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Stanislaw Wronski

ON MAXIMAL SUBALGEBRAS AND MAXIMAL IDEALS
OF BOOLEAN ALGEBRAS

We prove that the existence of a maximal subalgebra and the existence of a maximal
ideal are effectively equivalent in every Boolean algebra.

The following effectively equivalent statements are an easy consequence
of the Axiom of Choice:

e every non trivial Boolean algebra possesses a maximal ideal,
e every proper ideal of a Boolean algebra is contained in a maximal ideal.

Both of them are known as the Prime Ideal Theorem. The Prime Ideal
Theorem has many interesting mathematical equivalents (for example, the
Stone Representation Theorem, see [2]) and being itself weaker then the Ax-
iom of Choice it can replace it in proofs of many important statements (for
example, Hahn-Banach Theorem, Stone-Cech Compactification Theorem,
see [1]).

The following lemma is well-known, see [3].

LEMMA 1. Let T be a proper ideal of a Boolean algebra B. Then the
following conditions are equivalent:

(1) Z is a mazimal ideal of B,

(ii) for every z € B, {z,~z}NT # B,
(i) T U-Z = B where =T = {~z : z € T}.
The next lemma is also well-known, see [4], [5].

LEMMA 2. Let A be a subalgebra of a Boolean algebra B and let b € B\ A.
Let C be the subalgebra of B generated by the set AU{b}. Then every element
of C has a form (bAz)V(=bAy) for some z,y € A, i.e. C = {(bAz)V(-bAY) :
z,y € A}.

The six-variable tautology mentioned in the proof of the following lemma
is surely the longest of all tautologies ever put to use by the present author.
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LEMMA 3. Let a,b,z,y, 2,5 be elements of a Boolean algebra. If a =
(bAZ)V(-bAy)andb=(aAz)V(~aAs)thena+b=(s—z)V(y—z2).

Instead of proving Lemma 2 by complicated calculations one can use a
computer to check that the corresponding formula, i.e.

la = ((bAZ)V(=bAYNIAD < ((aAz)V(mans))]
= [(a+b) = ((sA—2) V(yA-2)),

is a tautology. The symbol + denotes the operation of symmetric difference,
ie.a+b=(a—-d)V(b—a).

LEMMA 4 [Maximal Subalgebra Lemma). Let A be a proper subalgebra
of B. Then the following conditions are equivalent:

(i) A is a mazimal subalgebra of B,
(i) {a,b,a=b}N A # D for every a,b € B.

Proof. Suppose that A is a maximal subalgebra of B and that a,b €
B\ A. By the maximality of A and Lemma 2 it follows that for some
z,y,z,s € Awehave that b = (eAz)V(-aAy) and @ = (bA2)V(-bAs). Using
Lemma 3 one gets that a +b = (s—2) V(y— 2) € A which was to be proved.

Suppose now that for every a,b € B, {a,b,a +b} N A#0, and there
exists a proper subalgebra of B exceeding A. Then for some ¢ € B\ A
the subalgebra of B generated by .AU{c} must be proper and consequently
some element d € B must lie outside its universe. The assumption about
A yields that ¢ + d, ~(c + d) € A but in every Boolean algebra we have
d=[cA-(c+d)]V[-cA(c+ d)] which means that d belongs to the subal-
gebra of B generated by AU{c}, — a contradiction. m

LEMMA 5. Let A be a mazimal subalgebra of a Boolean algebra B and let
b€ B\ A. Then for every z € A at least one of the following is true:

(i) {bAz,-bAz} C A, or
(ii) {b A ~z,nb Az} C A.

Proof . If 5 € B\ A and z € A then it follows that:
(1) {bAz,bA -z} N A # D since otherwise, by Lemma 4, it follows that
A3 (bAz)+ (bA-z)=0b,- acontradiction;
(2) {-bAz,~bA-z}N.AF#0 for similar reasons;
(3) {-bAz,bA -z} ¢ A since otherwise A> (b—z)V(z —b)=b+z and
b= (b+x)+2 € A, - a contradiction;
(4) {bAz,~bA -z} ¢ A for similar reasons.
Combining (1),...,(4) it is easy to prove that either (i) or (ii) must be
true. m
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LEMMA 6 [Key Lemma). Let A be a subalgebra of a Boolean algebra B
and let b € B\ A. Let T, be the ideal of A generated by the set (AN(b]s) U

(AN(=b]p), i.e.
Iy={a€A: I ycaa<zVyz<by< b}

Then Iy, is a proper ideal of A. Moreover,
(1) if A is a mazimal subalgebra of B then Iy is a mazimal ideal of A,
(2) if Zo is a mazimal ideal of A containing Ty, and I is the ideal of B
generated by Ty then {b,~b}NZ = 0.

