

Maciej Skwarczyński

COMPLETENESS OF HERMITE SYSTEM
IN THE BERGMAN SPACE OVER A STRIP

We prove that holomorphic Hermite system $h_k(z) = e^{z^2/2}(e^{-z^2})^{(k)}$ $k = 0, 1, \dots$ is linearly dense in the Bergman space over strip $S_c = \{z \in \mathbb{C}; |Imz| < c\}$, $c \in (0, \infty)$. The Genchev transform [4], [5], [14] is used to deduce this result from classical Steklov theorem.

1. Introductory remarks

Functions $h_k(z)$ (see below) are related to classical Hermite polynomials given by the formula

$$(1) \quad H_k(z) := (-1)^k e^{z^2} (e^{-z^2})^{(k)} \quad k = 0, 1, \dots$$

See Watson [22], Plancherel -Rotach [12], Hille [8], Akhiezer [1], Lebedev [10], Vilenkin [21], Rusev [13]. (Natanson [11] uses a slightly different definition in which the factor $(-1)^k$ is absent.) Hermite polynomials were introduced in 1859 by P.L.Tchebycheff [19] and in 1864 by Ch.Hermite [7]. In fact they occur already in Laplace's *Theorie analytique des probabilités*. By definition

$$(2) \quad h_k(z) = (-1)^k e^{-z^2/2} H_k(z) \quad k = 0, 1, \dots$$

Steklov [17] (see also [11,p.472]) proved that Hermite polynomials $H_k(t)$, $t \in \mathbb{R}$ are linearly dense in $L^2(\mathbb{R}, e^{-t^2})$. An extensive study of Hermite polynomials in a complex domain was undertaken by Watson and (later) by Hille with an eye to represent a function holomorphic in a strip $S_c := \{z = x + iy; |y| < c\}$ by pointwise convergent Hermitian series. Nevertheless the (obvious) fact that for every $c \in (0, \infty)$ the functions (2) are square integrable over S_c hence belong to the Bergman space $L^2 H(S_c)$ has attracted no attention (comp. e.g. [3]). In this context Theorem 2 indicates

a link between classical orthogonal polynomials and holomorphic geometry [3], [15]. We find it convenient to use Fourier transform described by the formula

$$(3) \quad f^\dagger(s) := (L^2) \lim_{A \rightarrow \infty} \frac{1}{\sqrt{2\pi}} \int_{-A}^A e^{ist} f(t) dt.$$

Up to the constant factor the same definition of Fourier transform appears in Vilenkin [21, p.91]. By Plancherel theorem (3) defines a unitary operator on $L^2(\mathbb{R})$ and the inverse transform is described by the formula

$$(4) \quad f^\dagger(t) := (L^2) \lim_{A \rightarrow \infty} \frac{1}{\sqrt{2\pi}} \int_{-A}^A e^{-ist} f(s) ds.$$

For the Fourier transform (3) h_k is an eigenfunction which belongs to the eigenvalue i^k . See Akhiezer [1, p.39].

In the following we shall need the Genchev transform [4], [5], [14]. Let $D := \{z \in \mathbb{C}; \operatorname{Re} z \in J\}$ be a one dimensional tube over interval J . For $f \in L^2 H(D)$ and fixed $x \in J$ denote $g(y) := f(x + iy)$. The function

$$(5) \quad g(y) := f(x + iy)$$

is independent of x and is called the Genchev transform for f . We recall the following

THEOREM 1 (Genchev, Dzhrbashyan [5], [4]). *The correspondence $f \rightarrow G_f$ defines a unitary mapping of $L^2 H(D)$ onto $L^2(\mathbb{R}, w_J)$ where*

$$(6) \quad w_J(t) := \int_{e^{-2tx}} dx$$

is an elementary weight determined by J .

