2° Set €g = Qop-

3° Fort=1,2,...,N
(2) and for  =0,1,...,i— 1 compute a;; from (18),
(b) and for j =0,1,...,i— 1 compute §;; from (17),
(c) evaluate e; from (19).

4° For j =0,1,..., N evaluate d;, using the formula (11).

5° For j =0,1,...,N — 1 evaluate v;, using (21).

6° In order to evaluate the approximation h™(z,t) at a point (z,t) make
use of the formula (22). Evaluate values of the functions hj(z,t) from
the recurrence relations (13).

7. Final remarks

At the end we would like to emphasize the virtues of the above de-
scribed method. The first advantage is that the received approximation is
determined at each point of the domain in which we seek solutions, be-
cause it is given in an analytical form. The second very important prop-
erty is that the accuracy improvement of the approximation is connected
only with adding consecutive terms to h™(z,t) determined by the formula
(10). The popular in applications finite-difference methods have no these
advantages.
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