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DYNAMICS OF LINEAR MAPPING 
A N D INVARIANT MEASURES ON SPHERE 

1. Introduction 
The description and investigation of measures in relation to a given map-

ping a : X —>• X in a topological space is one of the classical problems in the 
theory of dynamical systems. In the case of a compact space X the existence 
and description of such measures has been obtained in the well-known work 
by N.M. Krilov and N.N. Bogolubov [7] (see also [8]) and the description of 
measures for other classes of spaces continues to attract attention [6]. As the 
general description of invariant measures is noneffective, the explicit form 
of invariant measures for concrete classes of mappings is of interest. In the 
present paper the measures on the sphere of the space Cm are explicitly 
described which are invariant and ergodic with respect to mappings of the 
form a(x) = pffjj-j where A is a nonsingular matrix. 

The explicit form of measures being invariant with respect to such map-
pings is needed, e.g. for obtaining explicit conditions for functional differ-
ential operators of Fredholm type with partial derivatives and also for the 
explicit description of spectra of operators of weighted shift [1], [2]. 

It is known [8] that the structure of invariant ergodic measures is con-
nected with the behaviour of the trajectories of points for iterations of the 
mapping a, i.e. with dynamics of this mapping. 

In the case under consideration, the problem is connected with the 
dynamics description of a linear operator, i.e. with the behaviour of the 
sequence of vectors Anx for n —> +oo. We notice that the information 
on the behaviour of such sequences is useful in other questions as well, 
e.g. in subtle analysis of iterative methods [5]. For some concrete forms of 
matrices A, the dynamics was known, and in the general case the funda-
mental complexity consisted in obtaining a visual description of all possible 
cases. 
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2. Preliminaries 
A measure fi on X is said to be invariant with respect to a mapping 

a : X —* X if for any measurables set u, the equality / ¿ (a - 1 (a;)) = ¡i{u) 
holds. 

A measure // is said to be ergodic with respect to a mapping a if given a 
measurable subset u> C X invariant with respect to a , it follows that either 
/z(u>) = 0 or n(X \ uf) = 0. 

The measure fi is said to be normalized (or a probability measure) if 
fi(X) = 1. Since every invariant measure on X can be expressed by means 
of ergodic measures [3], the description of ergodic measures becomes our 
fundamental problem. 

Let 

Tp = {z = (z1,...,zp):zjeC, \zj\ = 1} 

be a p-dimensional torus. By a standard shift on the torus Tp generated 
by an element w £ Tp we mean the mapping of the form aw(z) = wz — 
(w1z1,...,wpzp). 

The invariant, ergodic measures on the torus Tp with respect to a stan-
dard shift depend on a closed subgroup W in Tp generated by the element 
to G T". The form of this subgroup depends on the existence of relations, be-
tween numbers Wj. In fact, the description of such a subgroup is given in the 
work by H. Weyl [9]. Let Wj = ET2^H> ,J = 1 , . . . ,P. The numbers TI, r 2 , . . . , r j 
are said to be rationally independend if the equality qiTi+q2T2+...+qiTi = 0, 
qj G Q is possible only in the case when qj = 0, j = 1 , . . . , / . Let mi be 
the largest number of rationally independent numbers among the numbers 
1, hi, h,2,..., hp. Then the subgroup W is an mi-dimensional submanifold 
which is homeomorfic either to torus Tmi or to the product of Tmi by the 
finite cyclic group ZN, where the number N depends on the form of ra-
tional relations between the numbers hi,..., hp. On the subgroup W there 
exists a unique normalized measure invariant with respect to the standard 
shifts from this subgroup which differs from roi-dimensional Lebesgue mea-
sure only by the factor j f . An invariant measure defined on every coset in 
the torus with respect to the subgroup W is called a standard invariant 
measure. 

PROPOSITION 1. A measure fx on the torus Tp is normalized, invari-
ant and ergodic with respect to a standard shift aw(z) = wz if and only if 
when its support coincides with one of cosets with respect to the subgroup 
W and the measure fi coincides with the standard invariant measure on this 
coset. 
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3. Invariant ergodic measures on the sphere 
Let X = {x e Cm : ||a:|| = 1} be the sphere of the space C m , let A 

be a nonsingular matrix and let a : X —> X be a mapping defined by 

" (*) = p f r 
We assume that the matrix A has the normal Jordan form. Let q denote 

the number of different moduli of eigenvalues of A and let these moduli be 
arranged in a decreasing manner ri > r2 > ... > rq > 0. Let q(k) denote 
the number of Jordan cells whose moduli of their respective eigenvalues are 
equal to r^. For each k let such cells be indexed in accordance with their 
decreasing dimension. 

