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AN APPROXIMATION OF SOLUTIONS 
OF THE FIRST FOURIER PROBLEM 

FOR THE HEAT EQUATION WITH AN APPLICATION 
OF THE ORTHOGONALIZATION PROCEDURE 

1. Introduction 
In the papers [1], [2] some methods for solving approximately the Fourier 

problems for certain parabolic equations have been proposed. Those meth-
ods, based on the least squares method, led to linear systems of equations. 

In this paper the above-mentioned methods are applied to a numerical 
analysis of the first Fourier problem for the heat equation in one space vari-
able. In view of "bad" properties of the systems received, a new method is 
proposed. An orthogonalization of a system of functions forming an approx-
imate solution basis is an important tool in this new method. 

2. Preliminaries 
In [3] it was proved that the polynomials 

(!) = ^ O ' 1 ' 2 ' - ' 

form a complete system in the space of strong solutions of the heat equation 
(by a strong solution we mean that it is of class C2 with respect to x and 
of class C1 with respect to t) 
(2) ht = hxx. 
In order to solve the initial boundary value problem (the first Fourier prob-
lem) for (2) with conditions 

U ( - l , t ) = /i(<). 0 < i < i o , 
(3) I h(l,t) = f2(t), 0 < t <to, 

[ h(x,0) = g(x), -1 < x < 1 
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we can apply an approximate method based on the least squares method 
(see [1], [2]). Thus we will seek the approximate solution hN(x,t) as a linear 
combination of the first N + 1 functions of the form (1), i.e., 

N 

(4) h N ( x , t ) = J 2 c M x ' t ) , 
3=0 

where the coefficients co,...,c/v are evaluated from the linear system of 
N + 1 equations received by minimizing the function 

( 5 ) S(co,...,cN)= j [ h ( T ) - h N ( - l , T ) ] 2 d r + 

0 

+ J [ f 2 ( T ) - h N ( l , r ) } 2 d T + f \g{t)-hN(t,0)]2df. 

o -1 
That system has the form 

(6) Ac = b, 

where 

A = [aij]ij=ot c = [ c 0 , . . . , c N ] T , b = [b0,...,bN]T, 

t0 1 

a i j = j [ h i ( - l , + T)]dr+ f g(()hj((,0)d€, 

o -1 

to 1 

b j = J [ f 1 ( r ) h j ( - l , T ) + f2(r)hj(l,T)}dT+ f g(Ohj(e,0)de. 

o -1 

After some calculations, we get 
' 0, when i + j is odd, 

(7) a 
I n + « ' £ £ 7 7 3 

'/2] [i!2] k + l + 1 
tn 

[ i + j + i ^ ^ o ( j - 2 k ) \ ( i - 2 i ) \ k \ i \ ( k + i + i ) y 

when i + j is even. 

3. Conditioning of the linear system of equation 
Our goal will be a numerical analysis of the system (6) and in particular 

an analysis of the conditioning of that system. In general, a numerical prob-
lem is ill-conditioned, if "small" changes in the problem input data produce 
"large" changes in the solution (see for example [4], [6]). Usually for a nu-
merical problem a so-called condition number is defined. It is the ratio of 
variations in solutions to input data perturbation. Certainly, an attempt to 
solve problems with a big condition number is very risky. Due to roundoff 
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errors, one can obtain results completely different from the exact solution. 
In the case of linear systems of equations the condition number is defined 
by the formula (see for example [5]) 

(8) cond(A) = ||j4|| • | |A - 1 | | , 

where || • || is a matrix norm. 
Let us come back to our system (6). The explicit form (7) of the elements 

of the matrix A may suggest the ill-conditioning of the system (6), because 
the term occurs in the well-known Hilbert matrix (see for example [5]). 
Actually the condition numbers of the system (6) are big. It is illustrated in 
the case of the spectral norm ||A||2 = max y f \ by the following table. 

