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ON MAXIMAL SUBALGEBRAS AND MAXIMAL IDEALS 
OF BOOLEAN ALGEBRAS 

We prove that the existence of a maximal subalgebra and the existence of a maximal 
ideal are effectively equivalent in every Boolean algebra. 

The following effectively equivalent statements are an easy consequence 
of the Axiom of Choice: 

• every non trivial Boolean algebra possesses a maximal ideal, 
• every proper ideal of a Boolean algebra is contained in a maximal ideal. 
Both of them are known as the Prime Ideal Theorem. The Prime Ideal 

Theorem has many interesting mathematical equivalents (for example, the 
Stone Representation Theorem, see [2]) and being itself weaker then the Ax-
iom of Choice it can replace it in proofs of many important statements (for 
example, Hahn-Banach Theorem, Stone-Cech Compactification Theorem, 
see [1]). 

The following lemma is well-known, see [3]. 

LEMMA 1. Let X be a proper ideal of a Boolean algebra B. Then the 
following conditions are equivalent: 

(i) X is a maximal ideal of B, 
(ii) for every x € B, {x, -12:} fl X / 0, 

(iii) X U-iI = B where ->J = : x 6 X}. 
The next lemma is also well-known, see [4], [5]. 

LEMMA 2. Let A be a subalgebra of a Boolean algebra B and let b 6 B\A. 
LetC be the subalgebra of B generated by the set . 4 U { 6 } . Then every element 
ofC has a form (bAx)V(->bAy) for some x,y € A, i.e. C = {(6Ax )V(- i6A j/) : 
x,ye A}. 

The six-variable tautology mentioned in the proof of the following lemma 
is surely the longest of all tautologies ever put to use by the present author. 
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LEMMA 3. Let a,b,x,y,z,s be elements of a Boolean algebra. If a = 
(b A x) V (->& A y) and b = (a A z) V (->a A s) then a -j- b = (5 - x ) V (j/ - z ) . 

Instead of proving Lemma 2 by complicated calculations one can use a 
computer to check that the corresponding formula, i.e. 

[[a «-• ((6 A x) V (-.& A »))] A [b <-» ((a A z) V (--a A a))]] 
[(a - r l ) « ((« A -1®) V (y A -iz))], 

is a tautology. The symbol -§- denotes the operation of symmetric difference, 
i.e. a b = (a — b) V (6 — a). 

L E M M A 4 [Maximal Subalgebra Lemma]. Let A be a proper subalgebra 
of B. Then the following conditions are equivalent: 

(i) A is a maximal subalgebra of B, 
(ii) {a,6,a-T- b} fl A / 0 for every a,b £ B. 

P r o o f . Suppose that A is a maximal subalgebra of B and that a, b G 
B \ A. By the maximality of A and Lemma 2 it follows that for some 
x, y, z, s G A we have that b = (aAx)V(-iaAy) and a = (bAz)V(-<bAs). Using 
Lemma 3 one gets that a -j- b = (5 — x) V (y — z) G A which was to be proved. 

Suppose now that for every a, b 6 B, {a,b,a -f b} fl A ^ 0, and there 
exists a proper subalgebra of B exceeding A. Then for some c G B \ A 
the subalgebra of B generated by _4U{c} must be proper and consequently 
some element d 6 B must lie outside its universe. The assumption about 
A yields that c -j- d, ->(c -j- d) £ A but in every Boolean algebra we have 
d = [c A -i(c 4- d)] V [->c A (c -f d)] which means that d belongs to the subal-
gebra of B generated by Au{c}, — a contradiction. • 

LEMMA 5. Let A be a maximal subalgebra of a Boolean algebra B and let 
b £ B \ A. Then for every x G A at least one of the following is true: 

(i) {b A x,-<b A x} C A, or 
(ii) {b A ->x, -1 b A -1®} C A. 

P r o o f . If b G B \ A and x £ A then it follows that: 
(1) {b A x,b A -1®} n A / 0 since otherwise, by Lemma 4, it follows that 

A 3 (b A x) 4 (b A -1x) = b, - a contradiction; 
(2) {->b Ax,-<b A -i®} fl A / 0 for similar reasons; 
(3) {-16 A x, b A -1®} A since otherwise A 9 (b — x) V — 6) = 6 -r x and 

b = (b -i- x) -r x G A, - a contradiction; 
(4) {b A x, -ib A ~>x} A for similar reasons. 

Combining (1) , . . . ,(4) it is easy to prove that either (i) or (ii) must be 
true. • 
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L E M M A 6 [ K e y L e m m a ] . Let A be a subalgebra of a Boolean algebra B 

and let b £ B\A. Let lb be the ideal of A generated by the set ( .40(6]/?) U 

(Ar\(->b]B), i.e. 

l b = {a £ A: 3x,y£Aa < xV y,x <b,y < -.&}. 