2. Reduction to a real variable problem

Our aim is to prove the following

THEOREM 2. *For every $c \in (0, \infty)$ Hermite system $h_k(z)$ $k = 0, 1, \dots$ is linearly dense in the Bergman space $L^2 H(S_c)$.*

P r o o f. Obviously, it suffices to prove that under some unitary mapping of $L^2 H(S_c)$ the system h_k , $k = 0, 1, \dots$ is mapped onto a linearly dense subset.

We begin with the mapping of $L^2 H(S_c)$ onto $L^2 H(D)$ where $J = (-c, c)$. It maps $f(z)$, $z \in S_c$ onto $f(z/i)$, $z \in D$. It will be composed with Genchev transform which maps $L^2 H(D)$ onto $L^2(\mathbb{R}, t^{-1} \sinh(2ct))$. Finally we shall

map the latter space onto $L^2(\mathbb{R}, e^{-t^2}t^{-1} \sinh(2ct))$ by the mapping which takes $f(t), t \in \mathbb{R}$ onto $f(t)e^{t^2/2}, t \in \mathbb{R}$. One verifies easily that

- (1) Under the rotation the function $h_k(z), z \in S_c$ is mapped onto $h_k^*(z) := h_k(z/i), z \in D$
- (2) Under the Genchev transform the function h_k^* is mapped onto $i^k h_k(t), t \in \mathbb{R}$. Indeed (by taking $x=0$) we see that $G_{h_k^*}$ is the Fourier transform of $h_k^*(iy) = h_k(y), y \in \mathbb{R}$. The latter is an eigenfunction, hence the claim is established
- (3) Under the third mapping the function $h_k(t) = (-1)^k e^{-t^2/2} H_k(t)$ is mapped onto $(-1)^k H_k(t)$.

Since (by Lemma 2 of the next section) Hermite polynomials are linearly dense in the space $L^2(\mathbb{R}, e^{-t^2}t^{-1} \sinh(2ct))$ the proof of the theorem is completed.

3. Relation with Steklov density theorem

We shall need an easy extension of Steklov theorem [16] stated in [11, p.472]. (The statement in [11] corresponds to the case $a = 1$.)

LEMMA 1. *For every $a \in (0, \infty)$ the set of all polynomials is dense in $L^2(\mathbb{R}, e^{-(at)^2})$.*

P r o o f. The set $C_c(\mathbb{R})$ of continuous functions with compact supports is dense in $L^2(\mathbb{R}, e^{-(at)^2})$ hence it suffices to show that every $f \in C_c(\mathbb{R})$ can be approximated in $L^2(\mathbb{R}, e^{-(at)^2})$ by polynomials. Take arbitrary $\epsilon > 0$; since $a\epsilon > 0$ and $f^*(t) := f(t/a) \in C_c(\mathbb{R})$ there exists (by Steklov theorem) a polynomial $W(t)$ such that

$$(7) \quad \int_{\mathbb{R}} |f(t/a) - W(t)|^2 e^{-t^2} dt < a\epsilon.$$

Substituting $t = as$ and dividing by a yields

$$(8) \quad \int_{\mathbb{R}} |f(as) - W(as)|^2 e^{-(as)^2} ds < \epsilon$$

and we see that the polynomial $W^*(s) := W(as)$ gives the desired approximation of f , Q.E.D.

We can now easily prove the lemma referred to in section 2.

LEMMA 2. *Hermite polynomials $H_k(t), k = 0, 1, \dots$ are linearly dense in $L^2(\mathbb{R}, p(t))$, where $p(t) := e^{-t^2}t^{-1} \sinh(2ct)$.*

P r o o f. The linear span of Hermite polynomials is the set of all polynomials and we need to show that the latter is dense in $L^2(\mathbb{R}, p(t))$. As in

Lemma 1 it suffices to show that every $f \in C_c(\mathbb{R})$ can be approximated in $L^2(\mathbb{R}, p(t))$ by polynomials. Note that the ratio

$$(9) \quad \frac{p(t)}{e^{-t^2/2}} = e^{-t^2/2} \frac{e^{2ct} - e^{-2ct}}{2t}$$

is bounded since it is continuous and tends to 0 for $t \rightarrow \pm\infty$. Therefore it suffices to show that f can be approximated by polynomials in $L^2(\mathbb{R}, e^{-t^2/2})$. The latter follows by taking $a = 1/\sqrt{2}$ in Lemma 1, Q.E.D.

