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Introduction 
This paper is a direct continuation of [BW92a] and of [BW92b], in this 

note referred to as Par t I and Par t II, respectively. And we continue here the 
discussion of the conditions on a similarity type, under which some category 
theoretical constructions like products, equalizers, pullbacks etc. and their 
dual notions exist in general in the categories of partial algebras of that 
type with all homomorphisms (yielding the category f iom(r)) , all closed 
homomorphisms (<£-fjom(r)), all quomorphisms (£}uom(r)), all closed quo-
morphisms ( i -£ juom(r) ) or all conformisms ( ion f ( r ) ) , respectively as mor-
phisms. And in the case of existence we give descriptions of their construc-
tions. The numberings of definitions, lemmas, propositions and theorems 
here continue those in Part I and Par t II. In particular "Theorem nd" con-
cerns the category theoretical construction dual to the one treated in "The-
orem n". However, we do not continue numbering the theorems according to 
their numbers in Table 1 of Part I - which gives a survey of the main results 
as far as existence is concerned - , since we postpone the more special treat-
ments of inverse and direct limits to the end, and rearrange other theorems 
for proof technical reasons. At the end of this note we insert a new table (Ta-
ble 2) extending Table 1 by existence results concerning four other types of 
morphisms not treated in this series of papers but in [M93] and [AMRS95], 
respectively. Moreover, in this table we have rearranged the lines in such a 
way that limit constructions and colimit constructions form different con-
nected blocks. This may help in particular in connection with the existence 
and non-existence proofs with respect to Theorems 4 (Completeness) and 5 
(Pullbacks) and to their duals. 

With respect to the definitions of the basic concepts and to some pre-



826 P. B u r m e i s t e r , B. W o j d y l o 

liminary results the reader is referred to Part I and [B86]. For concepts not 
defined here see among others the book [B86], the note [BW87] or the sur-
vey articles [B82], [B92] or [B93]. As far as category theoretical concepts 
and results are concerned see [HS73], [AdHS90] or [M171]. 

The authors are grateful to F. Rossello for many helpful suggestions and 
remarks. 

The Main Theorems (continuation) 

T H E O R E M 3 (Equalizers). Let f,g : A —>• B be any two morphisms of one 
of the five categories under consideration. 

- Then the equalizer of f and g exists without any restrictions on r in 
the categories fjoTn(r), C-^om(r), and £}uom(r). 

- In the category C-£3uom(r) an equalizer of f and g always exists, 
if and only if the type r either specifies only nullary or only unary 
operations, 

- and in Conf(r) an equalizer of f and g exists in general if and only 
if all fundamental operations are unary. 

Whenever the equalizer(Eyg,to/g) exists, thenmjg is an infective monomor-
phism of the category under consideration, which therefore is also a homo-
morphism from E¡g into A. 

In each case, when the equalizer of f and g exists in general, it has a 
special representative, where Efg is a relative subalgebra of A and mjg : 
Ef g —» A is its full and injective homomorphic embedding i d g J 4 into A. 
Thus it still remains to describe the carrier set E/g in each case: 

- In f)om(r) and i-i^om(r) we have 

Efg := {a G A \ f(a) = g(a)}, 

and this is a closed subset of A. 

- In £Juom(r) and C-jQuom((0)¥,en) one has 

Efg := {a G A \ a 6 dom /fldom</ and f(a) = </(a)}Uj4\(dom /Udomg). 

- In i-£Juom((l)¥,en) and (£onf((l)v€n) one has 
Efg :={a 6 A | there is no unary term t 6 ^({x}, TAlg(r)) 

such that a € dom and (fA(a) € dom / \ dom g 
or t\a) £ dom 5 \ dom / or f(t\a)) # </(iA(a)))}. 

Observe that in this latter case Efg is a closed subset of A. As a matter 
of fact it is the largest closed subset of A having empty intersection with 
Dfg := (dom/\dom<7)U(dom<7\dom/)U{a 6 d o m / n d o m ^ | / ( a ) / ff(a)}-



Meaning of basic category 827 

R e m a r k . Observe that for each similarity type, for which in any of 
these categories equalizers exist for any two morphisms, multiple equalizers 
exist for any arbitrary large family of morphisms having the same source 
and the same target object, and it is characterized in the corresponding way. 

P r o o f . It is well known from category theory that for each equalizer 
the morphism is a monomorphism, and therefore totally defined according 
to Proposition 2 (cf. Part I) and in particular an injective homomorphism 
in the categories f jom(r ) , i - i^om(r), £}uom(r) and £-£}uom(r), whenever it 
exists. 

Since {a G A \ / ( a ) = g(a)} is always a closed subset of A, if / and g 
are (closed) homomorphisms, the statement about f)om(r) and C-fiom(r) is 
easily seen to be true. 

For quomorphisms one only has to observe, that , for all a G (dom / \ 
domg ) U (domg \ dom / ) = dom / U domg \ (dom / fl dom <7), a cannot be 
the value of a quomorphism equalizing / and g, while there are no further 
restrictions (i.e. the proposed morphism really equalizes / and g). 

If m : E — A is an equalizer of / , g : A — B in one of the categories 
<£-£2uom(r) or <£onf(r), then m(E) has to be a closed subset of A, in partic-
ular m ( E ) has to contain all nullary fundamental constants existing in A. 
However, if r = then - w.r.t. the constants - any closed quomor-
phism is defined on exactly those nullary fundamental constants defined in 
A which are also defined in B (and if they are defined in B, then they have to 
be defined in A). Moreover, if exists and does not belong to, say, d o m / , 
for some ij) G ii, then one also has & dom 5 and therefore VE/9 exists, 
and one has m(^ l c ) = Hence / and g have to be defined on exactly the 
same constants of A. 

From this observation it easily follows that equalizers exist in 
€-£juom((0)¥,efi) and that they have the form described in the theorem 
(up to isomorphism). 

Now consider <£-£}uom((l)ven) or €onf(( l ) v , en) , and let Ejg be defined 
as in the above theorem. Since a variable x is a term, it is easily seen 
that for all a G Efg either (a G dom / fl dom <7 and / ( a ) = g(a)) or a G 
A \ (dom / U dom g). Hence / o mfg = j o m / j . In addition, if there are 
a £ A and a term t G -F({a;}, TAlg(r)) such that tk(a) exists and either 
tA(a) G (dom / \ domfir) U (domg \ d o m / ) or f ( t A { a ) ) ± g(tA(a)), then a 
must not belong to the equalizer of / and g. Moreover, Efg is a closed subset 
of A, since Ejg is the complement of the initial segment of A generated by 
Dfg (= (dom / U dom g) \ {a | a G dom / fl dom g and f(a) = 5(a)}). Since 
an initial segment contains with every value of a fundamental operation 
also the corresponding arguments, its complement has to be a closed subset. 
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Thus rrifg is a closed homomorphism and therefore a closed quomorphism 
as well as a conformism. Now, if h : C —- A is any closed quomorphism 
or conformism with ho f — hog, then h{C) has to be a closed subset of 
A disjoint from Djg, and therefore contained in Ejg (which is the greatest 
such set). Thus ( E f g , m f g ) (= (E^f l,id£ /9,i)) is an equalizer of / and g. 

