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Introduction

This paper is a direct continuation of [BW92a] and of [BW92b], in this
note referred to as Part I and Part II, respectively. And we continue here the
discussion of the conditions on a similarity type, under which some category
theoretical constructions like products, equalizers, pullbacks etc. and their
dual notions exist in general in the categories of partial algebras of that
type with all homomorphisms (yielding the category $Hom(7)), all closed
homomorphisms (€-$Hom(7)), all quomorphisms (Quom(7)), all closed quo-
morphisms (€-Quom(7)) or all conformisms (€onf(r)), respectively as mor-
phisms. And in the case of existence we give descriptions of their construc-
tions. The numberings of definitions, lemmas, propositions and theorems
here continue those in Part I and Part II. In particular “Theorem nd” con-
cerns the category theoretical construction dual to the one treated in “The-
orem n”. However, we do not continue numbering the theorems according to
their numbers in Table 1 of Part I — which gives a survey of the main results
as far as existence is concerned —, since we postpone the more special treat-
ments of inverse and direct limits to the end, and rearrange other theorems
for proof technical reasons. At the end of this note we insert a new table (Ta-
ble 2) extending Table 1 by existence results concerning four other types of
morphisms not treated in this series of papers but in [M93] and [AMRS95],
respectively. Moreover, in this table we have rearranged the lines in such a
way that limit constructions and colimit constructions form different con-
nected blocks. This may help in particular in connection with the existence
and non-existence proofs with respect to Theorems 4 (Completeness) and 5
(Pullbacks) and to their duals.

With respect to the definitions of the basic concepts and to some pre-
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liminary results the reader is referred to Part I and [B86). For concepts not
defined here see among others the book [B86], the note [BW87] or the sur-
vey articles [B82], [B92] or [B93]. As far as category theoretical concepts
and results are concerned see [HS73], [AdHS90] or [M171].

The authors are grateful to F. Rossell6 for many helpful suggestions and
remarks.

The Main Theorems (continuation)

THEOREM 3 (Equalizers). Let f,g : A — B be any two morphisms of one
of the five categories under consideration.

— Then the equalizer of f and g exists without any restrictions on T in
the categories Hom(r), €-Hom(7), and Quom(T).

- In the category €-Quom(r) an equalizer of f and g always ezists,
if and only if the type T either specifies only nullary or only unary
operations,

- and in Conf(T) an equalizer of f and g exzists in general if and only
if all fundamental operations are unary.

Whenever the equalizer (E¢,, m¢g) exists, then mg4 is an injective monomor-
phism of the category under consideration, which therefore is also a homo-
morphism from K¢, into A.

In each case, when the equalizer of f and g exists in general, it has a
special representative, where K¢, is a relative subalgebra of A and my, :
Efy — A is its full and injective homomorphic embedding idg, 4 into A.
Thus it still remains to describe the carrier set E;4 in each case:

- In $Hom(1) and C-Hom(r) we have
Esy:={a€ A| f(a) =g(a)},

and this is a closed subset of A.
- In Quom(t) and €-Quom((0),eq) one has

E¢y:={a€ A|ac dom fndomg and f(a) = g(a)}UA\(dom fUdom g).
- In €-Quom((1),eq) and Conf((1),eq) one has
Esg:={a € A| there is no unary term t € F({z}, TAlg(7))
such that a € domt® and (t*(a) € dom f \ dom g
or t*(a) € dom g \ dom f or f(t*(a)) # g(¢*(a)))}-

Observe that in this latter case Eg is a closed subset of A. As a matter
of fact it is the largest closed subset of A having emply intersection with
D4 := (dom f\dom g)u(dom g\dom f)U{a € dom fNdom g | f(a) # g(a)}.
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Remark. Observe that for each similarity type, for which in any of
these categories equalizers exist for any two morphisms, multiple equalizers
exist for any arbitrary large family of morphisms having the same source
and the same target object, and it is characterized in the corresponding way.

Proof. It is well known from category theory that for each equalizer
the morphism is a monomorphism, and therefore totally defined according
to Proposition 2 (cf. Part I) and in particular an injective homomorphism
in the categories Hom(7), €-Hom(7), Quom(r) and €-Quom(r), whenever it
exists.

Since {a € A | f(a) = g(a)} is always a closed subset of A, if f and ¢
are (closed) homomorphisms, the statement about Hom(7) and €-$HHom(7) is
easily seen to be true.

For quomorphisms one only has to observe, that, for all a € (dom f \
domg) U (dom g \ dom f) = dom f U dom g \ (dom f N dom g), a cannot be
the value of a quomorphism equalizing f and g, while there are no further
restrictions (i.e. the proposed morphism really equalizes f and g).

If m: E — A is an equalizer of f,g : A — B in one of the categories
¢-Quom(7) or Conf(7), then m(E) has to be a closed subset of A, in partic-
ular m(F) has to contain all nullary fundamental constants existing in A.
However, if 7 = (0),¢q, then — w.r.t. the constants — any closed quomor-
phism is defined on exactly those nullary fundamental constants defined in
A which are also defined in B (and if they are defined in B, then they have to
be defined in A). Moreover, if 1/ exists and does not belong to, say, dom f,
for some ¥ € Q, then one also has ¢2 ¢ domg and therefore ¥%s exists,
and one has m(y¥) = ¥, Hence f and g have to be defined on exactly the
same constants of A.

From this observation it easily follows that equalizers exist in
¢-Quom((0),eq) and that they have the form described in the theorem
(up to isomorphism).

Now consider €-Quom((1),eq) or €onf((1),eq), and let Efy be defined
as in the above theorem. Since a variable z is a term, it is easily seen
that for all a € Ejg either (a € dom f Ndomg and f(a) = g(a)) or a €
A\ (dom f U dom g). Hence f omys, = g o mys,. In addition, if there are
a € A and a term t € F({z}, TAlg(r)) such that t2(a) exists and either
t2(a) € (dom f \ domg) U (domg \ dom f) or f(t%(a)) # g(t%(a)), then a
must not belong to the equalizer of f and g. Moreover, Ey, is a closed subset
of A, since Eyg4 is the complement of the initial segment of A generated by
D¢, (= (dom fUdomg)\ {a | a € dom fNdomg and f(a) = g(a)}). Since
an initial segment contains with every value of a fundamental operation
also the corresponding arguments, its complement has to be a closed subset.
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Thus myg4 is a closed homomorphism and therefore a closed quomorphism
as well as a conformism. Now, if A : C — A is any closed quomorphism
or conformism with ho f = ho g, then A(C) has to be a closed subset of
A disjoint from Dyg4, and therefore contained in E;4 (which is the greatest
such set). Thus (Ezg,mysy) (= (Egg,idE,,4)) is an equalizer of f and g.
Finally let us consider the counterexamples in the remaining cases:

— In Conf((0)) consider Figure 9 for f,g: A — B. If h: C — A were an
equalizer, then ¢* would have to exist and one would have to have
h(¢%) = ¢, and therefore f o h # g o h contradicting the condition
for h to be an equalizer of f and g.