References

- [1] N.I. Akhiezer, *Lectures on integral transforms*, Transl. of Math. Monographs 70 Amer. Math. Soc. (1988).
- [2] P. Appell, J. Kampe de Feriet, *Fonctions hypergeometriques et hypersphériques. Polynomes d'Hermite*. Gauthier-Villars 1926.
- [3] S. Bergman, *The kernel function and conformal mapping*, Math. Surveys 5, 2nd ed., Amer. Math. Soc., 1970.
- [4] M.M. Dzhrbashyan, V.M. Martirosyan, *Integral representations for some classes of functions holomorphic in a strip or in a halfplane*, Anal. Math. 12 (1986), 191–212.
- [5] T. Genchev, *Integral representations for functions holomorphic in tube domains*, C.R. Acad. Bulg. Sci. 37 (1984), 717–720.
- [6] J.L. Geronimus, *Teorja ortogonalnych mnogoczlenov*. Moskva 1950.
- [7] Ch. Hermite, *Sur un nouveau développement en série de fonctions*, C.R. Acad. Sci. 58 (1864), 93–100; 266–273.
- [8] E. Hille, *Contribution to the theory of Hermitian series*. (The representation problem) Trans. Amer. Math. Soc. 47 (1940), 80–94.
- [9] D. Jackson, *Fourier series and orthogonal polynomials*, Carus Math. Monographs No 6, The Math. Assoc. of America, Banta Co., Menasha, Wisconsin 1941.
- [10] N.N. Lebedev, *Specjalnyje funkcji i ich prilozhenja*, Moskva 1963.
- [11] I.P. Natanson, *Konstruktivnaja teorja funkcij*, Moskva 1949.
- [12] M. Plancherel, W. Rotach, *Sur les valeurs asymptotiques des polynomes d'Hermite*, Commentarii Math. Helvetici 1 (1929), 227–254.
- [13] P. Rusev, *Analytic functions and classical orthogonal polynomials*, Bulg. Math. Monographs vol. 3, Sofia 1984.
- [14] M. Skwarczyński, *L²-Angles between one dimensional tubes*, Studia Math. 90 (1988), 213–233.
- [15] M. Skwarczyński, *The Bergman function, biholomorphic invariants and the Laplace transform*, Ann. Univ. M. Curie-Skłodowska, Sectio A 48 (1994), 120–161.
- [16] N.J. Sonin, *Issledovaniya o cylindriczeskikh funkciach i specjalnykh polinomach*. Moskva 1954.
- [17] W.A. Steklov, *Theoreme de fermeture pour les polynomes de Laplace-Hermite Tchebycheff*, IAN 10 (1916), 403–416.
- [18] P.K. Suetin, *Klassiczeskie ortogonalnye mnogoczleny*, 2nd ed., Moskva 1979.
- [19] P.L. Tchebycheff, *Polnoje sobranje sochinenji*, Moskva 1948.

- [20] J.V. Uspensky, *On the development of arbitrary functions in series of Hermite's and Laguerre's polynomials*, Ann. Math. 28 (1927), 593–619.
- [21] N.J. Vilenkin, *Specjalnyje funkci i teorja predstavlenij grup*, Moskva 1965.
- [22] G.N. Watson, *The harmonic functions associated with the parabolic cylinder*, Proc. of the London Math. Soc. 17 (1918), 116–148.

Address of Author:

Smoleńskiego 27a m.14,
01-698 WARSZAWA, POLAND
E-mail: skwarczynski@alpha.sggw.waw.pl

Received January 31, 1996.