Finally let us consider the counterexamples in the remaining cases: 

- In £onf((0)) consider Figure 9 for f,g : A —*• B. If h : C —1 A were an 
equalizer, then would have to exist and one would have to have 
h(tpc) = ip^, and therefore / o / i / j o l i contradicting the condition 
for h to be an equalizer of / and g. 

- In connection with <£-£luom((0,1)) consider Figure 10 for f,g : A —̂  
B. If h : C —1 A were an equalizer of / and g, then necessarily 
(pA G h{C), and therefore also a = fA) € h(C), since h is closed. 
But then / o h ^ g o h contradicting that h should equalize / and g. 

9 V 
O 

A B 

Figure 9: In Ccmf ((0)) / and g have no equalizer. 

A B 

Figure 10: In C-Ouom ((0,1)) / and g have no equalizer. 

- With respect to <£-£2uom((2)) or <£onf((2)) consider the closed quo-
morphisms and conformisms f,g : A —̂  B depicted in Figure 11. Let 
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J 
A 1 

Figure 11: In <£-Ouom ((2)) and Conf((2)) / and g 
have no equalizer. 

C = ({c},0) and consider the closed quomorphisms respectively con-
formisms hi : C —1• A, c a^, i G {1,2}. Then one has foh{ - gohi for 
i G {1,2}. Therefore, if there existed an equalizer h : E —- A of / and 
g in £-£)uom((2)) or <£onf((2)), then E had to have at least two ele-
ments e\,e2 € dom/i, e\ ^ e2, such that h{e.i) = a,- (i G {1,2}). But 
since h had to be a closed quomorphism or a conformism, V3<C(ei 5

 e2) 
had to exist and to be mapped by h onto a3. However then h could 
no longer equalize / and g. • 

As a preparation for the result on coequalizers we prove some lemmas, 
but let us first give a definition. 

D E F I N I T I O N 4. Let f , g : A ^ B b e two partial mappings from a set A 

into a set B. Then we define 

to be the coequalizing relation of / and g. Moreover, define 6 ' j g to be the 
equivalence relation on B generated by T f g , and set 

t o b e t h e coequalizing domain o f / a n d g. 

Finally, let 0f g be the restriction of 8 ' f g to B f g , which we shall cadi the 
coequalizing equivalence of / and g. And let Bf g , be the relative subalgebra 
of B with carrier set Bjg. 

R e m a r k . Obviously Bjg is a union of 6' ¡ g - classes, and, for any b G B f g , 
[b]ejg has more than one element only if b G B°jg. 

r / s := { ( f ( a ) , 9 ( a ) ) , ( 9 ( a ) , f ( a ) ) I o € d o m / n domjf} 

B f g := {be B \ Z"1 ([&],.„) U g-\[b)6'ig) C dom / n dom g} 
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L E M M A 7 . Let r = (nv)ven be a similarity type satisfying nv < 1 for 
each (p £ SI. Let f,g : A —>• B be any two closed quomorphisms or con-
formisms, respectively. 

(1) Let both f and g be closed quomorphisms. Then the coequalizing equiv-
alence 9fg is indeed a closed congruence relation on B/ s . 

(2) Let f and g be conformisms, then, for all (p £ SI and for all b £ Bfg 

with [b]efg Q dom<p®i9', one has 

WM(b')\b'e[b]efg}c[^(b)}eig. 

P r o o f . Ad (1): Since the statement here is quite similar to the first one 
of Lemma 1 in Part I we just ask the reader to adopt the first part of the 
proof there to this situation. 

Ad (2): Consider £ ii of arity n v = 1 - for n ,̂ = 0 the statement is 
trivially true and b £ Bjg with [b]efg C dom¥>*>». Let b' £ [b}6}g. Then, 
if 6 ^ b', we have sequences bo = b, b\, ..., bn — b' £ dom/ fl dom <7 and 
ai , ..., an e A such that ¿¿} = {f(ai),g(ai)} for i € { l , . . . , n } . 
Since / and g are conformisms and {b\et C dom <fPia, we again get ai £ 
dom <pA and (6,-_i), V®" (6f)} = This shows 
that ¥>»/.(&') e [¥>»'• (6)] tf/i. . 

L E M M A 8 . Let ^ be any one of the categories i o o m ( r ) , C-i^om(r), 
£2uom(r), i-£}uom(r), or ionf(r ) , respectively, let f,g : A —>• B be two mor-
phisms in and let h, : B —- C be any £-morphism satisfying h o f = h o g. 

Then dom/i is a union of 6jg-classes and b £ dom/i, b' £ [b]$fg imply 
h{b') = h(b). 

P r o o f . Assume b £ domh. If b £ f[A] U g[A], then b £ Big and 
[b]gJg = {b}. Thus, assume that b £ f[A] U g[A], and let b' £ [b]e-jg, 
b yi b'. Then there are a\, ..., an £ A, bo = b, & i , . . . , bn = b' £ B 
such that { 6 j _ i , 6 j } = { f ( a i ) , g ( a i ) } for 1 < i < n. If, say, b = bo = /(ai) , 
bi = g{al) £ {/(o2))i '(a2)}) then h o / = h o g implies bi £ dom/fc, and 
h(bi) = h(bo). By induction on n we realize that b' £ dom h and h(b') = h{b). 

If b $ Bfg, then there were b" £ [b]s'fg and a" £ A such that, say, b" = 
f(a") and a" ^ domg. Since b £ dom/i implies b" £ dom/i, as seen above, 
we get that h o f(a") exists, while h o g(a") does not exist, contradicting 
h o / = h o g. Therefore b has to belong to Bjg. m 

T H E O R E M 3d (Coequalizers). Let f,g : A —>• B be any two morphisms 
of one of the five categories under consideration. Then a coequalizer of f 
and g exists without any restrictions on the similarity type T in the category 
.fjom(r) and it is given by (natg,B/0), where 6 is the congruence relation on 
B generated by Tjg := {(f(a),g(a)) \ a £ A}. 



Meaning of basic category 831 

In (£-.f)om(r), C-£)uom(r) and £onf(r) the coequalizer of f and g exists 
in general if and only if nv < 1 for all <p £ SI, and it exists in £juom(r) if 
and only if nv = 0 for all p e SI. 

In i-f)Om(r) the coequalizer, if it exists in general, is defined in the same 
way as in i)om(r). 