Figure 9: In €onf ((0)) f and g have no equalizer.

- In connection with €-Quom((0,1)) consider Figure 10 for f,g: A —
B. f h: C — A were an equalizer of f and g, then necessarily
©® € h(C), and therefore also a = ¥24(p?) € h(C), since h is closed.
But then f o h # g o h contradicting that h should equalize f and g.

A B

Figure 10: In ¢-Quom ((0,1)) f and g have no equalizer.

~ With respect to €-Quom((2)) or Conf((2)) consider the closed quo-
morphisms and conformisms f,g : A — B depicted in Figure 11. Let
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Figure 11: In ¢-Quom ((2)) and €onf((2)) f and ¢
have no equalizer.

C = ({c},0) and consider the closed quomorphisms respectively con-
formisms h; : C — A, ¢ = a;,1 € {1,2}. Then one has foh; = goh; for
i € {1,2}. Therefore, if there existed an equalizer h : E — A of f and
g in €-Quom((2)) or €onf((2)), then E had to have at least two ele-
ments e,,e; € domh, e; # e, such that h(e;) = a; (i € {1,2}). But
since h had to be a closed quomorphism or a conformism, ¢(eq, e3)
had to exist and to be mapped by h onto a3. However then A could
no longer equalize f and ¢g. m

As a preparation for the result on coequalizers we prove some lemmas,
but let us first give a definition.

DEFINITION 4. Let f,g: A — B be two partial mappings from a set A
into a set B. Then we define

Iyg:={(f(a),9(a)),(g(a), f(a)) | a € dom f N dom g}

to be the coequalizing relation of f and g. Moreover, define ¢, to be the
equivalence relation on B generated by I'y,, and set

Brgi={b€ B| f(blor,,) Ug~ ([ble,,) € dom f N dom g}

to be the coequalizing domain of f and g.

Finally, let 8, be the restriction of 6’ to By, which we shall call the
coequalizing equivalence of f and g. And let By, be the relative subalgebra
of B with carrier set By,.

Remark. Obviously By, is a union of ' ; ;-classes, and, for any b € Bj,,
[6]s,, has more than one element only if b € B? o
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LEMMA 7. Let T = (ny)peq be a similarity type satisfying n, < 1 for
each p € Q. Let f,g : A — B be any two closed qguomorphisms or con-
formisms, respectively.

(1) Let both f and g be closed quomorphisms. Then the coequalizing equiv-
alence 64 is indeed a closed congruence relation on By, .

(2) Let f and g be conformisms, then, for all p € Q and for all b € By,
with [blg,, C dom ¢® 9 one has

{@"(6) | 8" € [b]s,} € [ (D),

Proof. Ad (1): Since the statement here is quite similar to the first one
of Lemma 1 in Part I we just ask the reader to adopt the first part of the
proof there to this situation.

Ad (2): Consider ¢ € Q of arity n, = 1 - for n, = 0 the statement is
trivially true —, and b € By, with [b]s,, C dom o, Let b € (6],,- Then,
if b # b’, we have sequences by = b, by, ..., b, = b € dom fn domg and
ap, ..., ¢, € A such that {b;_1,b;} = {f(ai),g(a;)} for i € {1,...,n}.
Since f and g are conformisms and [b]s,, C dom ©®9 we again get al €
domh and {%s (bi-1), %9 (b)) = {f(¢*(a:)), 9(¢4(a:))}. This shows
that %5 (8 € [¢%5 (b)]s,- m

LEMMA 8. Let & be any one of the categories Hom(r), €-Hom(r),
Quom(7), €-Quom(r), or Conf(r), respectively, let f,g: A — B be two mor-
phisms in R, and let h : B — C be any K-morphism satisfyingho f = hog.

Then dom h is a union of 0s4-classes and b € domh, b’ € [blg,, imply
h(b") = h(b).

Proof. Assume b € domh. If b ¢ f[A] U g[A], then b € By, and
[bls;,, = {b}. Thus, assume that b € f[A]U g[A], and let b’ € [b]y,,,
b # b'. Then there are ay, ..., a, € A, bg = b, by,..., b, = b € B
such that {b;—1,b;} = {f(a:),g(a;)} for 1 < i < n. I, say, b = by = f(a1),
by = g(a1) € {f(az),g9(az)}, then ho f = ho g implies b; € dom h, and
h(b1) = h(bp). By induction on n we realize that ¥’ € dom h and h(b') = h(b).

If b ¢ Byg, then there were b” € [b]gr,, and a” € A such that, say, b =
f(a") and " ¢ dom g. Since b € dom h implies b” € dom h, as seen above,
we get that h o f(a") exists, while h o g(a”) does not exist, contradicting
ho f = hog. Therefore b has to belong to By,. m

THEOREM 3d (Coequalizers). Let f,g : A — B be any two morphisms
of one of the five categories under consideration. Then a coequalizer of f
and g ezists without any restrictions on the similarity type T in the category
$Hom(7) and it is given by (natg, B/8), where 0 is the congruence relation on
B generated by I' s, := {(f(a),9(a)) | a € A}.
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In ¢-Hom(1), €-Quom(r) and Conf(r) the coequalizer of f and g ezists
in general if and only if n, < 1 for all ¢ € Q, and it exists in Quom(T) if
and only if n, = 0 for all p € Q.

In €-$om(1) the coequalizer, if it exists in general, is defined in the same
way as in Hom(T).

In Quom((0),eq), in €-Quom(r) and in Conf(r) with n, < 1 for each
@ € Q, the coequalizer is defined — using the notation of Definition { — as
(natg,, : B — C(f,9),C(f,9)), where C(f,g) := Byy/8y,, and

~ for ¢ € Q with n, = 0 : 959 ezists and is equal to [gom]g!g, if ©
exists and belongs to By,

- for ¢ € Q with n, = 1 we have:

- in C-Quom(7): ¢US9) = oBrs/b1a

- in Conf(7) : dom U/9) = {[bls,, | b € By,, and [bls,, C dom™s}
and if [ble,, € dom US9) | then A5 ([b]y,,) := [@™9(b)]s,, -

Remark. As in the case of equalizers this result extends to arbitrary

non-empty families F := (f; : A — B);es of morphisms (instead of (f,g)),
when one sets in analogy to Definition 4:

T :={(fi(a), fi(a)) | i,j €I, a€()domf},

i€l

B

Br:={be B||Jf([ble) C[)dom fi}.

el i€l

Proof. Let us first consider the case of homomorphisms:

Let h : B — C be any homomorphism such that ho f = hog; then, obviously,
for any a € A, (f(a),g(a)) € ker h. Therefore § := Cong I'y, C ker h, and the
diagram completion theorem for full and surjective homomorphisms (here
for naty) tells us that there is a unique homomorphism by : B/ — C such
that A = hg o natg, showing that (nats,B/6) is a coequalizer of f and g (it
is obvious from the construction that natg of = natg og).

