

Stanisław Wroński

ON MAXIMAL SUBALGEBRAS AND MAXIMAL IDEALS
OF BOOLEAN ALGEBRAS

We prove that the existence of a maximal subalgebra and the existence of a maximal ideal are effectively equivalent in every Boolean algebra.

The following effectively equivalent statements are an easy consequence of the Axiom of Choice:

- every non trivial Boolean algebra possesses a maximal ideal,
- every proper ideal of a Boolean algebra is contained in a maximal ideal.

Both of them are known as the Prime Ideal Theorem. The Prime Ideal Theorem has many interesting mathematical equivalents (for example, the Stone Representation Theorem, see [2]) and being itself weaker then the Axiom of Choice it can replace it in proofs of many important statements (for example, Hahn–Banach Theorem, Stone–Čech Compactification Theorem, see [1]).

The following lemma is well-known, see [3].

LEMMA 1. *Let \mathcal{I} be a proper ideal of a Boolean algebra \mathcal{B} . Then the following conditions are equivalent:*

- \mathcal{I} is a maximal ideal of \mathcal{B} ,*
- for every $x \in \mathcal{B}$, $\{x, \neg x\} \cap \mathcal{I} \neq \emptyset$,*
- $\mathcal{I} \cup \neg \mathcal{I} = \mathcal{B}$ where $\neg \mathcal{I} = \{\neg x : x \in \mathcal{I}\}$.*

The next lemma is also well-known, see [4], [5].

LEMMA 2. *Let \mathcal{A} be a subalgebra of a Boolean algebra \mathcal{B} and let $b \in \mathcal{B} \setminus \mathcal{A}$. Let \mathcal{C} be the subalgebra of \mathcal{B} generated by the set $\mathcal{A} \cup \{b\}$. Then every element of \mathcal{C} has a form $(b \wedge x) \vee (\neg b \wedge y)$ for some $x, y \in \mathcal{A}$, i.e. $\mathcal{C} = \{(b \wedge x) \vee (\neg b \wedge y) : x, y \in \mathcal{A}\}$.*

The six-variable tautology mentioned in the proof of the following lemma is surely the longest of all tautologies ever put to use by the present author.

LEMMA 3. Let a, b, x, y, z, s be elements of a Boolean algebra. If $a = (b \wedge x) \vee (\neg b \wedge y)$ and $b = (a \wedge z) \vee (\neg a \wedge s)$ then $a \div b = (s - x) \vee (y - z)$.

Instead of proving Lemma 2 by complicated calculations one can use a computer to check that the corresponding formula, i.e.

$$\begin{aligned} & [[a \leftrightarrow ((b \wedge x) \vee (\neg b \wedge y))] \wedge [b \leftrightarrow ((a \wedge z) \vee (\neg a \wedge s))]] \\ & \quad \rightarrow [(a \div b) \leftrightarrow ((s \wedge \neg x) \vee (y \wedge \neg z))], \end{aligned}$$

is a tautology. The symbol \div denotes the operation of symmetric difference, i.e. $a \div b = (a - b) \vee (b - a)$.

LEMMA 4 [Maximal Subalgebra Lemma]. Let \mathcal{A} be a proper subalgebra of \mathcal{B} . Then the following conditions are equivalent:

- (i) \mathcal{A} is a maximal subalgebra of \mathcal{B} ,
- (ii) $\{a, b, a \div b\} \cap \mathcal{A} \neq \emptyset$ for every $a, b \in \mathcal{B}$.

Proof. Suppose that \mathcal{A} is a maximal subalgebra of \mathcal{B} and that $a, b \in \mathcal{B} \setminus \mathcal{A}$. By the maximality of \mathcal{A} and Lemma 2 it follows that for some $x, y, z, s \in \mathcal{A}$ we have that $b = (a \wedge x) \vee (\neg a \wedge y)$ and $a = (b \wedge z) \vee (\neg b \wedge s)$. Using Lemma 3 one gets that $a \div b = (s - x) \vee (y - z) \in \mathcal{A}$ which was to be proved.