In £}uom((0)v6n), in £-£iuom(r) and in ionf(r) with nv < 1 for each 
(p £ SI, the coequalizer is defined - using the notation of Definition 4 ~ as 
(natfl/, : B - C(f,g),C(f,g)), where C(f,g) := Bfg/9fgt and 

- for (p £ SI with nv = 0 : tp^f'^ exists and is equal to [(pM]efg, if <£K 

exists and belongs to Bfg, 
- for (p £ SI with nv = 1 we have: 
- in <£-£}uom(r): = 
- in Conf(r) : dom := {[&]*„ | b £ Bfg, and [b]gfg C d o m ^ 1 ^ } 

and if [b]eJg £ dom^^, then ^}'9){[b]efg) := fa1'« (&)]«,,. 
R e m a r k . As in the case of equalizers this result extends to arbitrary 

non-empty families / " : = ( / , : A —>• B) i €/ of morphisms (instead of ( f , g ) ) , 
when one sets in analogy to Definition 4: 

I > := {(fi(a),fj(a)) \ i,j£ I, a e f | d o m / J , 
iei 

Bf.= {beB\{J fr\[b]e.r) C f | dom /,•}. 
iei iei 

P r o o f . Let us first consider the case of homomorphisms: 
Let h : 1 —• C be any homomorphism such that ho f = hog; then, obviously, 
for any a £ A, (f(a),g(a)) £ ker/i. Therefore 6 := Con® Tfg C ker h, and the 
diagram completion theorem for full and surjective homomorphisms (here 
for nats) tells us that there is a unique homomorphism ho : M/0 — C such 
that h = ho o nat#, showing that (nate,B/0) is a coequalizer of / and g (it 
is obvious from the construction that natg of = nat# og). 

The same is true for closed homomorphisms, if nv < 1 for each ip £ SI, 
because of Lemma 1 in Part I. 

However, in <£-.£)om((2)) there are no coequalizers in general. In order to 
realize this, consider the closed homomorphisms f,g : A —>• B as depicted in 
Figure 12, where /(a) = bx, g(a) = b3, graph </>B := {((6 j , b2), &4), ((b2, h), 
64)}. There is no closed homomorphism h : B —>• C at all, which would 
satisfy ho f = ho g, since (61,63) is not contained in any closed congruence 
relation of B. 

Let us now consider £}uom(r). If r = (0) v £ n, then 6 jg is obviously a 
congruence relation on Bjg, since nullary fundamental constants do not 
impose any restrictions on equivalence relations to be congruence relations 
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Figure 12: In <£-fjom ((2)) / and g have no coequalizer. 

(observe also Remark l.(iii) in Par t II). From the definition of C ( f , g ) it 
follows tha t na.tg}g : B —1 C ( f , g ) is a quomorphism satisfying na tg / 9 of = 
nat g}s o g. Let h : B —1 D be any quomorphism satisfying h o f = hog. 
Then Lemma 8 tells us tha t dom h is a union of 0/f l-classes and tha t 6 jg fl 
(dom h)2 C ker/i . Therefore define for b £ Bjg : 

, / m s f h(b), if b £ dom h 
undefined, else. 

Then fo, is a part ial mapping out of C(f,g) into D. Assume t h a t , for some 
nullary <p £ i i , ip^f'9*) exists and belongs to dom/io- Then (pM exists (since 
nat$ f is full) and belongs to dom/i . Since h is a quomorphism, 95® has to 
exist, and one has to have tha t 99® = h(ipM) — ho(<p^'9^). This shows tha t 
hQ is indeed a quomorphism, which satisfies ho ona t# / g = h. 

In order to realize tha t there are no coequalizers in general in £5uom(r), 
if the type r specifies at least one at least unary operation symbol, consider 
quomorphisms / , g : A —•- B as depicted in Figure 13. Obviously r ^ = 
{(61,62), (62, 64), (64, &s)}, and 0Jg = T f g U A B , BJg = B. Let h{ : 
B —L C{ be defined in such a way tha t dom/i; = | J{c | c £ Cj} and hi(bj) = c 
iff bj £ c for all i £ {1, 2}, j £ { 1 , 2 , . . . , 7}, and c £ Cj . It is easy to realize 
tha t h\ and /12 are quomorphisms, hi i B - ' Q , satisfying hi o / = hi o g, 
i £ {1,2}. Now assume tha t (h : B —1 D, P ) were an equalizer of / and g 
(i.e. e.g. ho f = hog). Then there would be quomorphisms gi : D —>• Q such 
tha t hi = gi o h (i £ {1,2}). Now, hi is total , and therefore h would have 
to be total and therefore a homomorphism with T f g C ker h C Con® Tjg = 
ker hi. Yet this would imply ker h — Coni T¡ g , inferring tha t gi were an 
isomorphism. However, there is no quomorphism ho : Q —̂  Q such t h a t 
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{blM {65} 
h2 o O 

{^3,64} {h} 

/ih. 

y 

A B Ci 

Figure 13: In £2uom ((1)) f and g have no coequalizer. 

h0 o hi = h2, since {65,66,67} would have to be mapped both onto {65} 
and onto {65}, while /12 is not defined on 67. Hence there cannot exist a 
coequalizer of these particular quomorphisms / and g. 

Next, consider <£-£2uom(r). First let nv < 1 for all <p G ii. From 
Lemma 7.(1) we know already that the coequalizer equivalence 6 j g is a 
closed congruence relation on By3. We have to prove that 

(natg /9 : B —- B/ 5 /0 / f l , B / 5 / 0 / a ) is a coequalizer of / and g. 

By construction we have na.tg}g of = nat# /9 0 g and that natg / 9 is a closed 
quomorphism. Let h : B —>• D be any closed quomorphism coequalizing / and 
g: hof = hog. From Lemma 8 we already know that dom h is a union of 0jg-
classes, and that 0f g n (dom/i)2 C kerh. Since nate / 9 | s f g '• B/f l —»• 
is a closed and surjective homomorphism, since dom h C B f g , and since 
9 j g n ( B f g x d o m h ) C kerh (cf. Lemma8), Lemma6from Part Iimplies that 
there exists a closed quomorphism I : B f g / 0 f g —1 D such that /onat® /9 = h. 
Obviously, I is unique with this property. Thus the above statement has 
been proved. 

In order to realize that there exist no coequalizers in general in 
(£-£}uom(r) as well as in Conf(r), if r specifies at least one at least binary 
operation, consider Figure 14. The definitions of h\, /12 and /13, and the ar-
gumentation about the non-existence of a coequalizer of / and g is carried 
through in a similar way as in connection with Figure 13 (we assume the bi-
nary operation to be commutative in this example). Therefore we leave the 

r 
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hi 

h2 

O i & l A } Ci 

f o {h,b2} 

o{h} 

O i M o i M 

C2 

C3 

Figure 14: In £-Quom ((2)) and <£cmf((2)) / and g have 
no coequalizer (/13 and C3 are only needed for £onf((2))). 

details to the reader. For the arguments concerning closed quomorphisms 
only h\ and h2 are needed. In connection with conformisms one has to ex-
clude by /13 and C3 the possibility that the coequalizer might have empty 
structure, and that ( / i3 ,Q) might serve as a coequalizer (but then there 
would not exist a conformism, say g from C3 into Q satisfying g o /i3 = hi, 
since the existence of g would enforce the binary operation on C3 to have a 
non-empty graph). 

