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DYNAMICS OF LINEAR MAPPING
AND INVARIANT MEASURES ON SPHERE

1. Introduction

The description and investigation of measures in relation to a given map-
ping o : X — X in a topological space is one of the classical problems in the
theory of dynamical systems. In the case of a compact space X the existence
and description of such measures has been obtained in the well-known work
by N.M. Krilov and N.N. Bogolubov [7] (see also [8]) and the description of
measures for other classes of spaces continues to attract attention [6]. As the
general description of invariant measures is noneffective, the explicit form
of invariant measures for concrete classes of mappings is of interest. In the
present paper the measures on the sphere of the space C™ are explicitly
described which are invariant and ergodic with respect to mappings of the
form a(z) = ”—ﬁ;—”, where A is a nonsingular matrix.

The explicit form of measures being invariant with respect to such map-
pings is needed, e.g. for obtaining explicit conditions for functional differ-
ential operators of Fredholm type with partial derivatives and also for the
explicit description of spectra of operators of weighted shift [1], [2].

It is known (8] that the structure of invariant ergodic measures is con-
nected with the behaviour of the trajectories of points for iterations of the
mapping a, i.e. with dynamics of this mapping.

In the case under consideration, the problem is connected with the
dynamics description of a linear operator, i.e. with the behaviour of the
sequence of vectors A"z for n — +o00. We notice that the information
on the behaviour of such sequences is useful in other questions as well,
e.g. in subtle analysis of iterative methods [5]. For some concrete forms of
matrices A, the dynamics was known, and in the general case the funda-
mental complexity consisted in obtaining a visual description of all possible
cases.
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2. Preliminaries

A measure g on X is said to be invariant with respect to a mapping
a : X — X if for any measurables set w, the equality p(a~1(w)) = u(w)
holds.

A measure p is said to be ergodic with respect to a mapping « if given a
measurable subset w C X invariant with respect to a, it follows that either
pw)=0or p(X \w)=0.

The measure u is said to be normalized (or a probability measure) if
#(X) = 1. Since every invariant measure on X can be expressed by means
of ergodic measures [3], the description of ergodic measures becomes our
fundamental problem.

Let
TP ={z=(21,...,2p) : 2; € C, |zj| = 1}

be a p-dimensional torus. By a standard shift on the torus 7”7 generated
by an element w € TP we mean the mapping of the form a,(2) = wz =
(wlzl, ey wpzp).

The invariant, ergodic measures on the torus 77 with respect to a stan-
dard shift depend on a closed subgroup W in T? generated by the element
w € TP. The form of this subgroup depends on the existence of relations, be-
tween numbers w;. In fact, the description of such a subgroup is given in the
work by H. Weyl [9]. Let w; = €?™% | j = 1,...,p. The numbers 1y, 7y,...,7
are said to be rationally independend if the equality ¢1 4 +q2 = +. . .+qi7 = 0,
¢; € @ is possible only in the case when ¢; = 0, j = 1,...,[. Let m; be
the largest number of rationally independent numbers among the numbers
1,h1,he, ..., hp. Then the subgroup W is an m;-dimensional submanifold
which is homeomorfic either to torus T™! or to the product of 7™ by the
finite cyclic group Zn, where the number N depends on the form of ra-
tional relations between the numbers hq,...,A,. On the subgroup W there
exists a unique normalized measure invariant with respect to the standard
shifts from this subgroup which differs from m;-dimensional Lebesgue mea-
sure only by the factor 1—1\,— An invariant measure defined on every coset in
the torus with respect to the subgroup W is called a standard invariant
measure.

PROPOSITION 1. A measure it on the torus TP is normalized, invari-
ant and ergodic with respect to a standard shift a,,(2) = wz if and only if
when its support coincides with one of cosets with respect to the subgroup
W and the measure p coincides with the standard invariant measure on this
coset.
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3. Invariant ergodic measures on the sphere

Let X = {z € C™ : ||z|| = 1} be the sphere of the space C™, let A
be a nonsingular matrix and let @ : X — X be a mapping defined by
o(z) = az-

We assume that the matrix A has the normal Jordan form. Let ¢ denote
the number of different moduli of eigenvalues of A and let these moduli be
arranged in a decreasing manner 7y > 72 > ... > ry > 0. Let g(k) denote
the number of Jordan cells whose moduli of their respective eigenvalues are
equal to 7. For each k let such cells be indexed in accordance with their
decreasing dimension.