Then lb is a proper ideal of A. Moreover, 

(1) if A is a maximal subalgebra of B then lb is a maximal ideal of A, 

( 2 ) if lo is a maximal ideal of A containing lb, and 1 is the ideal of B 

generated by 1o then {b, -16} f l 1 = 0. 

P r o o f . Suppose that b £ B\Aa,ndlb - { a G A : 3x<y€Aa < xVy,x < b, 

V < ""ft}- To prove that lb is a proper ideal, suppose that for some x, y £ A, 

x < b, y < -ib and x V y = 1. Then b = b A 1 =b A (x V y) = (b A z ) V (6 A y) 

and b A y = 0 because y < ->b. Thus b = b A x which implies that b < x and 
finally we get that b = x which is not possible because b £ B\ A and x £ A. 

To show (1) let us assume that A is a maximal subalgebra of B. By 
Lemma 1, in order to prove that lb is a maximal ideal we need only to show 
that for every x £ A, { x , ->x} fl lb 0. Take any x £ A. Then by Lemma 5 
at least one of the following is true: 

( i ) {b A x, ->b A z } Ç A, 

( i i ) {b A ->x, -ib A -1»} C A. 

It is clear that ( i ) implies that x G lb and (ii ) implies that -¡x £ lb- Thus 
{x, fl lb # 0. 

To prove (2) suppose that 10 is a maximal ideal of A containing lb and 
1 is the ideal of B generated by 1Q i.e.: 

1 - {a £ B : 3xei0a < x}. 

Now we prove that b £ 1. Indeed, if b £ 1 then there exists x G lo such 
that b < x and consequently -¡x < -ib. Hence -ix £ l b Ç 10 and finally 1 = 
xV-ix G 1q - a contradiction. The fact that -¡b £1 can be proved similarly. • 

THEOREM 1 [E f f ec t i ve ] . If A is a maximal subalgebra of a Boolean algebra 

B and b £ B\A then there exists a maximal ideal of B containing b. 

P r o o f . Suppose that A is a maximal subalgebra of B and b £ B \ A. 

Then by Key Lemma (1), lb = {a £ A : B ^ g ^ a < x\/ y,x < b,y < —>6} is 
a maximal ideal of A. Let 1 be the ideal of B generated by the set lb U { 6 } . 
Then 1 = {a £ B : 3 yeAa < bV y,y < -¡b} and it is easy to see, that the 
ideal 1 must be proper. Indeed, if 1 =b V y for some y £ A such that y < -ib, 

then -ib = -ib A 1 = A (b V y) =-ib A y which implies that ->6 < y, and 
finally that -¡b = y which is not possible. 

Suppose now that the ideal 1 is not maximal. Then, by Lemma 1, J U -Œ, 
is a proper subalgebra of B properly containing lb U -1 lb (b £ (1 U - i j ) \ 
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{lb U and lb U ->lb = A which contradicts the maximality of A. Thus 
the ideal I is a maximal ideal of B containing the element 6, as required. • 

T H E O R E M 2 [Based on Prime Ideal Theorem]. If A is a proper subalgebra 
of a Boolean algebra B then A is contained in a maximal subalgebra of B. 

P r o o f . Suppose that A is a proper subalgebra of B and b E B \ A. Then 
by Key Lemma, lb is a proper ideal of A and by Prime Ideal Theorem it can 
be extended to a maximal ideal 1q of A. Using Key Lemma (2) we get that 
the ideal 1 of B generated by 1q does not intersect {6, b}. Using Prime Ideal 
Theorem again we can find two different maximal ideals 1\ ,1% oiB such that 
1\ contains a proper ideal of B generated by lU{b} and I2 contains a proper 
ideal of B generated by Xu{-i6}. It is known (see [6]) that {1\0X2)U(2"in2~2) 
is a maximal subalgebra of B. Since 1q C fi I2) then (lo U ~>lo) Q (1\ f~l 
I2) U ""(Zi 0X2). Hence, by Lemma 1 we get that A C(1\ (Mi) U ->{1\ n l2) . • 

T H E O R E M 3 . The following sentences are effectively equivalent: 
(1) every non-trivial Boolean algebra possesses a maximal subalgebra, 
(2) every non-trivial Boolean algebra possesses a maximal ideal, 
(3) every proper ideal of a Boolean algebra is contained in a maximal ideal, 
(4) every proper subalgebra of a Boolean algebra is contained in a maximal 

subalgebra. 
P r o o f . (2) and (3) are the equivalent statements of Prime Ideal The-

orem. The implication (3)=>(4) follows from Theorem 2. The implication 
(4)=>(1) is trivial and the implication (1)=^(2) is a consequence of Theo-
rem 1. • 
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