Finally consider the case of conformisms, i.e. ffonf(r), with nv < 1 for 
<p G The arguments concerning £}uom((0)vgn) also show that (nate /g : 
B —' C(f,g),C(f,g)) is a coequalizer of / and g in the category ^Jar of all 
sets with all partial mappings as morphisms. Now, let h : B —>• D be a con-
formism satisfying h o / = h o g, then there exists a unique partial mapping 
I : <C(f,g) —1 D such that I onats / 9 = h. What remains to show is that I is in-
deed a conformism: Assume that <r>D(/([&]£, J ) (= </>D(/i(&))) exists for some 
b e dom h(C Bfg), then [6]fl/g C [6]ker/l C domp1 '» and ¥>f/'([&]«/,) C 
[^ia{b)]e,9) (by Lemma 7.(2)), and therefore [b]Sfg £ domip0-1'9~>, and 
l((p^f'8^([b]eit)) = <t>®(l{[b}e,j)- This shows that / is indeed a conformism. • 

Let us now consider already at this place the general case of the exis-
tence of limits and colimits, before we discuss the existence and structure of 
multiple pullbacks and multiple pushouts. The discussion of the existence 
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of limits and colimits in general in any of the categories under consideration 
already at this place is possible because of well known facts from category 
theory (see e.g. H E R R L I C H and S T R E C K E R [ H S 7 3 ] ) . 

Corresponding to the state of our investigations, where we have consid-
ered so far terminal and initial objects, products and coproducts for non-
empty index sets, and equalizers and coequalizers, we can already decide 
about completeness and cocompleteness of the categories under considera-
tion. The following results are best read from Table 1 in Part I (or from 
Table 2 at the end of this note), in particular Theorem 4 from lines 1, 2 and 
4, and Theorem 4d from lines Id, 2d and 4d, where in each case one has to 
take the conjunction of all the conditions for the similarity type. 

The entries in Table 1 in Part I only refer to the existence of limits and 
colimits with non-empty index sets. Yet, the other entries in this table show 
that there is no difference on the conditions for the arities, whether or not 
the empty index set is allowed. Since permission of the empty index set 
allows us to speak about completeness and cocompleteness, respectively, of 
the categories under consideration, we choose this case in what follows. For 
an explicit description of the constructions of limits and colimits in the case 
of their (general) existence see e.g. M A C L A N E , [ M 1 7 1 ] , Chapter V (limits) 
and the dualization. 

T H E O R E M 4 (Completeness, limits). 
(1) iiom(r) is complete for all similarity types r. 
(2) £-fjom(r) is complete, i f f r = ( l ) v e n-
(3) £juom(r) is complete, i f f Q, = 0. 
(4) i-£3uom(r) is complete, i f f T = (0)vgfj or T = (l)^,^^-
(5) Conf(r) is complete, i f f T — ( l ^ g n - • 

T H E O R E M 4d (Cocompleteness, colimits). 
(Id) f jom(r) is cocomplete for all similarity types r . 
(2d) (£-/jom(r) is cocomplete, i f f r = ( l ) v eQ. 
(3d) £Juom(r) is cocomplete, i f f il = 0. 
(Ad) <£-£}uom(r) is cocomplete, i f f r = (0)v £n or r = ( l ) v e n . 
(5d) (£onf(r) is cocomplete, i f f T — ( l ) v e j j - • 

Since some interesting constructions may exist in general for some sim-
ilarity types, even when the corresponding category is not complete or not 
cocomplete, we add the consideration of some further constructions. 

First we investigate the existence of multiple pullbacks and multiple 
pushouts for non-empty index sets. 

T H E O R E M 5 (Multiple pullbacks for non-empty index sets). Let the index 
sets be non-empty: 
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- In the categories f)om(r) and i-f)om(r) multiple pullbacks always exist 
for all similarity types r. 

- In £2uom(r) multiple pullbacks always exist, iff Q, = 0. 
- In (£-£}uom(r) multiple pullbacks always exist, iff r = (0)ven or 

T = 
- In <£onf(r) multiple pullbacks always exist, iff r = (l)ven. 

More precisely: Let ( f i : A; —B)ig/ (I ^ 0) be any non-empty family of 
morphisms in any of the categories under consideration. 

In the categories ijom(r) and i - iom(r ) a typical representative of the 
multiple pullback is (P ,(pi : P —• Aj),e/), where P is the subalgebra of the 
direct product JX^/ A; with carrier set 

P := {(a, \ i e I) \ at e Ai and fi(ai) = fj(aj) for all i,j G /}; 

and, for each i G I, pi = pri |p is the restriction to P of the i-th projection. 
In £}uom(0), i.e. if we are in the category then, for a typical repre-

sentative (P, (pi : P —»• Ai)i£i), P is given as the subset 

P := {(a,- | i e I) | ai G dom fi and fi(ai) = fj(aj) for all i,j G 1}U 

U { J X (Ai \ dom fi), 

of the product object in ^Jat, and pi = pr*Jp with respect to the product 
(A*,(pr*j : A* —>• as described in Theorem 2 of Part I. 

This construction from also applies in the case of (£-jQuom((0)veft), 
where one only has to observe that, for <p G il, ip' exists, iff yA' G dom fi, 
for all (p G ii, or <p^ dom fi, for all <p G i). 

Since the pullbacks in the categories (£-£2uom((l)v6n) and in 
<£onf((l)vgn) can always be constructed as multiple equalizers w.r.t. the fam-
ily (fjopij : Aj —> B)je/) of morphisms starting from the direct product 
of the family (A)iei, and since the equalizers and products in these cate-
gories have quite difficult descriptions (cf Theorems 2 and 3), we do not 
give more details in these cases. 

P r o o f . Except for the closed homomorphisms the existence statements 
directly follow from the completeness statements in Theorem 4, and the 
descriptions follow - in connection with well the known general category 
construction mentioned above - from Theorems 2 and 3. What remains to 
show for the case of closed homomorphisms is the fact that all homomor-
phisms pi are closed. However this fact follows from Theorem 10.1.2.(viii) 
and Proposition 10.2.8.(i) in [B86], since the class <£f)(r) of all closed ho-
momorphisms in the category ijom(r) is just A(<£pi(r)), i.e. the "right hand 
partner" of the class of all epimorphisms in fjom(r) in a factorization system, 
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and therefore closed with respect to multiple pullbacks. Yet it can also easily 
be proved directly: Use the notation from the theorem, and fix some i G I , 
<p G 0 and a1,..., AT(V) G EJF, such that p ^ ) , . . .,Pi(aT^))) G d o m ^ . 
Then ((/ , o p ; ) ^ ) , . . . , ( / ; oPi)(aT(v))) G dom</ and ((/; o p ; ) ^ ) , . . . , ( f t o 
Pi)Ur(v))) = ( ( / j 0 Pj)(ai)> •••>(/,' o Pj)Ur(v)))> f o r e a c h J e I . Since each 
f j is closed, one has (pj(aj),...,Pj(aTG domyA , for each j G I. Since 
E^ is a subalgebra of the product I l t e / ^ this implies ( a l 5 . . . , a T ( v ) ) ) G 
dom ip^, showing that pi is closed for each i G I. 