Suppose now that for every $a, b \in \mathcal{B}$, $\{a, b, a \div b\} \cap \mathcal{A} \neq \emptyset$, and there exists a proper subalgebra of \mathcal{B} exceeding \mathcal{A} . Then for some $c \in \mathcal{B} \setminus \mathcal{A}$ the subalgebra of \mathcal{B} generated by $\mathcal{A} \cup \{c\}$ must be proper and consequently some element $d \in \mathcal{B}$ must lie outside its universe. The assumption about \mathcal{A} yields that $c \div d, \neg(c \div d) \in \mathcal{A}$ but in every Boolean algebra we have $d = [c \wedge \neg(c \div d)] \vee [\neg c \wedge (c \div d)]$ which means that d belongs to the subalgebra of \mathcal{B} generated by $\mathcal{A} \cup \{c\}$, — a contradiction. ■

LEMMA 5. Let \mathcal{A} be a maximal subalgebra of a Boolean algebra \mathcal{B} and let $b \in \mathcal{B} \setminus \mathcal{A}$. Then for every $x \in \mathcal{A}$ at least one of the following is true:

- (i) $\{b \wedge x, \neg b \wedge x\} \subseteq \mathcal{A}$, or
- (ii) $\{b \wedge \neg x, \neg b \wedge \neg x\} \subseteq \mathcal{A}$.

Proof. If $b \in \mathcal{B} \setminus \mathcal{A}$ and $x \in \mathcal{A}$ then it follows that:

- (1) $\{b \wedge x, b \wedge \neg x\} \cap \mathcal{A} \neq \emptyset$ since otherwise, by Lemma 4, it follows that $\mathcal{A} \ni (b \wedge x) \div (b \wedge \neg x) = b$, - a contradiction;
- (2) $\{\neg b \wedge x, \neg b \wedge \neg x\} \cap \mathcal{A} \neq \emptyset$ for similar reasons;
- (3) $\{\neg b \wedge x, b \wedge \neg x\} \not\subseteq \mathcal{A}$ since otherwise $\mathcal{A} \ni (b - x) \vee (x - b) = b \div x$ and $b = (b \div x) \div x \in \mathcal{A}$, - a contradiction;
- (4) $\{b \wedge x, \neg b \wedge \neg x\} \not\subseteq \mathcal{A}$ for similar reasons.

Combining (1), ..., (4) it is easy to prove that either (i) or (ii) must be true. ■

LEMMA 6 [Key Lemma]. *Let \mathcal{A} be a subalgebra of a Boolean algebra \mathcal{B} and let $b \in \mathcal{B} \setminus \mathcal{A}$. Let \mathcal{I}_b be the ideal of \mathcal{A} generated by the set $(\mathcal{A} \cap (b]_{\mathcal{B}}) \cup (\mathcal{A} \cap (\neg b]_{\mathcal{B}})$, i.e.*

$$\mathcal{I}_b = \{a \in \mathcal{A} : \exists_{x,y \in \mathcal{A}} a \leq x \vee y, x \leq b, y \leq \neg b\}.$$

Then \mathcal{I}_b is a proper ideal of \mathcal{A} . Moreover,

- (1) *if \mathcal{A} is a maximal subalgebra of \mathcal{B} then \mathcal{I}_b is a maximal ideal of \mathcal{A} ,*
- (2) *if \mathcal{I}_0 is a maximal ideal of \mathcal{A} containing \mathcal{I}_b , and \mathcal{I} is the ideal of \mathcal{B} generated by \mathcal{I}_0 then $\{b, \neg b\} \cap \mathcal{I} = \emptyset$.*

Proof. Suppose that $b \in \mathcal{B} \setminus \mathcal{A}$ and $\mathcal{I}_b = \{a \in \mathcal{A} : \exists_{x,y \in \mathcal{A}} a \leq x \vee y, x \leq b, y \leq \neg b\}$. To prove that \mathcal{I}_b is a proper ideal, suppose that for some $x, y \in \mathcal{A}$, $x \leq b$, $y \leq \neg b$ and $x \vee y = 1$. Then $b = b \wedge 1 = b \wedge (x \vee y) = (b \wedge x) \vee (b \wedge y)$ and $b \wedge y = 0$ because $y \leq \neg b$. Thus $b = b \wedge x$ which implies that $b \leq x$ and finally we get that $b = x$ which is not possible because $b \in \mathcal{B} \setminus \mathcal{A}$ and $x \in \mathcal{A}$.