The same is true for closed homomorphisms, if n, < 1 for each ¢ € Q,
because of Lemma 1 in Part I.

However, in €-$Hom((2)) there are no coequalizers in general. In order to
realize this, consider the closed homomorphisms f,g : A — B as depicted in
Figure 127 where f(a) = bl7 g(a) = b3’ graph ()D]B = {((bl,b2)’b4)a((b2ab1)7
bs)}. There is no closed homomorphism A : B — C at all, which would
satisfy ho f = hog, since (b1, b3) is not contained in any closed congruence
relation of B.

Let us now consider Quom(7). If 7 = (0),eq, then b, is obviously a
congruence relation on Bj,, since nullary fundamental constants do not
impose any restrictions on equivalence relations to be congruence relations
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Figure 12: In €-$om ((2)) f and g have no coequalizer.

(observe also Remark 1.(iii) in Part II). From the definition of C(f,g) it
follows that naty,, : B — C(f,g) is a quomorphism satisfying natg,, of =
natg, o g. Let h : B — D be any quomorphism satisfying ho f = hog.
Then Lemma 8 tells us that dom A is a union of #;4-classes and that 67, N
(dom h)? C ker h. Therefore define for b € By, :

ho([bla,,) = { h(b), if b€ domh

undefined, else.
Then fyg. is a partial mapping out of C(f,¢) into D. Assume that, for some
nullary ¢ € Q, p%/:9) exists and belongs to dom ho. Then ¢® exists (since
natg,, is full) and belongs to dom A. Since & is a quomorphism, ©P has to
exist, and one has to have that ©® = h(¢?) = ho(¢™¥+9)). This shows that
ho is indeed a quomorphism, which satisfies s o naty, = A.

In order to realize that there are no coequalizers in general in Quom(7),
if the type 7 specifies at least one at least unary operation symbol, consider
quomorphisms f,g : A — B as depicted in Figure 13. Obviously 'y, =
{(b],bg), (bg,b]),(b3,b4),(b4,b3)}, and Hfg = ng U AB, Bfg = B. Let h,‘ B
B — C; be defined in such a way that dom h; = J{c | ¢ € C;} and h;(b;) = ¢
iff bj€cforallie {1,2},7¢€ {1,2,...,7},and ¢ € C;. It is easy to realize
that A; and hy are quomorphisms, h; : B — C;, satisfying h; 0 f = h; 0 g,
i € {1,2}. Now assume that (h : B — D, D) were an equalizer of f and ¢
(i.e.e.g. ho f = hog). Then there would be quomorphisms g; : D — C; such
that h; = g; 0o h (1 € {1,2}). Now, hy is total, and therefore h would have
to be total and therefore a homomorphism with 'y, C kerh C Cong 'y =
ker hi. Yet this would imply kerh = Cong I, inferring that g; were an
isomorphism. However, there is no quomorphism hy : G — C; such that
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{b1,b2} {bs}
Oo————-0

{b3,bs} {bs}

A
Figure 13: In Quom ((1)) f and g have no coequalizer.

hg o hy = hy, since {bs,bs, b7} would have to be mapped both onto {bs}
and onto {bg}, while h; is not defined on b7. Hence there cannot exist a
coequalizer of these particular quomorphisms f and g.

Next, consider €-Quom(r). First let n, < 1 for all ¢ € Q. From
Lemma 7.(1) we know already that the coequalizer equivalence 6y, is a
closed congruence relation on B;,. We have to prove that

(natg,, : B — By, /0;5,B5,/05,) is a coequalizer of f and g.

By construction we have natg, of = natg, o g and that naty,  is a closed
quomorphism. Let h : B — D be any closed quomorphism coequalizing f and
g: hof = hog. From Lemma 8 we already know that dom A is a union of f¢4-
classes, and that 87, N (dom A)? C ker h. Since nats,, |5,, : Byg — Bsy /05,
is a closed and surjective homomorphism, since domh C By,, and since
8;,N(Bysgxdomh) C kerh (cf. Lemma 8), Lemma 6 from Part I implies that
there exists a closed quomorphism [ : By, /6, — D such that lonate,, = .
Obviously, ! is unique with this property. Thus the above statement has
been proved.

In order to realize that there exist no coequalizers in general in
¢-Quom(7) as well as in Conf(7), if 7 specifies at least one at least binary
operation, consider Figure 14. The definitions of hy, h; and k3, and the ar-
gumentation about the non-existence of a coequalizer of f and g is carried
through in a similar way as in connection with Figure 13 (we assume the bi-

nary operation to be commutative in this example). Therefore we leave the
’
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{b1, b2}
hy §>D——O{b4, bs}| G
by — {bs}

f 24
bs | hy [ Ofbr,b2} Of{bs}
b3 - C
o{bs}
AN
g k. bs hs

\ by ) —— [ Ofb1,b2} O{ba}
Cs

A B o{bs} o{bs}

Figure 14: In €-Quom ((2)) and €onf((2)) f and g have
no coequalizer (h3 and C3 are only needed for €onf((2))).

details to the reader. For the arguments concerning closed quomorphisms
only hy; and h, are needed. In connection with conformisms one has to ex-
clude by h3 and C; the possibility that the coequalizer might have empty
structure, and that (h3,Cs) might serve as a coequalizer (but then there
would not exist a conformism, say g from C; into C; satisfying g o hy = hy,
since the existence of g would enforce the binary operation on C3 to have a
non-empty graph). '

Finally consider the case of conformisms, i.e. Conf(7), with n, < 1 for
¢ € Q. The arguments concerning Quom((0),eq) also show that (nats,  :
B — C(f,9),C(f,g))is a coequalizer of f and g in the category Par of all
sets with all partial mappings as morphisms. Now, let » : B — D be a con-
formism satisfying h o f = ho g, then there exists a unique partial mapping
l:C(f,g9) — D such that lonatg, = h. What remains to show is that [ is in-
deed a conformism: Assume that @P(I([b]s,,)) (= ¢P(h(b))) exists for some
b € domh(C Byjy), then {b]s,, C [blkern C dom ¢® ¢ and L,'Jmfg([b]glq) -
[©® s (b)]s,,) (by Lemma 7.(2)), and therefore [b]s,, € dom U 9), and
159 ([blg,,)) = ©P(I([b)s,,))- This shows that I is indeed a conformism. m

Let us now consider already at this place the general case of the exis-
tence of limits and colimits, before we discuss the existence and structure of
multiple pullbacks and multiple pushouts. The discussion of the existence
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of limits and colimits in general in any of the categories under consideration
already at this place is possible because of well known facts from category
theory (see e.g. HERRLICH and STRECKER [HS73]).