\£Sp(AT A) 

N con d(A) 
to = 0 2 14 

5 1.9 103 

10 9.4 106 

to = 0.5 2 4 
5 2.7 103 

10 4.7 109 

to = 1 2 10 
5 2.1 104 

10 5.2 1011 

to = 2 2 35 
5 2.4 105 

10 7.2 1013 

to = 5 2 2.9 10z 

5 6.7 106 

10 9.2 1016 

4. Orthogonalization 
It is obvious that , dealing with so ill-conditioned problem, one should 

seek the approximation hN(x,t) in another way than by solving the system 
(6). One of such ways is the Gram-Schmidt orthogonalization of the system 
of functions (1) with respect to the scalar product 

(9) (f,g)= j f(-l,r)g(-l,T)dr+ J f(l,r)g(l,T)dr 
0 0 

1 
+ / / ( £ , 0 M £ , 0 R . 



868 H. G r a b a r s k a 

It is clear that after the orthogonalization, i.e., substituting the functions 
ho,..., /ijv by functions go, - • - ,9n satisfying 

(n n \ - I 0 
\ 9 i , 9 j ) - < y e . f o r i = j , e j f 0 , 

the approximation h N ( x , t ) will be given by the formula 
N 

( 1 0 ) h N ( x , t ) = Y,di9i(x>t)> 

i=o 

where 

1 r io 1 i 
(11) d j = - [ J [ f 1 ( T ) g j ( - l , T ) + M T ) g j ( l , T ) ] d T + J g t f M t , 0 ) d f j . 

J o -1 
The Gram-Schmidt procedure is given by the formula 

Cto\ j go(x,t) = h 0 ( x , t ) , 

W { 9 i ( x , t ) = h i ( x , t ) - E}^ g ^ f f a i K t ) , t = l,2 JV, 

where (•, •) is the scalar product (9). 
As we see, the most important point here is to evaluate scalar products 

(hi,gj) and (gj,gj)- We will deal with this problem in next two sections. 

5. Recurrence formulae for the polynomials h j ( x , t ) 

We will now determine recurrence relations for the polynomials h j ( x , t ) 

very useful in evaluating the values of these polynomials at a point (x,t). 
By the formula 

where Hj(z) is the Hermite polynomial (see [1] or [3]), and by the recurrence 
formula for the Hermite polynomials 

H j { z ) = 2 z H j . l { z ) - 2 ( j - 1 W - t i z ) , 

we get 

h * * > o = H ) j / 2 [ 2 ( - - ( p ^ ) i 

= x h j - i ( x , t ) - 2 ( j - 1 ) t h j - 2 ( x , t ) . 
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Thus 

(13) 
( h 0 ( x , t ) = 1, h \ { x , t ) = x, 

\ h j ( x , t ) = x h j _ i ( x , t ) - 2 ( j - 1 ) t h j - 2 ( x , t ) , j = 2 , 3 , . . . 

6. Algorithm for finding the approximation h N ( x , t ) 

The recurrence formula (13) yields a simple algorithm for determining 
values of the polynomials h j ( x , t ) . Therefore it is convenient to seek the 
functions g j ( x , t) as linear combinations of the functions ho,. . . , h i , i.e., 

i-1 

( 1 4 ) gi(x, t ) = hi(x, t ) + ^ Pijhj(x, t ) , 

j=o 

where f3ij are unknown coefficients to be determined. Setting 

(15) a »j 
( h i , 9 j ) 

(9j,gjY 

we can write the formula (12) as 
¿-1 

(16) g i { x , t ) = h i { x , t ) + ' s j r c i i j g j ( x , t ) , i = 1 ,2 , . . . , N . 

j=o 

If now in this formula we substitute (14) for gj(x, t), then changing the order 
of summation we get 

i-1 3-1 

g i ( x , t ) = h i ( x , t ) + h j ( x , t ) + ^ 2 / 3 j k h k ( x , t ) 

j=0 k=0 

i-1 ¿-1 

= h i ( x , t ) + [ a i j + (XikPkj h j ( x , t ) . 

j=o k=j+1 

Comparing that with (14), we get a recurrence formula for the coefficients 
ßi j as follows 