Let us now discuss the non-existence statements included in the theorem: 
Since £iuom(r) has a terminal object for each similarity type, the non-

existence of products, if ft ^ 0 (cf. Theorem 2), and Theorem 4 imply that 
£}uom(r) cannot have multiple pullbacks, if ii / 0. 

The same argumentation applies to the categories C-lJuom(r) and 
Conf(r) in the cases of the similarity type r , where we claim that multi-
ple pullbacks do not exist. • 

T H E O R E M 5d (Multiple pushouts for non-empty index sets). Let the in-
dex sets be non-empty: 

- In the category i jom(r) multiple pushouts always exist for all similarity 
types t. 

- In £}uom(r) multiple pushouts always exist, i f f fi = 0. 
- In the categories (£-fjom(T), <£-£}uom(r) and <£onf(r) multiple pushouts 

always exist, i f f one has for all arities: nv < 1 ((p G ii). 

More precisely: Let ( f t : A — B j ) j e j (I ^ 0) be any non-empty family of 
morphisms in any of the categories under consideration. And let ((ql : Bj —> 
Q)je/, Q), be the candidate for the multiple pushout. 

In the category ioom(r) Q is the quotient algebra o/]JigJBj - in the 
coproduct ((ij : Bj —• HieJ®«)j€/> ILe/®«) *n ^om(r) (see Theorem 2d in 
Part I) - with respect to the congruence relation 0 on lite/®4' 9enerated by 
the relation {((¿, o ft)(a), (ij o fj)(a)) | i,j G I , a G A}. As morphisms take 
(qi := natfl on : B,- Q) i e j . 

In £}uom(0), i.e. if we are in the category of sets with partial map-
pings, the pushout object Q can be constructed as follows: Let B := (Jig/ x 

{¿} and Li : Bi B with ¿¿(6) := (b,i) for each i G I describe the coproduct 
of the family ( B i T h e n the desired pushout object in £onf(0) = <}3at 
is given by the multiple coequalizer object Q := B/ nat^ of the family 
T :— (ii o ft : A —>• (cf. Theorem 3d and the remark following it 
with its notation). And the family of partial mappings of the pushout is 
given as (qi :- nat^ oa : Bi Q)je/. 

In connection with the categories i-i)Otn(r), C-l)uom(r) and (Tonf(r) 
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with nv < 1, for all <p G ii, introduce the il^-reduction T\ := t|q(d 
of the given similarity type, and for a partial algebra, say B, in any of 
these categories let B*1) := (0, (¥>")*€no) 

designate its T\-reduct.x For 
the pushouts in any of these categories first construct the coproduct ((¿¿^ : 
®(x) _ l ( 1 ) ) i e i ,B( 1 ) ) - i.e. B := \Ji€lB x {i} {cf. Theorem 2d) - in the 
reduct categories i-^om(rx), <£-£}uom(ri) or ionf(ri) , respectively. And then 
consider the multiple coequalizer (cf. Theorem 3d) with respect to these cate-
gories for the family T := (¿¿^ oft : A —>• B) , e j . And in each of the categories 
i -^om(r ) , C-£}uom(r) and £onf(r) set (q{ := nat£} oi|a) : Q ) i € / for 
the pushout morphisms. As far as the constants are concerned, define for G ii(°) 

- in £ - i )om(T): 

._ / nat^- o i ^ o ft(tpA), for any i G I, if ipk exists, 
\ undefined, else. 

- in C-£3uom(r) and (£onf(r): 

nat^- otj1^ o ft(<pA), for any i G I, if (p®> exists for all j 6 I , and 

undefined, else. 

P r o o f . With respect to homomorphisms and quomorphisms, and for the 
Ti-reducts in (£-fjom(ri), i-£Iuom(r1) or ionf(rx) the existence statements 
directly follow from the completeness statements in Theorem 4d, and in all 
these cases the descriptions - as coeqalizers of families of morphisms starting 
from a coproducts - follow from Theorems 2d and 3d. 

We still have to show that ((qi : Bj —• Q) is also a multiple 
pushout in the categories (£-f)om(r), (£-£}uom(r) and <£onf(r), respectively. 
Because of the definitions in the theorem the qi are also morphisms of the 
corresponding categories with respect to the constants, and qi o ft = qj o f j 
is also true, for all i,j G I. Now, assume that (gi : B,- D)ie/ is a sink, 
for which gi o ft = gj o ft holds, for all i,j G I. Let g : QW -- B*1) be the 
induced morphism for the unary reducts. And let (p G 

First assume, that ipn exists. Then y?® G (gi o ft)(A) for each i G 
I. Hence ¡pk as well as tp®' exist, for each i G I, and we have ipA G 
Uie/ / ^ ( K v * ' ^ D i e / T h e r e f o r e , <p® exists, and it is mapped 
by g onto tp®. This argument is already sufficient for ionf(r) . 

1 We do not use the superscript for the morphisms except for those cases, where we 
want to indicate that they refer particularly to the reduct category. 
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For the cases of the categories £-f)om(r) and <£-£3uom(r) assume that 
6 dom gi, for some i G I . Since gi is a homomorphism or quomorphism, 

respectively, we have gi(<ps') = Then, in particular, <p° has to exist, and 
therefore we can repeat the argumentation from above, showing that g is a 
closed homomorphism or closed quomorphism, respectively. 

Finally, let us consider the non-existence statements: 
In the categories (£-fjom('r), <£-£}uom(r) and (£onf(r) multiple pushouts al-
ways exist for at most unary operations. If they would exist, when in addition 
at least one at least binary operation were around, we would have complete-
ness of the full subcategory, where no nullary constants were allowed or 
existing, since then we would also have initial objects (in this subcategory). 
Moreover, in each of these cases the "local" pushout would also be a "global" 
one; namely the non-existence of nullary constants in all the partial alge-
bras Bf (i G I ) would imply, that in each partial algebra, say C, allowing 
morphisms from the B, into it, no nullary constants could be defined. Since 
therefore these subcategories would be cocomplete, this would contradict the 
non-existence (in general) of coproducts or coequalizers in such categories 
(which then also would be "global" ones). 

Since in jQuom(r) initial objects always exist, while coequalizers only 
exist in general, when only nullary constants are specified, and while co-
products exist in general only, when no nullary constants are specified, mul-
tiple pushouts (for non-empty index sets) cannot exist in general, when ii 
is non-empty (cf. Theorem 4d and Table 2). • 

In particular, in the case of closed homomorphisms, the above argumen-
tation can be used to prove the following extension of Theorem 2d of Part II 
(while this does not work in the case of partial morphisms, as can be con-
cluded e.g. from the examples in figures 5 and 6 in Part II): 

COROLLARY. Let the arities of the similarity type r be at most unary, 
i.e. nv < 1, for all ip G ft. Then the coproduct of a non-empty family (Bj 
(I ^ 0) exists in the category (£-fjom(r), i f , for all ip G ft(°\ 

tpMi exists, i f f ip®' exists, for all i,j G I. 

And this coproduct is defined as in Theorem 2d of Part II for the case of 
homomorphisms. m 

A particular case of limits and colimits is given by inverse limits and 
directed colimits. These exist in all categories under consideration for all 
possible types. 