To show (1) let us assume that \mathcal{A} is a maximal subalgebra of \mathcal{B} . By Lemma 1, in order to prove that \mathcal{I}_b is a maximal ideal we need only to show that for every $x \in \mathcal{A}$, $\{x, \neg x\} \cap \mathcal{I}_b \neq \emptyset$. Take any $x \in \mathcal{A}$. Then by Lemma 5 at least one of the following is true:

- (i) $\{b \wedge x, \neg b \wedge x\} \subseteq \mathcal{A}$,
- (ii) $\{b \wedge \neg x, \neg b \wedge \neg x\} \subseteq \mathcal{A}$.

It is clear that (i) implies that $x \in \mathcal{I}_b$ and (ii) implies that $\neg x \in \mathcal{I}_b$. Thus $\{x, \neg x\} \cap \mathcal{I}_b \neq \emptyset$.

To prove (2) suppose that \mathcal{I}_0 is a maximal ideal of \mathcal{A} containing \mathcal{I}_b and \mathcal{I} is the ideal of \mathcal{B} generated by \mathcal{I}_0 i.e.:

$$\mathcal{I} = \{a \in \mathcal{B} : \exists_{x \in \mathcal{I}_0} a \leq x\}.$$

Now we prove that $b \notin \mathcal{I}$. Indeed, if $b \in \mathcal{I}$ then there exists $x \in \mathcal{I}_0$ such that $b \leq x$ and consequently $\neg x \leq \neg b$. Hence $\neg x \in \mathcal{I}_b \subseteq \mathcal{I}_0$ and finally $1 = x \vee \neg x \in \mathcal{I}_0$ - a contradiction. The fact that $\neg b \notin \mathcal{I}$ can be proved similarly. ■

THEOREM 1 [Effective]. *If \mathcal{A} is a maximal subalgebra of a Boolean algebra \mathcal{B} and $b \in \mathcal{B} \setminus \mathcal{A}$ then there exists a maximal ideal of \mathcal{B} containing b .*

Proof. Suppose that \mathcal{A} is a maximal subalgebra of \mathcal{B} and $b \in \mathcal{B} \setminus \mathcal{A}$. Then by Key Lemma (1), $\mathcal{I}_b = \{a \in \mathcal{A} : \exists_{x,y \in \mathcal{A}} a \leq x \vee y, x \leq b, y \leq \neg b\}$ is a maximal ideal of \mathcal{A} . Let \mathcal{I} be the ideal of \mathcal{B} generated by the set $\mathcal{I}_b \cup \{b\}$. Then $\mathcal{I} = \{a \in \mathcal{B} : \exists_{y \in \mathcal{A}} a \leq b \vee y, y \leq \neg b\}$ and it is easy to see, that the ideal \mathcal{I} must be proper. Indeed, if $1 = b \vee y$ for some $y \in \mathcal{A}$ such that $y \leq \neg b$, then $\neg b = \neg b \wedge 1 = \neg b \wedge (b \vee y) = \neg b \wedge y$ which implies that $\neg b \leq y$, and finally that $\neg b = y$ which is not possible.