Thus, we obtain a collection of Jordan cells Jkj, 1 < k < q, 1 < j < q(k). 
We denote the dimension of the cell Jkj by v(k,j) and its corresponding 
eigenvalue by A ( k , j ) . For vectors of the basis in which the matrix A has the 
Jordan form, we obtain the enumeration with three indices: 

e(k,j,l), 1 < * < q, 1 < j < q(k), 1 < / < v(k,j). 

The coordinates of the vector x in this basis we denote by x(k,j, I). 
Let Lk be the vector subspace of Cm generated by the eigenvectors of 

the matrix A corresponding to eigenvalues A ( k , j ) , 1 < j < q(k). The set 
Sk = X fl Lk is the unit sphere of the subspace Lk, its real dimension being 
equal to 2q(k) — 1. The sphere Sk undergoes stratification onto manifolds 
which are invariant with respect to a as follows. Let us consider the mapping 
from Sk onto RqW defined by 

7rfc(®) = ( |x( fc , 1,1)|, \x(k, 2 ,1 ) | , . . . , | x ( k , q(k), 1)|). 
The image of the sphere Sk under Wk is some subset of the (q(k) — 1)-
dimensional sphere 

Bk = { t e R g i k ) : { j > 0 , ||f|| = l } . 

The inverse image tt^ *(£) of each point £ £ Bk posesses the natural structure 
of the torus whose dimension is equal to the number of non-zero coordinates 
of the point On the set Sk we define the mapping a by 

a ( z ) = (w(k, 1 )x(k, 1 , 1 ) , w(k, 2 ) x ( k , 2 , 1 ) , . . . , w(k, g(k))x(k, q(k), 1) , 

where 

Therefore on the torus = the action of the mapping a coin-
cides with the standard shift generated by the element w consisting of those 
numbers w(k,j) for which the corresponding coordinate of the vector £ is 
different from zero. 

Let Wk,£ denote a subgroup in T ^ generated by the element w. 
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T H E O R E M 1. The normalized measure fi on the sphere X = 5 2 M _ 1 is 
invariant and ergodic with respect to the mapping a(x) = p f f j j - if and only 
if its support belongs to one of invariant toruses T^ and coincides with one 
of cosets of the torus Tk,t with respect to the subgroup Wk,e, and the measure 
¡J, coincides with the standard invariant measure on this coset. 

4. The dynamics of a linear mapping 
The proof of Theorem 1 is based on information about the behaviour 

of the sequence of vectors Anx when n increases. For description of this 
behaviour we introduce some auxiliary objects. 

For a vector x G Cm,x ^ 0 let us define the following integral charac-
teristics: 

k(x) = min{& : 3 x ( k , j , l ) ^ 0}, 
Vj(x) = max{/ : x(k(x),j,l) ^ 0}, 
i;(z) = m a x { ! J i ( i ) , . . . , ^ W ) } . 

For a given vector z let us construct three new vectors, i.e. we define three 
mappings: 

(p : x —> y, tp : x z and 17: a: —• u, 
where 

v(k i n - f w(k,jyW-*x(k,j,v(x)), k = k(x), l = 1; 
^ ' ^ " t o , k i k(x) or I i 1; 

~(u i\ — J x(k,jJ), k = k(x); z{k,j,l) ~ | k ^ k { x ) . 

u = x — z. 

The point y = belongs to the sphere S k ( x \ the trajectory of this 
point belongs to the invariant torus where £ = 7rk{y) and the closure 
of this trajectory coincides with one of the cosets in with respect to 
the subgroup Wk(x),£- Let us denote this coset by 6{x). 

For two sequences (an) and (bn) of real numbers we shall introduce the 
following notation 

Un ~ bn iff an = 0(bn) and bn = 0(an), 

~ bn iff lim t-- = 1. u-kx> bn 

A point xo is said to be a limit point of the trajectory of a point x if for 
every neighbourhood U of the point xq and every integer no > 1 there 
exists an integer n\ > no such that ani(x) G U. The set of limit points of 
the trajectory of the point x will be denoted by Q(x). 
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T H E O R E M 2 . (i) The dynamics of the linear mapping x 
n —»• oo is characterised by the following relationships: 

„-v(x)+l 
k(x) 

Anx, when 

( 1 ) \\A»x\\ 
112/11 1 

K x ) - 1 ) ! T k ^ n 

and in particular, ||Ana;|| ~ holds for vectors of general position. 
(ii) The trajectory an(x),n = 1 , 2 , . . . o/ the point x tends to trajectory 

of the point y and that the limit set 

f2(x) coincides with the coset 9(x) in the torus where, £ = TTk(x)(y)-

As for the rate of convergence the following estimation holds: 
RO> 

(2) \an(x)-an(y)\\ 
rk(u) 

Jk(x). 
n v(u)—v(x) 

1 
n ' 

x = y = z 

x^ z,y^ z 

V Ì z-

P r o o f . As it is known [4], the n-th power Jn of the Jordan cell J of 
dimension v with the eigenvalue A for n > v is of the form 

n\n~l Cl\n~2 ... C^'1\n~v+1\ 
A™ n\n~l ... Cv-2\n~v 

Jn = 0 

/ 

x 
i=l 

n i-l 

\ 0 0 0 . . . Ar 

C* (s = 2 , . . . , v — 1) being binominal coefficients. 