THEOREM 6 (Inverse limits). In all five kinds of categories under consid-
eration there exist for all similarity types inverse limits of non-empty inverse 
systems. 
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More precisely. 
Let I := (I, <) be any non-empty upward directed set, and let 21 := ((Aj)je/, 
( f i j : Aj —- Aj | i > j in I)) be any inverse system of partial algebras of type 
T in any of the categories under consideration to which the following con-
structions always refer. Moreover, in what follows let (B := X Ai, ( p r , ) , e j ) iei 
be the cartesian product of the carrier sets of the partial algebras involved to-
gether with the family of all natural projections. And let (A, ( f i : A — A j ) ; e / ) 
be a candidate of the inverse limit of 21. Then the constructions are as fol-
lows: 

In i ^ o m ( r ) and C - ^ o m ( r ) let be 

A := {a = (a,- | i £ I ) | for i > j in I one has fij(ai) = aj} C B, 

let A be provided with the relative substructure of the direct product B = 
j Q i g / A j - as a matter of fact A is a closed subset of B thus getting the 
inverse limit object A. Moreover, for each i £ I, let fi : A —• A, be the 
restriction of the natural projection: fi := pri 

For the categories with partial mappings underlying the morphisms call 
a sequence a := (aj | j £ «/) £ X Aj (J C I ) a filament2 of 21, if 

i e J 

(FI) J =: J(a) is a non-empty 'order filter' (i.e. J ^ 0, and i £ J and i < j 
imply j £ J) of I, 

(F2) for i and j in J with i > j one has aj £ dom f i j and fij(ai) = aj, and 
(F3) i e J , i > j and ai £ dom f i j imply j £ «7. 

Let A be the set of all filaments of 21. 
For each i £ I let the filament (aj | j £ J) belong to dom /,• if and only if 
i £ J, and if (aj \ j £ J) belongs to dom fi, then fi(aj | j £ J) := ai - this 
yields the limiting cone ( f i : A —>• Aj)je/ within the category of all sets and 
partial mappings as morphisms. 
For ip £ SI, and for a sequence a := ( a l 5 . . . , ) £ A"" of filaments define 
J(a) := I 1 < & < n<p} (then this is always a non-empty set). 
As far as the structure is concerned, one has to distinguish between the 
different categories: 

In the categories £ } u o m ( r ) and £ - £ } u o t n ( r ) let a sequence a := (aLl,... 
... ,an ) £ A71" of filaments belong to dom y>A if and only if there is some k 
in J(aj such that (*)k holds, where 

(*)& for I € <^(a) with I ^ & one has f\ o a £ d o m ^ , 
( f i o a) £ dom fik, and f,k(ip* (/ , o a)) = ( f k o a). 

2 We have slightly changed the definition in comparison to [P73], but in principle we 
get an isomorphic construction. 



Meaning of basic category 841 

And i f a = (a1,...,aTlv)e dom<pA then <p\a) =: a, where 

J(a) := { j G 11 there is k> j in J(a) satisfying (*)fc 

and such that (p^* ( f k o a) 6 dom f k j } 

and 

a :— (aj \ j G J(a) and there is k G J(a) satisfying k > j, 
(*)fc and aj = fkj(<p** ( f k ° a))). 

In the category <£onf(r) a sequence a := ( a a , . . . , aLriv) G An* of filaments 
belongs to domy>A, if and only if there is j G J(a) such that fjoa G dom tpk>, 
and if a £ domy?A, then define 

J' :={i£l \ there is I > i such that I G «/(a), // o a G dom 
and (p*1 ( f i o a) G dom /;}, 

choose for each i G J' some l(i) > i - as it has to exist according to the 
definition of J' - and set <pA(a) := (fi(i)i(<pA,0) (fi(i) ° a) | i G J') - observe 
that this definition is independent from the choice function I : J' —> I. 

P r o o f . We use the notation introduced in the theorem. In the case 
of total mappings and total algebras it is well known (cf. e.g. [G79]) that 
the construction given for f jom(r) and £-i^om(r) really yields the inverse 
limit. Since the case of partial algebras and (closed) homomorphisms is 
quite similar, we leave the details to the reader - it will also be easy to 
transform the proof for (closed) quomorphisms below to the one of (closed) 
homomorphisms. 

The idea of the construction of inverse limits in connection with mor-
phisms based on partial mappings is taken from V.S.POYTHRESS, [P73], 
where he describes inverse limits for conformisms (which he calls p-mor-
phisms). Therefore we do not repeat the proof here but concentrate our 
considerations on (closed) quomorphisms: 

In what follows let always <p G O be a fixed operation symbol, and let 
n := nv be its arity. Moreover, let a := ( a j , . . . , a„ ) G An be an arbitrary 
sequence. Then J (a) is non-empty, since it is the finite intersection of non-
empty order ideals of an upward directed set (if <p is nullary, then J(a) = I 
by the usual definition of empty intersections within some given set). Assume 
a G dom<£>A, let a := </>A(a) =: (aj \ j G J (a) ) be its value as constructed 
in the theorem, and let us first show that J (a ) is really a filament: It is 
non-empty, since J (a ) is non-empty, and since the (non-empty) order filter 
of J (a) induced by some k G J(a) satisfying (*)^ obviously forms a subset 
of J(a) (since, for I > k (*)/ is then satisfied, too, and fu = id^( is always 
an isomorphism). Moreover one has: 
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( F l ) : Assume j £ J(a) and j' £ I with j' > j. Then, by the definition 
of a, there are k £ / ( a ) , k > j such that is satisfied, and such 
that a,j = fkj('PAk(fk 0 a))- Since I is directed, there is k' > k,j'. 
Obviously, k' still belongs to J ( a ) , and satisfies (*)fc< and in particular 
Vkk' ( f k ' oa) e dom/fc ' j ' , since fk>j = fkj o fk,k = f j t j o fklj,. 

(F2): This follows immediately from the definition of J(a) and a (compare 
also the argumentation above in connection with (F l ) ) . 

(F3): Let j £ J ( a ) and j > j' such that aj £ dom f j y . Then there is 
k £ J(a) such that k > j satisfying (*)* and ( f k o a) £ dom f k j . 
But j > j' and aj £ dom fjj< together with fkj> = f j j ' o f k j imply 
f e J(a). 

Next let us prove that each / , is a quomorphism: Therefore, with the 
notation from above, let i £ I be an arbitrary but fixed index, and assume 
that i £ J(a) fl J(a), i.e. /,• is defined on each ak, k = 1 . . . . , n, and on a. 
Then, there is I > i such that (*)j holds, and therefore e.g. one has, for 
each / ' £ / ( a ) with I' > I, fi< o a £ dom (¿A' and «¿A' (/;< o a) £ dom fi<k-
Since fi = fa o fi, since fu is a quomorphism, and since /¿(a) = /¿(</?A(a)) = 
( / i i ° / i ) ( v A ( a ) ) = fu(fi(<PA(a))) = M ^ U i o a ^ ^ i f u o f i o a ) has to exist, 
and one has to have /¿(a) = /¿(<^A(a)) = f u i ^ ( f l o a)) = yA ( f u o / ( o a) = 
tp^ ( f i o a)), showing that /,• is indeed a quomorphism. 