Suppose now that the ideal \mathcal{I} is not maximal. Then, by Lemma 1, $\mathcal{I} \cup \neg \mathcal{I}$ is a proper subalgebra of \mathcal{B} properly containing $\mathcal{I}_b \cup \neg \mathcal{I}_b$ ($b \in (\mathcal{I} \cup \neg \mathcal{I}) \setminus$

$(\mathcal{I}_b \cup \neg \mathcal{I}_b)$ and $\mathcal{I}_b \cup \neg \mathcal{I}_b = \mathcal{A}$ which contradicts the maximality of \mathcal{A} . Thus the ideal \mathcal{I} is a maximal ideal of \mathcal{B} containing the element b , as required. ■

THEOREM 2 [Based on Prime Ideal Theorem]. *If \mathcal{A} is a proper subalgebra of a Boolean algebra \mathcal{B} then \mathcal{A} is contained in a maximal subalgebra of \mathcal{B} .*

Proof. Suppose that \mathcal{A} is a proper subalgebra of \mathcal{B} and $b \in \mathcal{B} \setminus \mathcal{A}$. Then by Key Lemma, \mathcal{I}_b is a proper ideal of \mathcal{A} and by Prime Ideal Theorem it can be extended to a maximal ideal \mathcal{I}_0 of \mathcal{A} . Using Key Lemma (2) we get that the ideal \mathcal{I} of \mathcal{B} generated by \mathcal{I}_0 does not intersect $\{b, \neg b\}$. Using Prime Ideal Theorem again we can find two different maximal ideals $\mathcal{I}_1, \mathcal{I}_2$ of \mathcal{B} such that \mathcal{I}_1 contains a proper ideal of \mathcal{B} generated by $\mathcal{I} \cup \{b\}$ and \mathcal{I}_2 contains a proper ideal of \mathcal{B} generated by $\mathcal{I} \cup \{\neg b\}$. It is known (see [6]) that $(\mathcal{I}_1 \cap \mathcal{I}_2) \cup \neg(\mathcal{I}_1 \cap \mathcal{I}_2)$ is a maximal subalgebra of \mathcal{B} . Since $\mathcal{I}_0 \subseteq (\mathcal{I}_1 \cap \mathcal{I}_2)$ then $(\mathcal{I}_0 \cup \neg \mathcal{I}_0) \subseteq (\mathcal{I}_1 \cap \mathcal{I}_2) \cup \neg(\mathcal{I}_1 \cap \mathcal{I}_2)$. Hence, by Lemma 1 we get that $\mathcal{A} \subseteq (\mathcal{I}_1 \cap \mathcal{I}_2) \cup \neg(\mathcal{I}_1 \cap \mathcal{I}_2)$. ■

THEOREM 3. *The following sentences are effectively equivalent:*

- (1) *every non-trivial Boolean algebra possesses a maximal subalgebra,*
- (2) *every non-trivial Boolean algebra possesses a maximal ideal,*
- (3) *every proper ideal of a Boolean algebra is contained in a maximal ideal,*
- (4) *every proper subalgebra of a Boolean algebra is contained in a maximal subalgebra.*

Proof. (2) and (3) are the equivalent statements of Prime Ideal Theorem. The implication (3) \Rightarrow (4) follows from Theorem 2. The implication (4) \Rightarrow (1) is trivial and the implication (1) \Rightarrow (2) is a consequence of Theorem 1. ■

References

- [1] J. Jech Thomas, *The Axiom of Choice*, North Holland Publishing Company, Amsterdam, 1973.
- [2] M. H. Stone, *The theory of representations for Boolean algebras*, Trans. Amer. Math. Soc. 40, 37–111.
- [3] R. Sikorski, *Boolean Algebras*, Springer-Verlag, Berlin, 1964.
- [4] G. Grätzer, *Universal Algebra*, Van Nostrand, Princeton, 1968.
- [5] G. Grätzer, *General Lattice Theory*, Akademie-Verlag, Berlin, 1978.
- [6] Subalgebras in: *Handbook of Boolean Algebras*, v.2, edited by J.D. Monk with the cooperation of R. Bonnet, North-Holland, 1989.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF ŁÓDŹ
Al. Politechniki 11
90-924 ŁÓDŹ, POLAND

Received March 28, 1996.