Corresponding to the state of our investigations, where we have consid-
ered so far terminal and initial objects, products and coproducts for non-
empty index sets, and equalizers and coequalizers, we can already decide
about completeness and cocompleteness of the categories under considera-
tion. The following results are best read from Table 1 in Part I (or from
Table 2 at the end of this note), in particular Theorem 4 from lines 1, 2 and
4, and Theorem 4d from lines 1d, 2d and 4d, where in each case one has to

" take the conjunction of all the conditions for the similarity type.

The entries in Table 1 in Part I only refer to the existence of limits and
colimits with non-empty index sets. Yet, the other entries in this table show
that there is no difference on the conditions for the arities, whether or not
the empty index set is allowed. Since permission of the empty index set
allows us to speak about completeness and cocompleteness, respectively, of
the categories under consideration, we choose this case in what follows. For
an explicit description of the constructions of limits and colimits in the case
of their (general) existence see e.g. MAac LANE, [MI71], Chapter V (limits)
and the dualization.

THEOREM 4 (Completeness, limits).
(1) Hom(7) is complete for all similarity types T.
(2) €-Hom(7) is complete, iff T = (1),eq-
(3) Quom(r) is complete, iff  =0.
(4) €-Quom(t) is complete, iff T = (0)yeq or 7 = (1)yeq-
(5) Conf(r) is complete, iff 7= (1)pen. =

THEOREM 4d (Cocompleteness, colimits).
(1d) $Hom(r) is cocomplete for all similarity types 7.
(2d) €-Hom(7) is cocomplete, iff T = (1)yeq-
(3d) Quom(7) is cocomplete, iff Q = 0.
(4d) €-Quom(7) is cocomplete, iff T = (0)peq or T = (1)peq-
(5d) Conf(r) is cocomplete, iff T = (1)peq- =

Since some interesting constructions may exist in general for some sim-
ilarity types, even when the corresponding category is not complete or not
cocomplete, we add the consideration of some further constructions.

First we investigate the existence of multiple pullbacks and multiple
pushouts for non-empty index sets.

THEOREM 5 (Multiple pullbacks for non-empty index sets). Let the index
sets be non-empty:
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- In the categories $om(t) and €-Hom(T) multiple pullbacks always exist
for all similarity types T.
- In Quom(r) multiple pullbacks always ezist, iff Q = 0.
- In €-Quom(r) multiple pullbacks always ezist, iff T = (0),eq or
7= (1)peq-
- In Conf(r) multiple pullbacks always exist, iff T = (1)seq.
More precisely: Let (f; : A; — B)ier (I #0) be any non-empty family of
morphisms in any of the categories under consideration.
In the categories $om(r) and €-Hom(r) a typical representative of the
multiple pullback is (P,(p; : P — A;)ic1), where P is the subalgebra of the
direct product [[;c; Ai with carrier set

P:={(a;|t1€1I)]|a; € A; and fi(a;) = fi(a;) for all i,j € I};
and, for each it € I, p; = pr; |p is the restriction to P of the i-th projection.

In Quom(D), i.e. if we are in the category Par, then, for a typical repre-
sentative (P,(p; : P — A;)ier), P is given as the subset

P:={(a;|i€I)|a; € dom f; and fi(a;) = fi(a;) for all i,5 € T}U
u {J X(4i\domf),

ozucr €7
of the product object in Par, and p; = pr*;|p with respect to the product
(A*, (pr*; : A* — A;)ier) as described in Theorem 2 of Part L

This construction from Par also applies in the case of €-Quom((0),eq),
where one only has to observe that, for p € Q, F ezists, iff & € dom f;,
for all p € Q, or % ¢ dom f;, for all ¢ € Q.

Since the pullbacks in the categories €-Quom((1),eq) and in
Conf((1),eq) can always be constructed as multiple equalizers w.r.t. the fam-
ily (fiopr; : [1;e1 Ai — B)jer) of morphisms starting from the direct product
of the family (A;)iecr, and since the equalizers and products in these cate-
gories have quite difficult descriptions (cf. Theorems 2 and 3), we do not
give more details in these cases.

Proof. Except for the closed homomorphisms the existence statements
directly follow from the completeness statements in Theorem 4, and the
descriptions follow — in connection with well the known general category
construction mentioned above — from Theorems 2 and 3. What remains to
show for the case of closed homomorphisms is the fact that all homomor-
phisms p; are closed. However this fact follows from Theorem 10.1.2.(viii)
and Proposition 10.2.8.(i) in [B86], since the class €H(7) of all closed ho-
momorphisms in the category HHom(7) is just A(Epi(7)), i.e. the “right hand
partner” of the class of all epimorphisms in $om(7) in a factorization system,
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and therefore closed with respect to multiple pullbacks. Yet it can also easily
be proved directly: Use the notation from the theorem, and fix some i € I,
€ Qand gy,...,8,(, € Er, such that p;(a;),...,pi(e,(,))) € dom @&

Then ((f'l °Pi)(&1), LERE (fl OPi)(QT(¢))) € dom SO]B and ((fz °Pi)(£1), LERE (fz o
Pi)(er(y))) = ((fi o pi)(ay),- - > (fi 0 Pi)(@r(y))), for each j € I. Since each
fj is closed, one has (p;(a;),..-,Pi(g,(,))) € dom b | for each j € I. Since
Er is a subalgebra of the product J[;c; A;, this implies (ay,...,8,,))) €
dom ¢ , showing that p; is closed for each ¢ € I.

Let us now discuss the non-existence statements included in the theorem:

Since Quom(7) has a terminal object for each similarity type, the non-
existence of products, if  #  (cf. Theorem 2), and Theorem 4 imply that
Quom(7) cannot have multiple pullbacks, if 2 # 0.