Thus, we obtain a collection of Jordan cells Ji;, 1 < k < ¢q,1 <5 < g(k).
We denote the dimension of the cell Ji; by v(k,J) and its corresponding
eigenvalue by A(k, 7). For vectors of the basis in which the matrix A has the
Jordan form, we obtain the enumeration with three indices:

e(k,5,1), 1<k <q, 1<j<gk), 1 <L v(k,5).
The coordinates of the vector z in this basis we denote by z(k, 7,1).

Let Ly be the vector subspace of C™ generated by the eigenvectors of
the matrix A corresponding to eigenvalues A(k,7), 1 < j < ¢(k). The set
Sk = X N0 Ly is the unit sphere of the subspace Ly, its real dimension being
equal to 2¢(k) — 1. The sphere Sy undergoes stratification onto manifolds
which are invariant with respect to a as follows. Let us consider the mapping
from Si onto R¥*) defined by

mu(2) = (12(k, 1, D], [2(,2, D], .., [2(k, g(k), 1)])-
The image of the sphere S) under = is some subset of the (g(k) — 1)-
dimensional sphere

Bi={6€R"™ ¢ >0, |i¢] =1},

The inverse image w;l(f ) of each point £ € By posesses the natural structure
of the torus whose dimension is equal to the number of non-zero coordinates
of the point £. On the set S; we define the mapping a by

a(z) = (w(k,1)z(k, 1,1), w(k,2)z(k,2,1),...,w(k, q(k))z(k, ¢(k), 1),

where
o Ak, 9)
w9 = B, i
Therefore on the torus Tx¢ = m'(£) the action of the mapping a coin-
cides with the standard shift generated by the element w consisting of those
numbers w(k, j) for which the corresponding coordinate of the vector ¢ is
different from zero.
Let Wy ¢ denote a subgroup in T ¢ generated by the element w.
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THEOREM 1. The normalized measure y1 on the sphere X = §*™~1 is
invariant and ergodic with respect to the mapping o(z) = uﬁ_zu if and only
if its support belongs to one of invariant toruses Ty ¢ and coincides with one
of cosets of the torus Ty ¢ with respect to the subgroup Wy ¢ and the measure
u coincides with the standard invariant measure on this coset.

4. The dynamics of a linear mapping
The proof of Theorem 1 is based on information about the behaviour
of the sequence of vectors A"z when n increases. For description of this
behaviour we introduce some auxiliary objects.
For a vector z € C™,z # 0 let us define the following integral charac-
teristics:
k(z) = min{k : 3z(k, j,1) # 0},
vj(z) = max{l : z(k(z),4,1) # 0},
v(z) = max{v;(z),.. .,vgfz(z))}.
For a given vector 2z let us construct three new vectors, i.e. we define three
mappings:
prz—oy Yiz—>zandn:z — u,

where
. w(k, ;)@ z(k, j,v(z)), k=k(z),!=1;
) = { D6 A, Bk =L
oo x(k, 5,0, k=Ek(=);
Z(k,],l)— {0, J k ;é k(w),

The point § = ﬁ% belongs to the sphere S*®), the trajectory of this
point belongs to the invariant torus T(z),¢, where £ = 7, (%) and the closure
of this trajectory coincides with one of the cosets in T%(;),¢ with respect to
the subgroup Wy,)¢. Let us denote this coset by 6(z).

For two sequences (a,) and (b,) of real numbers we shall introduce the
following notation

n ~ by iff a, = O(b,) and b, = O(a,),

a, ~ b, iff lim a—":l.
n—oo n
A point z is said to be a limit point of the trajectory of a point z if for
every neighbourhood U of the point zy and every integer ng > 1 there
exists an integer ny > ng such that a™(z) € U. The set of limit points of
the trajectory of the point z will be denoted by £2(z).
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TuEOREM 2. (i) The dynamics of the linear mapping * — A"z, when
n — oo is characterised by the following relationships:

(1) e T
z|| ~ ——7‘ z ’
(o(a) - I H"

and in particular, ||A"z|| ~ r}n"* holds for vectors of general position.
(ii) The trajectory a™(z),n = 1,2,... of the point x tends to trajectory
of the point § and that the limit set

2(z) coincides with the coset 0(z) in the torus Ty(g)¢, where, £=Tz)(Y).
As for the rate of convergence the following estimation holds:

0, Tr= y =z

Tk(u)] v(u)—v(z)
. n T T

B -l L ?