¿-1 
(17) /3ij = a i j + ^ a ikPkj, i = l , 2 , . . . , i V ; j = 0 , 1 , . . . , i - 1. 

k=j+1 

So the coefficients faj can be evaluated if a i j are known. However, substi-
tuting the relations (14) into (15), we get 

a i j = ~ ( h i , 9 j ) / ( 9 j , 9 j ) = + '¿TPjkhk) = 
k=0 
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j-1 

= - l [ ( h i , h j ) + ' £ ( 3 j k ( h u h k ) \ . 
k=0 

Let us remark that (/i,-, hj) = a,ij, where a,j are given by (7). Therefore we 
are entitled to write 

1 (18) atij = dij + X ] Pjkdik 
ei k=o 

The coefficients Cj can be computed in the following fashion 
j—i j-1 

( 1 9 ) ej = ( g j , g j ) = ( h j + ^ Pjkhk, hj + ^ = 
fe=0 fc=0 

j-1 j-1j-1 
= d j j + 2 ^ Pjkdjk + PikPjiau-

k=0 k=0 1=0 

As seen, the problem of computing a , j and is reduced to the evaluation 
of the elements at-j. These can be in turn found from the following formula 
being a consequence of (7) 

{0, when i + j is odd, 

1 ('/2][j/2] 2 : — - + > > - — - , when i + j is even, where 
tk

0
+l+1i\j\ 

Tlk = 
( j — 2k)\(i — 2l)\k\l\' 

It is convenient to complete the coefficients r\k with the algorithm 

roo = 
(t — 2l)(i — 2/ — 1) , „ , 

ri+i,o = tQ± L ¿Pjf0> Z = 0 ,1 , . . . , [î/2], 

( j - 2 k ) ( j - 2k - 1) , 
riliH-i = <o^ j j l T l 'k ' ' = 0, l , . . . , [*/2] , 

fc = 0 ,1 , . . - , [j/2] — 1. 

Taking into account (14), we will propose another form of the formula (10) 
yielding the approximation hN. Substituting (14) into (10) and changing 
the order of summation, we get 

N N j-1 
h N ( x , <) = £ d j g j ( x , «) = £ di 0 + PiM*' 0] = 

j=0 j=0 k=0 
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N N-1 N 

= y £ d j h j ( x , t ) + y £ ( E d k p k j ) h j ( x , t ) = 
j=0 j=0 k=j+1 

TV—1 N 
= dNhN(x,t) + E \di + E ^ / ^ M 1 ' * ) -

i=o k=j+1 

Hence setting 
N 

(21) 7 j = + E ¿ = 0 , l , . . . , J \ r - l , 
*=j+l 

we can rewrite the formula (10) in the following form 

N-1 
(22) hN(x, t) = dNhN(x, 0 + E TiM*' 

j=o 

We propose the following algorithm for finding the approximation hN(x,t): 

1° For i , j = 0,l,...,N compute a,ij according to the formula (20) (remark: 
®ij = Q'ji)' 

2° Set eo = aoo-
3° For i = 1,2,. ..,N 

(a) and for j = 0 , 1 , . . . , i - 1 compute «¿j from (18), 
(b) and for j = 0,1,...,«'— 1 compute Pij from (17), 
(c) evaluate e» from (19). 

4° For j = 0 , 1 , . . . , TV evaluate dj, using the formula (11). 
5° For j = 0 , 1 , . . . , N — 1 evaluate 7j, using (21). 
6° In order to evaluate the approximation hN(x,t) at a point (z, t) make 

use of the formula (22). Evaluate values of the functions hj(x,t) from 
the recurrence relations (13). 

7. Final remarks 
At the end we would like to emphasize the virtues of the above de-

scribed method. The first advantage is that the received approximation is 
determined at each point of the domain in which we seek solutions, be-
cause it is given in an analytical form. The second very important prop-
erty is that the accuracy improvement of the approximation is connected 
only with adding consecutive terms to hN(x,t) determined by the formula 
(10). The popular in applications finite-difference methods have no these 
advantages. 
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