The same argumentation applies to the categories €-Quom(7) and
Conf(7) in the cases of the similarity type 7, where we claim that multi-
ple pullbacks do not exist. m

THEOREM 5d (Multiple pushouts for non-empty index sets). Let the in-
dex sets be non-empty:

— In the category Hom(7) multiple pushouts always ezist for all similarity
types 7. ,

~ In Quom(r) multiple pushouts always exist, iff Q= 0.

— In the categories €-$om(7), €-Quom(7) and Conf(T) multiple pushouts
always ezist, iff one has for all arities: n, < 1 (¢ € Q).

More precisely: Let (fi: A — B;)ier (I # 0) be any non-empty family of
morphisms in any of the categories under consideration. And let ((¢; : B; —
Q)ier, Q), be the candidate for the multiple pushout.

In the category $HHom(T) Q is the quotient algebra of [;c;B; — in the
coproduct ((¢; : B; — [L;crBi)jer, i Bi) in $Hom(r) (see Theorem 2d in
Part I) - with respect to the congruence relation 6 on [[;.; B; generated by
the relation {((1; o £)(a), (1; 0 £;)(a)) | i, € I, a € A}. As morphisms take
(¢; :=natgot; : B; — Q)ier.

In Quom(D), i.e. if we are in the category Par of sets with partial map-
pings, the pushout object Q can be constructed as follows: Let B := |J;c; Bix
{i} and v; : B; — B with 1;(b) := (b,%) for each i € I describe the coproduct
of the family (B;)ier. Then the desired pushout object in Conf(§) = Par
is given by the multiple coequalizer object Q := B/natg, of the family
F = (t;o fi : A — B)ier (¢f. Theorem 3d and the remark following it
with its notation). And the family of partial mappings of the pushout is
given as (g; 1= natg, ot; : B; — Q)ier-

In connection with the categories €-Hom(T), €-Quom(t) and Conf(r)
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with n, < 1, for all ¢ € Q, introduce the QW _reduction 1 := Tlgw)
of the given similarity type, and for a partial algebra, say D, in any of
these categories let DIV := (D,(9®),cqm) designate its Ty-reduct. For

the pushouts in any of these categories first construct the coproduct ((Lgl) :

Bgl) — BW)icr,BY) ~de. B := Uier B X {¢} (cf. Theorem 2d) - in the
reduct categories €-Hom(ry ), €-Quom(ry) or Conf(ry), respectively. And then
consider the multiple coequalizer (cf. Theorem 3d) with respect to these cate-
gories for the family F := (1,51) ofi : A — B)icr. And in each of the categories
¢-Hom(7), €-Quom(7) and Conf(r) set (g; := natg}-) oz,gl) :B; — Q)ier for
the pu(s;zout morphisms. As far as the constants are concerned, define for
0 € N

- in €-Hom(7):

o0 i= {“atﬁlf? ol o fi(ph), for anyi€ I, if o esists,
undefined, else.

~ in €-Quom(7) and Conf(r):

na,tgf; 0[,51) o filp?), for anyi € I, if o% exzists for all j € I, and
o= 0 # User £ (0% i)lo,) € Miey dom £,

undefined, else.

P roof. With respect to homomorphisms and quomorphisms, and for the
r1-reducts in €-Hom(ry), € Quom(ry) or Conf(r;) the existence statements
directly follow from the completeness statements in Theorem 4d, and in all
these cases the descriptions — as coeqalizers of families of morphisms starting
from a coproducts — follow from Theorems 2d and 3d.

We still have to show that ((¢; : B; — Q)ies, Q) is also a multiple
pushout in the categories €-$Hom(7), €-Quom(r) and Conf(7), respectively.
Because of the definitions in the theorem the ¢; are also morphisms of the
corresponding categories with respect to the constants, and ¢; o f; = g;j o f;
is also true, for all ¢,j € I. Now, assume that (g; : B; — D);es is a sink,
for which g; o f; = gj o f; holds, for all 7,5 € I. Let g : QM — DM be the
induced morphism for the unary reducts. And let ¢ € Q(®,

First assume, that ¢P exists. Then P € (g; o f;)(A) for each i €
I. Hence ¢® as well as ¢® exist, for each i € I, and we have p? ¢
Uier (%, $)le,.) € ;e dom f;. Therefore, @ exists, and it is mapped
by g onto ¢P. This argument is already sufficient for Conf(r).

1 We do not use the superscript for the morphisms except for those cases, where we
want to indicate that they refer particularly to the reduct category.
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For the cases of the categories €-$om(7) and €-Quom(T) assume that
©® € dom g;, for some i € I. Since g; is a homomorphism or quomorphism,
respectively, we have g;(¢® ) = ¢P. Then, in particular, P has to exist, and
therefore we can repeat the argumentation from above, showing that ¢ is a
closed homomorphism or closed quomorphism, respectively.

Finally, let us consider the non-existence statements:

In the categories €-$om(7), €-Quom(7) and Conf(7) multiple pushouts al-
ways exist for at most unary operations. If they would exist, when in addition
at least one at least binary operation were around, we would have complete-
ness of the full subcategory, where no nullary constants were allowed or
existing, since then we would also have initial objects (in this subcategory).
Moreover, in each of these cases the “local” pushout would also be a “global”
one; namely the non-existence of nullary constants in all the partial alge-
bras B; (¢ € I) would imply, that in each partial algebra, say C, allowing
morphisms from the B; into it, no nullary constants could be defined. Since
therefore these subcategories would be cocomplete, this would contradict the
non-existence (in general) of coproducts or coequalizers in such categories
(which then also would be “global” ones).

Since in Quom(7) initial objects always exist, while coequalizers only
exist in general, when only nullary constants are specified, and while co-
products exist in general only, when no nullary constants are specified, mul-
tiple pushouts (for non-empty index sets) cannot exist in general, when Q
is non-empty (cf. Theorem 4d and Table 2). m

In particular, in the case of closed homomorphisms, the above argumen-
tation can be used to prove the following extension of Theorem 2d of Part II
(while this does not work in the case of partial morphisms, as can be con-
cluded e.g. from the examples in figures 5 and 6 in Part II):

COROLLARY. Let the arities of the similarity type T be at most unary,
i.e. ny, < 1, for all ¢ € Q. Then the coproduct of a non-empty family (B; );er
(I # 0) exists in the category €-Som(1), if , for all o € QO),

©% exists, iff <p]B" ezists, for all i,j € I.

And this coproduct is defined as in Theorem 2d of Part II for the case of
homomorphisms. =

A particular case of limits and colimits is given by inverse limits and
directed colimits. These exist in all categories under consideration for all
possible types.