With respect to i-iUuom(r) we still have to show that / , is closed, if 
each f i k is closed: For this purpose assume that f i o a £ dom (¿A , for some 
i £ I. Then, for every k > i, we have fi o o = fki o fk o o, and since fki is 
closed, we have fk o a £ dom <p** , and / ¿ ¿ ( ^ ( f k 0 a)) = «¿A ( f k i ofko a)) = 
<^A( fi o a)). Let j £ J(a). Then there is some k £ J ( a ) such that k > i,j. 
Then, from what we just have proved, there follows that (*)k is satisfied. 
Hence a £ dom </A, what was to be shown in order to prove that fi is closed. 

Next, let X) := (B, (gi : H> — A i ) i £ i ) be a system of (closed) quomor-
phisms compatible with the given inverse system 51 (i.e. fki o gk = gi, for 
all i,k £ I with i < k). And let g : D —•• A be the partial mapping in-
duced by the family i ) in <Pat. Then we have to show that g is a (closed) 
quomorphism g : O —1 A: Let tp and n be given as before, and let d := 
(di,... ,dn) £ Dn. Assume first that d £ domy5D, and tha t , for some i £ I , 
dm,<p°(d) £ dom <7;, for each m £ { 1 , . . . , n}. Let aLk := g(dk), 1 < k < n, be 
the filament generated by the sequence ( g j ( d k ) | j £ / , dk (z domgj), and 
let a := ( a 1 } . . . , a n ) . Then - since gi is a quomorphism - , gi o d £ dom (¿A 
and gi((p°(d)) = yA (g{ o d). Moreover, for every k £ I with k > i, we 
have by gi = fki o gk that dm,<p°(d) £ dom^fc, for each m £ { l , . . . , r a } . 
And therefore we also have gk o d £ dom </A , gk((pB(d)) = (p^* (gk o d), and 
f k i ( ^ (gk o d)) = (9i o d). This shows that J± := {i £ / | dm, <fP(d) £ 
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domgk for 1 < m < n} C {j G I \ ip** (gi o d) exists} C J(a) is a non-empty 
order filter of I, and that, for each j G J(a) , there is k - as an upper 
bound of i and j - such that (*)/ is satisfied for all I > k. This shows that 
a = g o d G dom<,fA, and that - obviously - <pA(g o d) = ^ ( ^ ( d ) ) . 

Finally, assume that all fki and gi are closed (k > i in I), that d G 
(dom«/)71, and that g o d € dom</?A. Then there is some i G / such that 
g o d G (dom /¿)n and fiogod = gi o d G d o m ^ (since each /,• is a 
quomorphism). Since gi is closed, we get d G dom . This shows that g is 
then a closed quomorphism, and this ends the proof. • 

T H E O R E M 6d (Direct limits, i.e. directed colimits). In all five kinds of 
categories under consideration there exist for all similarity types directed 
colimits of non-empty directed systems. 

The constructions run as follows: 
Let I := ( / , <) be any non-empty upward directed set, and let 91 := ((A, ),e/, 
( f i j : Aj —'- Aj | i < j in I)) be any directed system of partial algebras of 
type T in any of the categories under consideration to which the following 
constructions always refer. Let ((fa : A, A)t-e/, A) be a candidate for the 
directed colimit of 21. Define, for each i G I, 

Di := P|{dom/,j | j >i in I}, 

and let D8- be the corresponding relative subalgebra of A, with carrier set D{. 
Let gij := /¿j \z)i : D,- —• Bj be the restriction of f i j to Di, for i < j in I. 
Then 

- Do := ((D,)ie/, (gij : Di —» Dj \ i < j in I)) is a directed system of sets 
with mappings1, 

- in the categories .fjom(r) and <£-fiom(r) one just has Bj = A,• and g^ = 
f i j , for all i,j G I with i < j. 

- and in the categories £3uom(r), C-£3uom(r) and ionf ( r ) (g{j : Bj 
Bj | i < j in I) is a family of homomorphisms, closed homomorphisms 
or totally defined conformisms, respectively. 

In what follows let ((n : Di B)ieI,B := \JieIDi X {«'}) be the set the-
oretical coproduct (disjoint union) of the carrier sets of the partial algebras 
involved together with the family of all natural injections. Define on B the 
following equivalence relation 0: 

9 := {((a,i),(b,j) | i,j G / , a G D{, b G Dj 
and there is m G / such that i,j < m and gim(a) = gjm(b)}, 

and set A := B/0. Finally define, for each i G I , gi := natg on, and let fi 
be the partial mapping from A, into A with the same graph as gi. 
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The construction of the structure in the different categories is as follows: 
Let ip e SI and a := ( a i , . . •,an„) G . Then we set a G dom ipk, iff 

- in i)om(r), <£-.fjom(r), jQuom(r) and <£-£2uom(r): 
there are an index i G I and some sequence a := (a\,... ,anip) G 
dom (pDi such that a = <7,0 a; and if such an index i and such a sequence 
a exist, then we define </JA(a) := /¿(y^ (a)); 

- in i on f ( r ) : for all indices i G I , for which there exists a sequence a := 
( a i , . . . , an ) G D™v such that a = <7, 0 a, one has a G dom <pDi; and if 
a G dom and if i is any index and a G D™v any sequence such that 
a = gi o a, then we define <pk(a) :— /¿(^ (a)). 

P r o o f . The construction of directed colimits of homomorphisms has 
been treated in [B86], Proposition 4.4.4 (and its proof is also obtained as 
a special case of the construction given above, when quomorphisms are 
treated). From Corollaries 1 and 2 of Proposition 11.3.1 in [B86] one can 
conclude that this also works for closed homomorphisms, yet it will fol-
low directly, too, from our argumentation below. Therefore we concentrate 
considerations in this proof to the case of morphisms based on partial map-
pings. 

First we show - using the notation from the theorem - that Do := 
((Di)i£i,(gij : Di Dj \ i < j in I)) is indeed a directed system of sets 
with mappings, and that ( ( / j : Ai —>• A)i^ j ,A) , as constructed above, is 
its direct limit in the category Assume that d G Di, for some i G I , 
and let j G I with i < j . Set d' :— fij(d). We have to show that d' G Dy. 
Let k G I with j < k. Then fik(d) = (fjk o fij)(d) = fjk(d'). This shows 
that d' G dom/jfc, for all k > j in I. Therefore indeed d' G Dj, and each 
gij is a total mapping gij : Di —>• Dj. That Do is a directed system of sets 
with mappings then follows from the fact that 51 is a directed system. It is 
well-know, too, - since all gi are mappings - that 9 is indeed an equivalence 
relation on B = \JieIDi X {¿}. 

Next, let (hi : Ai — C ) t e / be a family of partial mappings with the same 
target set C compatible with (/¿j : A, —>• Aj | i < j in I). This means that 

(1) hj 0 fij = hi, for all i < j in I. 