1
> () # Z.

n
Proof. As it is known [4], the n-th power J™ of the Jordan cell J of

dimension v with the eigenvalue A for n > v is of the form

A" nAnl C2an L Cytlamov
P U L T
0o 0 0 Am

C:(s=2,...,0v— 1) being binominal coefficients.

Therefore the coordinates of the vector ™ = A"z are expressed by the
formula
v(k,j)
(3) gM 3D = N ATTHC e (k, 5, 0).
=l
- il
. il
Since C} ' » G0
i.e. a term having the greatest rate of increase or the least rate of decrease
must be a nonzero term with the greatest index ¢. Therefore

so, for fixed j, k, the dominating term in sum (3),

ICEn(k,j, )l ~ ,rn—p+1 p— llx(k"] p)l’
(p- 0!
where
p = p(k,j) = max{i : z(k, j,?) # 0}.
Among the coordinates corresponding to the Jordan cell J(k, 5), the coordi-
nate z"(k, j,l),is a dominating one. Among all the coordinates of the vector
z™ dominating coordinates are those for which £ = k(z), { = 1 and j is such
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that v;(z) = v(z). The dominating coordinates determine the behaviour of
the norm ||A™z||. Therefore

A" 2] ~ le"(k (2), 3, DI? = (s CH)= l)2ZI@‘(’C(Q:),J,v(ﬂv))I2

=(r k(z)‘”cv‘f) Y2 lslP,

from which it follows (1).
Analysing the form of the remaining terms in (3) we assert that

(4) Am2] = rpy @ Co@ 1 |y||(1 + 6,),
where §, = O(L). In particular, it follows from (4) that

- n—v(z) ~u(z)— - 1
() ll4%l™ = (OGO ) 14 7m), where 1 =0(3).

Now we are able to obtain estimation (2).
As the vectors A"z and A™u belong to mutually complementing sub-
spaces, we have

s~ ~ s~ e+ s
lAme]| IA"yH [Ane]| IA“yII A=l
Thus, in view of (1), we obtain
A [ree]” 2™
(6) n ~ v(z) *
||Amz|| Th(z)] 7
Now let us consider the vector
" = Az Ay
A=zl llAmyll"
Let y = z. Noticing that [|A™y|| = 7}, |yll, we get
! ! 4%y|| - [|Am=f] || A"
crvealii - -
WA= 14" frame — Tl vl " J[A%al

Thus in view of (6), estimation (2), for the case y = z, is obtained.

Now, let y # z, i.e. v(z) > 1. Since for the vector y" = A"y we have
y"(k(z),j,2) = 0, so in view of (1) and (3), we assert that ("(k(z),J,2) ~ %
for those j which satisfy the equality v;(z) = v(z). Therefore the order of
convergence of the norm ||¢"|| to zero cannot exceed L.

As for integers k, j and ! for which the corresponding coordinate y(k, j,1)
= 0, the inequality

(7) ¢"(k,5,1) < = (e = const > 0)
follows directly from (3).
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We now show that estimation (7) also holds for the remaining coordi-
nates, i.e. coordinates with indices (k,j,!), where k = k(z),! = 1 and j is
such that v;(z) = v(z).

We have

v(z)-1
n - n—itl i .
(8) 1¢"(k(2), 4, 1)I < | zj Nt Cila(k(z), 4, i)

¥ ’ Ok(@), D)) e (k(2), , o(2))
[147]
_ Ak (@),9)"w(k(2),)" O 2(k(), 4, %(z))
147]

In view of (1) the first term in (8) is not greater than £, where ¢ > 0 is some
constant. Making use of (5), we estimate the second term in (8) as follows

Mk(z), 5"~ g (k(), 5, v(2))

v(z) -1
o 0(k(@), )" Lo (k(2), §, v(a))
— (A(k(2), )" — e ’
_ lsk(@), 5,0 _ (1
=R o (D).

This completes the proof.

Theorem 2 includes, in particular, the conditions for convergence of the
sequence (ﬁ).

Indeed, this sequence converges if and only if, when ¥ is a fixed point
of the mapping «, and the latter holds if and only if, when all eigenvalues
A(k(z), j) corresponding to those j for which v;(z) = v(z), are positive.

Proof of Theorem 1. The assertion of Theorem 1, with the aid of
general considerations, follows from Theorem 2 and Proposition 1. Indeed,
as it is known, the support of every ergodic probability measure is the limit
set of some trajectory [8]. Thus, in the case under consideration according
to Theorem 2, the limit set is contained in the torus Ty()¢. Consequently,
we obtain description of measures from Proposition 1. Thus Theorem 1 is
proved.
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