THEOREM 6 (Inverse limits). In all five kinds of categories under consid-
eration there exist for all similarity types inverse limits of non-empty inverse
systems.
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More precisely:
Let 1:= (I, <) be any non-empty upward directed set, and let A := ((Ai)ier,
(fij : As — Aj | i > j in I)) be any inverse system of partial algebras of type
T in any of the categories under consideration to which the following con-
structions always refer. Moreover, in what follows let (B := '>e<I Ai, (pr;)ier)
1

be the cartesian product of the carrier sets of the partial algebras involved to-
gether with the family of all natural projections. And let (A, (fi : A — A;)icr)
be a candidate of the inverse limit of U. Then the constructions are as fol-

lows:

In $Hom(7) and €-Hom(T) let be

A:={a=(a;|i€I)|fori2>jinl one has fij(a;) = a;} C B,

let A be provided with the relative substructure of the direct product B =
[l;c1 Ai — as a matter of fact A is a closed subset of B —, thus getting the
inverse limit object A. Moreover, for each i € I, let f; : A — A; be the
restriction of the natural projection: f; := pr;|a.

For the categories with partial mappings underlying the morphisms call
a sequence ¢ := (aj | j € J) € X A; (J CI) afilament? of ¥, if

i€J

(F1) J =: J(a) is a non-empty ‘order filter’ (i.e. J £ 0, andi € J and i < j
imply j € J) of 1,

(F2) for i and j in J with i > j one has a; € dom f;; and f;;j(a;) = aj, and

(F8) i€ J,i>j and a; € dom f;; imply j € J.

Let A be the set of all filaments of .
For each i € I let the filament (a; | j € J) belong to dom f; if and only if
i€ J, and if (a; | j € J) belongs to dom f;, then fi(a; | j € J) := a; — this
yields the limiting cone (f; : A — A;)ies within the category of all sets and
partial mappings as morphisms.
For ¢ € Q, and for a sequence a := (a4, .. -,an) € A™ of filaments define
J(a):= (WJ(ar) | 1 <k < n,} (then this is always a non-empty set).
As far as the structure is concerned, one has to distinguish between the
different categories:

In the categories Quom(7) and €-Quom(r) let a sequence a := (a,,. ..
.eey8, ) € A" of filaments belong to dom ¢® if and only if there is some k
inJ (aﬁ such that (*)i holds, where

(*), for alll € J(a) with | > k one has f; o a € dom ¥,
cp‘*“ (fioa) € dom fix, and flk(goA‘ (fioca))= (pA" (fx oa).

2 We have slightly changed the definition in comparison to [P73], but in principle we
get an isomorphic construction.
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And ifa=(gy,...,8,,) € dom P then o2(a) =: a, where
J(a):={j € I| there is k > j in J(a) satisfying (*),
and such that ™ (fi 0 a) € dom f;}

and
a:= (aj|j € J(a) and there is k € J(a) satisfying k > j,
(#)x and a; = fij(o™ (fi 0 0))).

In the category Conf(T) a sequence a := (gy,...,8,, ) € A" of filaments
belongs to dom @3, if and only if there is j € J(a) such that f;oa € dom @4
and if a € dom @2, then define

J':= {i € I | there is | > i such that I € J(a), fio a € dom ¥
and o™ (fi 0 a) € dom f1},

choose for each i € J' some l(t) > i - as it has to exist according to the
definition of J' - and set ¢(a) := (fis)i(¢™® (figy o a) | 1 € J') ~ observe
that this definition is independent from the choice function l:J' — I.

Proof. We use the notation introduced in the theorem. In the case
of total mappings and total algebras it is well known (cf. e.g. [G79]) that
the construction given for HHom(r) and €-Hom(7) really yields the inverse
limit. Since the case of partial algebras and (closed) homomorphisms is
quite similar, we leave the details to the reader — it will also be easy to
transform the proof for (closed) quomorphisms below to the one of (closed)
homomorphisms.

The idea of the construction of inverse limits in connection with mor-
phisms based on partial mappings is taken from V.S.POYTHRESS, [P73],
where he describes inverse limits for conformisms (which he calls p-mor-
phisms). Therefore we do not repeat the proof here but concentrate our
considerations on (closed) quomorphisms:

In what follows let always ¢ € Q be a fixed operation symbol, and let
n := n, be its arity. Moreover, let a := (a;,...,a,) € A" be an arbitrary
sequence. Then J(a) is non-empty, since it is the finite intersection of non-
empty order ideals of an upward directed set (if ¢ is nullary, then J(a) = I
by the usual definition of empty intersections within some given set). Assume
a € dom ¢, let g := ¢2(a) =: (a; | j € J(a)) be its value as constructed
in the theorem, and let us first show that J(a) is really a filament: It is
non-empty, since J(a) is non-empty, and since the (non-empty) order filter
of J(a) induced by some k € J(a) satisfying (*); obviously forms a subset
of J(a) (since, for | > k (*); is then satisfied, too, and f = id 4, is always
an isomorphism). Moreover one has:
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(F1): Assume j € J(a) and j' € I with j' > j. Then, by the definition
of a, there are k € J(a), k > j such that (*) is satisfied, and such
that a; = fr;j(¢™ (fx o a)). Since I is directed, there is k' > &, j'.
Obviously, k' still belongs to J(a), and satisfies (*) and in particular
@ (fir 0 a) € dom fr jr, since furj = fijo furk = firjo fuj.

(F2): This follows immediately from the definition of J(a) and @ (compare
also the argumentation above in connection with (F1)).

(F3): Let 5 € J(a) and j > j' such that a; € dom f;j. Then there is
k € J(a) such that k > j satisfying (*)x and @® (fx 0 a) € dom fi;.
But j > j' and a; € dom f;; together with fijy = fj; o fx; imply
j' € J(a).

Next let us prove that each f; is a quomorphism: Therefore, with the
notation from above, let ¢ € I be an arbitrary but fixed index, and assume
that ¢ € J(a) N J(a), i.e. f; is defined on each a;, k = 1....,n, and on a.
Then, there is I > ¢ such that (*); holds, and therefore e.g. one has, for
each I' € J(a) with I’ > I, fr o a € dom %' and % (fy 0 a) € dom fyy.
Since f; = fi; o fi, since f}; is a quomorphism, and since fi(a) = f;(¢*(a)) =
(fio f)(p(a)) = fu(fi(#*(a))) = fu(¥™ (fioa)), ™ (fiio fioa) has to exist,
and one has to have fi(a) = fi(¢*(a)) = fu(¢¥ (fioa)) = ¥ (fiio fioa) =
©% (fi o a)), showing that f; is indeed a quomorphism.