We define an induced partial mapping h : A —C by 

- dom/i := {UGA|there are ¿ G / a n d dGdom/i,- such that fi(d) — t)}, 
- and if D G dom h with D = fi(d), then define <7(3) := hi(d). 

We have to show first that (/»¿Id, : Di —1 C) i^ i is compatible with Do: Con-
sider a G dom hi, for some i G I . Then, for every k G / with i < k, we have, 
by (1), that hkofik(a) = hi(a). This shows that a G flyte/, k>i d ° m / i k = Di. 



Meaning of basic category 845 

Therefore, for k > i, we get /i,(a) = (hk o fik)(a) = (hk o gik){a), what was 

to be shown. 

By the definition of h there follows immediately that h o /,• = hi is 
satisfied for all i G I. The uniqueness of the induced morphism is also 
obvious: If b! : A —>• C satisfies h' o f{ = hi, for all i G I, then dom/i C 
dom h! and h'(X>) = h(V) for all T) G dom h. If there were T)' G dom/i' \ 
dom/i, then D' would not belong to any /¿(dom hi), and therefore h'(T)') 

could be an arbitrary element of C, i.e. the uniqueness requirement would 
be violated. 

Next let us show that all the structure of A is correctly defined, - then 
the fi (i G I) will be morphisms of the corresponding category just by the 
corresponding definition - : 

Let ip G ii , a := ( a i , . . . , a n „ ) € dom </?A, and a := ( a i , . . . , an<p) G dom <pBi 

and a' := ) G domy®' such that a = gi ° a = g j o a'. Then 

the directedness of I and the definition of 0 imply the existence of some 
m > i,j in I such that g i m (a k ) = gjmia'k) for 1 < k < nv and gim(ip^ (a) = 
9jm((p0j («') (possibly by applying the directedness in several steps) - the 
existence of,- say, (gim o a) follows in the first four kinds of categories 
from the fact that the gi are homomorphisms; in £onf(r) it follows from the 
assumption that 0 = fi o a = f j o a' G dom<^A, which, by definition, implies 
this existence. 

Now, let us show that h is a morphism in each of the categories under 
consideration: Let <p G ii and n := nv. 

- In connection with i^om(r), (S-ijom(r), £}uom(r) and £-£}uom(r) con-
sider first a := ( a i , . . . , a„) G dom (¿>An(dom h)n, and a := ( a i , . . . , a „ v ) 
G dom such that a = gi oa, and also </?A G dom h. Then there is k > i 
in I such that g,k°a G dom <¿5®* fl(dom hk)n. Since hk is a quomorphism, 
and since hogk = hk, we get that hoa = / io^oa = hkogikoaL £ dom 
and /i(</>A(a)) = hk(<pDk (gik o a)) = <f€{hk o gik o a) = (pc(h o a). This 
shows that h is a quomorphism. 

- In connection with i - i jom(r) and (£-£juom(r) assume (with the notation 
from above) that h o a G d o m ^ c . Then, since each hj : B j —> C is a 
closed homomorphism, and since, for suitable i,k G I with i < k, 
h o a = h o gi o a = hk o gik o a, we get gik o a G dom ^ . Since gk is 
a quomorphism containing gik o a and <p^ (gik 0 a) in its domain, this 
implies that 0 G domyjA , showing that h is closed. 

- Finally consider the category ionf(r): Choose a := ( a i , . . . , a „ ) G 
(dom/i)n such that hoa G dom<£C, and let i G I and a := (a 1 , . . . , a „ ) G 
(dom/t)" such that a = / ¡oa. Then h 00 = /io /¿oa = / i joaG domy5C. 
Since ht is a conformism, this implies a G dom y?®'. Therefore, by the 
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definition of the structure of A, we may conclude that o € dom and 
this shows that h is indeed a conformism. • 

Finally we collect all results on different kinds of morphisms investigated 
and known so far (cf. e.g. [AMRS95], where quomorphisms on closed do-
mains and closed quomorphisms on closed domains3 have been studied, and 
[M93], where quomorphisms with initial segments as domains and totally 
defined conformisms have been investigated). In order that the table does 
not become too wide we use the following abbreviations for the categories 
with the class of all partial algebras of type r as object class: 

f j for .fjom(r); cSj for < £ - F J O M ( T ) ; £3 for £3uom(r); c£j for (£-£}uom(r); 
ct)jQ for Ci)-£Juom(r), where the class of all quomorphisms, of which the 
domain is a closed subalgebra of the start object, is the class of all mor-
phisms; C D C J Q for ££)£-£}uom(r), where the class of all'closed-domain closed 
quomorphisms\ i.e. of all closed quomorphisms, of which the domain is a 
closed subalgebra of the start object, is the class of all morphisms; i£j for 
J-£Juom(r), where the class of all quomorphisms, of which the domain is 
an initial segment of the start object, is the class of all morphisms; <£ for 
ionf( r ) ; t<£ for T-£onf(r), where the class of all totally defined conformisms, 
is the class of all morphisms. 

The entries in Table 2 mean: 

+ : no restrictions on the similarity type; 
— : the construction does not exist, not even in the case of sets, 

i.e. of ft = 0; 
0 : the construction exists in general iff ft = 0; 

= 0 : the construction exists in general iff ft = ft(°), i.e. all fun-
damental operations have to be nullary; 

= 1 : the construction exists in general iff ft = fti1), i.e. all fun-
damental operations have to be unary; 

< 1 : the construction exists in general iff all fundamental opera-
tions are at most unary; 

> 1 : the construction exists in general iff all fundamental opera-
tions are at least unary (i.e. no nullary constants are allowed); 

while combinations of such restrictions mean that the construction exists 
in general, iff at least one of the conditions on the similarity type is satis-
fied. 

3 See cOcQ below; we use the notation closed-domain closed quomorphisms for them, 
as is also done in [AMRS95]. In [RV95] these morphisms are called partial closed homo-
morphisms, and in a related paper [ABRVW95] closed-domain quomorphic conformisms. 
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S) Q cO cOQ cDcO iÙ e t e 
zero-object - - + > 1 > 1 > 1 + > i -

terminal object + = 1 + + > 1 > 1 + + + 
product* + = 1 0 = 0, = 1 = 0 = 1 0 = i = i 
(m.) equalizer* + + + = 0, = 1 + < 1 + = i = i 
limits + = 1 0 = 0, = 1 0 - 1 0 = i — i 
(m.) pullback* + + 0 — 0, = 1 = 0 < 1 0 = i = i 
inverse limit* + + + + + + + + + 
initial object + > 1 + = 0, > 1 + > 1 + > i > i 
coproduct* + = 1 > 1 = 0, = 1 < 1, > 1 = 1 > 1 = i = i 
(m.) coeqalizer* + < 1 = 0 < 1 0 : 1 = 0 < i < i 
colimits + = 1 0 = 0, = 1 0 = 1 0 - i = i 
(m.) pushout* + < 1 0 < 1 0 = 1 0 < i < i 
direct limit* + + + + + + + + + 

Table 2. Enlarged table on the existence of category theoretical 
constructions in nine "types of categories" of partial algebras 
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