Proof. Suppose that b € B\ AAand 7, = {a € A:3; yesa < zVy,z < b,
y < —b}. To prove that 7, is a proper ideal, suppose that for some z,y € A,
t<by<-bandzVy=1.Thenb=bA1=bA(zVy)=((bAz)V(bAY)
and b A y = 0 because y < —b. Thus b = b A z which implies that b < = and
finally we get that b = z which is not possible because b € B\ A and = € A.

To show (1) let us assume that A is a maximal subalgebra of B. By
Lemma, 1, in order to prove that 7} is a maximal ideal we need only to show
that for every = € A, {z,-z}NZ, # 0. Take any z € A. Then by Lemma 5
at least one of the following is true:

(i) {bAz,~bAz} C A,
(i) {bA -z, b A -z} C A

It is clear that (i) implies that 2 € 7, and (ii) implies that —& € Z,. Thus
{z,-z}NZT, #0.

To prove (2) suppose that Zy is a maximal ideal of A containing 7; and
7 is the ideal of B generated by 7 i.e.:

I={a€B:3er,a< 2}

Now we prove that b € Z. Indeed, if b € Z then there exists z € Zy such
that & < z and consequently -z < -b. Hence -z € T, C Zp and finally 1 =
zV-z € Ip - a contradiction. The fact that —b ¢ T can be proved similarly. m

THEOREM 1 [Effective]. If A is a mazimal subalgebra of a Boolean algebra
B and b € B\ A then there ezists a mazimal ideal of B containing b.

Proof. Suppose that A is a maximal subalgebra of B and b € B\ A.
Then by Key Lemma (1), Zy = {a € A: 3z yena < zVy,z < by< —b}is
a maximal ideal of A. Let Z be the ideal of B generated by the set Z, U {b}.
Then Z = {a € B: 3ycuaa < bV y,y < b} and it is easy to see, that the
ideal 7 must be proper. Indeed, if 1 =bV y for some y € A such that y < -b,
then -b = -bA 1 = -bA(bVy) =-bAy which implies that —-b < y, and
finally that —b = y which is not possible.

Suppose now that the ideal 7 is not maximal. Then, by Lemma 1, ZU-Z
is a proper subalgebra of B properly containing Z, U -7, (b € (Z U -T) \
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(Zy U =Zp)) and Z, U -7, = A which contradicts the maximality of .A. Thus
the ideal 7 is a maximal ideal of B containing the element b, as required. m

THEOREM 2 [Based on Prime Ideal Theorem)]. If A is a proper subalgebra
of a Boolean algebra B then A is contained in a mazimal subalgebra of B.

Proof. Suppose that A is a proper subalgebra of B and b € B\ .A. Then
by Key Lemma, I, is a proper ideal of A and by Prime Ideal Theorem it can
be extended to a maximal ideal Zp of A. Using Key Lemma (2) we get that
the ideal 7 of B generated by Zp does not intersect {b, —b}. Using Prime Ideal
Theorem again we can find two different maximal ideals 7, , Z, of B such that
7, contains a proper ideal of B generated by ZU{b} and Z, contains a proper
ideal of B generated by ZU{—-b}. It is known (see [6]) that (Z;NZ;)U~(Z1NZ;)
is a maximal subalgebra of B. Since Zy C (Z3 NZ;) then (ZoU =Zp) C (71 N
Z3)U~(Z1NZI,). Hence, by Lemma 1 we get that A C(Z1NZT)U-(Z1NZ;). =

THEOREM 3. The following sentences are effectively equivalent:
(1) every non-trivial Boolean algebra possesses a mazimal subalgebra,
(2) every non-trivial Boolean algebra possesses a mazimal ideal,
(3) every proper ideal of a Boolean algebra is contained in a mazimal ideal,
(4) every proper subalgebra of a Boolean algebra is contained in a mazimal
subalgebra.

Proof. (2) and (3) are the equivalent statements of Prime Ideal The-
orem. The implication (3)=>(4) follows from Theorem 2. The implication
(4)=>(1) is trivial and the implication (1)=>(2) is a consequence of Theo-
reml. =
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