With respect to €-Quom(7) we still have to show that f; is closed, if
each fy; is closed: For this purpose assume that f; o a € dom ¢® , for some
i € I. Then, for every k£ > ¢, we have f;oa = fi; o fr 0 a, and since fi; is
closed, we have fr oa € dom ¢ | and fri(¢™ (froa)) = % (frio froa)) =
¢%(f; 0a)). Let j € J(a). Then there is some k € J(a) such that k > 1, 7.
Then, from what we just have proved, there follows that (*), is satisfied.
Hence a € dom ¢*, what was to be shown in order to prove that f; is closed.

Next, let D := (D,(g; : D — A;)ier) be a system of (closed) quomor-
phisms compatible with the given inverse system %A (i.e. fx; o gx = gi, for
all ¢,k € I with ¢ < k). And let g : D — A be the partial mapping in-
duced by the family D in YPar. Then we have to show that g is a (closed)
quomorphism ¢ : D — A: Let ¢ and n be given as before, and let d :=
(di,...,d,) € D™. Assume first that d € dom P, and that, for some i € I,
dm,¥?(d) € dom g;, for each m € {1,...,n}. Let a; := g(dy), 1 < k < n, be
the filament generated by the sequence (g;(di) | j € I, dix € domg;), and
let a := (a,...,4,). Then - since g; is a quomorphism —, g; o d € dom ¢*
and g;(¢®(d)) = ¢ (g; o d). Moreover, for every k € I with k > i, we
have by g; = fki o gk that d,,®(d) € dom gy, for each m € {1,...,n}.
And therefore we also have gy o d € dom ¢ , g (P(d)) = ¢* (gx o d), and
fri(o® (g 0 d)) = % (g; o d). This shows that J; := {i € I | dpm,¥"(d) €
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dom gy for 1 <m < n} C {i € T'| % (g; 0 d) exists} C J(a) is a non-empty
order filter of I, and that, for each j € J(a), there is £k — as an upper
bound of 7 and j — such that (*); is satisfied for all [ > k. This shows that
a=god ¢ dome?, and that — obviously — ¢2(g o d) = g(¢®(d)).

Finally, assume that all fi; and g; are closed (k > ¢ in I), that d €
(dom g)*, and that g o d € dom ¢*. Then there is some ¢ € I such that
god € (dom f;)" and fiogod = g;iod € dom ™ (since each f; is a
quomorphism). Since g; is closed, we get d € dom ¢®. This shows that g is
then a closed quomorphism, and this ends the proof. m

THEOREM 6d (Direct limits, i.e. directed colimits). In all five kinds of
categories under consideration there ezist for all similarity types directed
colimits of non-empty directed systems.

The constructions run as follows:

Eet1:= (I, <) be any non-empty upward directed set, and let A := ((A; )ier,
(fij : Ai — Aj | i < jinl)) be any directed system of partial algebras of
type T in any of the categories under consideration to which the following
constructions always refer. Let ((fi : A; — A)ier,A) be a candidate for the
directed colimit of 2. Define, for each i € I,

D;:=(){dom f;; | j > i in T},
and let D; be the corresponding relative subalgebra of A; with carrier set D;.
Let gij ‘= f,,'j ID; H D,‘ g Dj be the restriction Of f,']' to D,', fOT‘i S ] in 1.
Then

- Do :=((Di)ier, (9ij : Di = Dj | i < j in 1)) is a directed system of sets
with mappings;

— in the categories Hom(T) and €-Hom(T) one just has D; = A; and g;; =
fij, for alli,5 € I withi: < j.

- and in the categories Quom(r), €-Quom(r) and Conf(r) (g;; : D; —
D; | i < j in ) is a family of homomorphisms, closed homomorphisms
or totally defined conformisms, respectively.

In what follows let ((¢; : D; — B)ier, B := UieIDi x {i}) be the set the-
oretical coproduct (disjoint union) of the carrier sets of the partial algebras

involved together with the family of all natural injections. Define on B the
following equivalence relation 6:

6 := {((a,i),(b,]) | ivj € I, ac Di7 be Dj
and there is m € I such that i,j < m and gim(a) = gjm(d)},

and set A := B/6. Finally define, for each i € I, g; := natg ov;, and let f;
be the partial mapping from A; into A with the same graph as g;.
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The construction of the structure in the different categories is as follows:
Let p € Q and a:= (a1,...,0n,) € A™. Then we set g € dom @2, iff

- in $om(r), €-Hom(7), Quom(r) and C-Quom(r):
there are an index ¢ € I and some sequence a := (ai,...,an,) €
dom (,oD" such that a = g;o0a; and if such an index ¢ and such a sequence
a ezist, then we define p®(a) := fi(¢® (a));

— in Conf(7): for all indices i € I, for which there exists a sequence a :=
(al,...,anK) € D;¥ sych thqt a=g;oa, one has a € dom ¢P¢; and if
a € dom ¢, and if ¢ is any inder and a € D;* any sequence such that
a = g; o g, then we define p*(a) := fi(p% ().

Proof. The construction of directed colimits of homomorphisms has
been treated in [B86], Proposition 4.4.4 (and its proof is also obtained as
a special case of the construction given above, when quomorphisms are
treated). From Corollaries 1 and 2 of Proposition 11.3.1 in [B86] one can
conclude that this also works for closed homomorphisms, yet it will fol-
low directly, too, from our argumentation below. Therefore we concentrate
considerations in this proof to the case of morphisms based on partial map-
pings.

First we show — using the notation from the theorem — that g :=
((Di)ier,(9ij : Di — Dj | i < jin I)) is indeed a directed system of sets
with mappings, and that ((f; : i — A)ier, A), as constructed above, is
its direct limit in the category Par: Assume that d € D;, for some ¢ € I,
and let j € I with ¢ < j. Set d’' := f;;(d). We have to show that d' € D;:
Let k € I with j < k. Then fix(d) = (fjx o fi;)(d) = fjx(d'). This shows
that d’ € dom fji, for all £ > j in I. Therefore indeed d’ € D;, and each
gi; is a total mapping g;; : D; — D;. That Dg is a directed system of sets
with mappings then follows from the fact that 2 is a directed system. It is
well-know, too, —since all ¢g; are mappings — that 8 is indeed an equivalence
relation on B = |J;¢; Di x {1}

Next, let (h; : A; — C);er be a family of partial mappings with the same
target set C' compatible with (f;; : A; — A; [ ¢ < jin I). This means that

(1) hjo fij = hj,foralli < jin I
We define an induced partial mapping h: A — C by

—domh := {0€ A|there are i€ ] and d€dom h; such that f;(d)=2},
— and if @ € dom h with 0 = f;(d), then define g(?) := h;(d).
We have to show first that (h;|p, : D; — C);er is compatible with Dg: Con-

sider ¢ € dom h;, for some i € I. Then, for every k € I with ¢ < k, we have,
by (1), that Ay o fix(a) = hi(a). This shows that @ € ye; 4»; dom fix = D;.



Meaning of basic category 845

Therefore, for k > i, we get h;(a) = (hi o fix)(a) = (hk o gir)(a), what was
to be shown.

By the definition of h there follows immediately that ko f; = h; is
satisfied for all 7 € I. The uniqueness of the induced morphism is also
obvious: If #’' : A — C satisfies h' o f; = hy, for all ¢ € I, then domh C
dom A’ and A'(D) = h(D) for all D € domh. If there were ' € domh’\
dom h, then ' would not belong to any f;(domh;), and therefore h'(?d')
could be an arbitrary element of C, i.e. the uniqueness requirement would
be violated.

Next let us show that all the structure of A is correctly defined, — then

the f; (¢ € I) will be morphisms of the corresponding category just by the
corresponding definition —:
Let o € Q, a:= (81,...,0n,) € dom 2, and a := (a1,...,a,,) € dom P
and d' := (a’l,...,a;%) € dom ™ such that @ = g;0oa = g; 0 a'. Then
the directedness of I and the definition of # imply the existence of some
m > i,jin I such that gim(ax) = gjm(a}) for 1 < k < n, and gim (@™ (a) =
gim( (a') (possibly by applying the directedness in several steps) — the
existence of; say, ¢ (gim o a) follows in the first four kinds of categories
from the fact that the g; are homomorphisms; in Conf(7) it follows from the
assumption that a = f;0a = f; 0@’ € dom ©*, which, by definition, implies
this existence.

Now, let us show that h is a morphism in each of the categories under
consideration: Let ¢ € @ and n := n,,.

— In connection with $om(7), €-Hom(7), Quom(7r) and €-Quom(r) con-
sider first a := (ay,...,0a,) € dom N (dom h)", and a := (ay, .. Hn,)
€ dom ¢ such that a = g;0a, and also ¢* € dom k. Then thereis k > i
in I such that g;x0a € dom o™ N(dom h)". Since hy is a quomorphism,
and since hogy = hy, we get that hoa = hog;oa = hxog;roa € dom ¢,
and h(¢*(a)) = hu(e™ (9ik 0 @) = ¢®(hx 0 gir 0 @) = ¢®(h 0 a). This
shows that h is a quomorphism.

~ In connection with €-$om(7) and €-Quom(r) assume (with the notation
from above) that A oa € dom ¢C. Then, since each h; : D; — C is a
closed homomorphism, and since, for suitable i,k € I with ¢ < &,
hoa=hog;oa = hyogyoa, we get g;x 0a € dom ™. Since g is
a quomorphism containing g; 0 @ and o™ (g;; o @) in its domain, this
implies that g € dom ¢®, showing that A is closed.

— Finally consider the category €onf(7): Choose g := (a3,...,a,) €
(dom h)™ such that hoa € dom ¢C, and let i € I and a := (ay,...,a,) €
(dom f;)™ such that a = f;0a. Then hoa = ho fioa = h;oa € dom ¢C.
Since h; is a conformism, this implies @ € dom ™ . Therefore, by the
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definition of the structure of A, we may conclude that g € dom ¢#, and
this shows that A is indeed a conformism. =

Finally we collect all results on different kinds of morphisms investigated
and known so far (cf. e.g. [AMRS95], where quomorphisms on closed do-
mains and closed quomorphisms on closed domains® have been studied, and
[M93], where quomorphisms with initial segments as domains and totally
defined conformisms have been investigated). In order that the table does
not become too wide we use the following abbreviations for the categories
with the class of all partial algebras of type 7 as object class:

$ for Hom(7); ¢H for €-Hom(7); Q for Quom(7); c¢Q for €-Quom(r);
09 for €D-Quom(r), where the class of all quomorphisms, of which the
domain is a closed subalgebra of the start object, is the class of all mor-
phisms; cdcQ for €DEC-Quom(7), where the class of all ‘closed-domain closed
quomorphisms’, i.e. of all closed quomorphisms, of which the domain is a
closed subalgebra of the start object, is the class of all morphisms; iQ for
J-Quom(7), where the class of all quomorphisms, of which the domain is
an initial segment of the start object, is the class of all morphisms; € for
Conf(7); t& for T-Conf(7), where the class of all totally defined conformisms,
is the class of all morphisms.

The entries in Table 2 mean:

+ : no restrictions on the similarity type;
— : the construction does not exist, not even in the case of sets,
ie. of Q =0;
(0 : the construction exists in general iff Q = ;
=0 the construction exists in general iff Q = Q©), i.e. all fun-

damental operations have to be nullary;

=1 the construction exists in general iff Q = Q) i.e. all fun-
damental operations have to be unary;
<1 the construction exists in general iff all fundamental opera-

tions are at most unary;
>1 : the construction exists in general iff all fundamental opera-
tions are at least unary (i.e. no nullary constants are allowed);

while combinations of such restrictions mean that the construction exists
in general, iff at least one of the conditions on the similarity type is satis-
fied.

3 See e below; we use the notation closed-domain closed quomorphisms for them,
as is also done in [AMRS95]. In [RV95] these morphisms are called partial closed homo-
morphisms, and in a related paper [ABRVW95] closed-domain guomorphic conformisms.
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H|eH | Q (49 00 e | iQ < te
zero-object - - + >1 >1 21 + | >1 -
terminal object +i=1] + + >1 >1 + + +
product* + =1 0 =0, =0 =1 () =1|=1
(m.) equalizer* + 1 + + | =0,= + <1 + | =1]=1
limits + ]| =1 @ =0, ¢ = @ =1 1
(m.) pullback* + | + 0 0,=1 =0 <1 P |=1|=1
inverse limit* + | + + + + + + + +
initial object + |21 + | =0,>1 + >1 + | 21|21
coproduct* +|=1|>1|=0,=1{<1,2>1| = >1|=1|=1
(m.) coeqalizer* | + | <1 | =0 <1 )] =1 |=0|<1]|<1
colimits +]=1{ 8 {=0,=1 ¢ = @ [=11=1
(m.) pushout* +[(<1| @ <1 ¢ = @ | <1]|<1
direct limit* + | + + + + + + + +

[AdHS90]

[ABRVWY5]

[AMRS95)

[BS2)

[B86]

[BW87]

[BW92a)

[BW92b]

Table 2. Enlarged table on the existence of category theoretical
constructions in nine “types of categories” of partial algebras
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