Therefore the coordinates of the vector xn = Anx are expressed by the 
formula 

(3) 

Since C^ - ' « JT-—TTJ so, for fixed j, k, I the dominating term in sum (3), 
(Z — V ' 

i.e. a term having the greatest rate of increase or the least rate of decrease 
must be a nonzero term with the greatest index i. Therefore 

where 
p = p(k,j) = max{i : x(k,j,i) ± 0}. 

Among the coordinates corresponding to the Jordan cell J(k,j), the coordi-
nate xn(k,j, I), is a dominating one. Among all the coordinates of the vector 
xn dominating coordinates are those for which k = k(x), 1 = 1 and j is such 
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that Vj(x) = v(x). The dominating coordinates determine the behaviour of 
the norm ||Ana;||. Therefore 

IK*II 2 » £ \ x n ( k ( x ) , j , i ) i 2 « ( r ^ c ^ - y £ w*(*) , 
j 3 

from which it follows (1). 
Analysing the form of the remaining terms in (3) we assert that 

(4) = + 

where 6n = 0 ( . In particular, it follows from (4) that 

(5) HA»««-1 = ( r ; ; ^ ) C ^ ) - 1 | | y | | ) - 1 ( l + 7»), where 7 n = 0 Q ) . 

Now we are able to obtain estimation (2). 
As the vectors Anz and Anu belong to mutually complementing sub-

spaces, we have 
Anx Any 

\\A»x\\ \\A-y\\ 

Thus, in view of (1), we obtain 

Anz Any 

l l ^ l l \\Any\\ 
+ l l ^ l l 

Unx\\-

(6) ||Ana;| 
Now let us consider the vector 

c n = 

1"k(u) 

,rk(x). 

Anz 

nv(x) ' 

Any 

\\Anu\ 

l l ^ l l Uny\\' 
Let y = z. Noticing that \\Any\\ = rJ^Hj/H, we get 

I, ,«, , = ] _ \ = Uny\\ ~ Hnx\ 
^ 11 11 y|lV||A««|| \\A»y\\J \\A»x\\ 

Thus in view of (6), estimation (2), for the case y = z, is obtained. 
Now, let y / z, i.e. v(x) > 1. Since for the vector yn = Any we have 

yn(k(x),j, 2) = 0, so in view of (1) and (3), we assert that Cn{k(x),j, 2) ~ ^ 
for those j which satisfy the equality vj(x) = v(x). Therefore the order of 
convergence of the norm ||£™|| to zero cannot exceed 

As for integers k,j and I for which the corresponding coordinate y(k,j, I) 
= 0, the inequality 

(7) C(k,j, 1 ) < - (c = const > 0 ) 

follows directly from (3). 
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We now show that estimation (7) also holds for the remaining coordi-
nates, i.e. coordinates with indices ( k , j , l ) , where k = k(x),l = 1 and j is 
such that vj(x) = v(x). 

We have 

(8) |C n ( fc (z ) , j , l ) |< I £ A J ^ C ^ x W s U i ) 
i=i 

+ ||Ana;|| 
A(k(x),j)nw(k(x),j)v^~1x(k(x),j, v(x)) 

\\A»y\\ 

In view of (1) the first term in (8) is not greater than where c > 0 is some 
constant. Making use of (5), we estimate the second term in (8) as follows 

v(x) 

Uny\\ 
\x(k(x),j,v)(x)\ _ 1 

~ l n IMI " U 

This completes the proof. 
Theorem 2 includes, in particular, the conditions for convergence of the 

sequence ( i ^ f j f ) . 
Indeed, this sequence converges if and only if, when y is a fixed point 

of the mapping a , and the latter holds if and only if, when all eigenvalues 
A(k(x),j) corresponding to those j for which Vj(x) = v(x), are positive. 

P r o o f of T h e o r e m 1. The assertion of Theorem 1, with the aid of 
general considerations, follows from Theorem 2 and Proposition 1. Indeed, 
as it is known, the support of every ergodic probability measure is the limit 
set of some trajectory [8]. Thus, in the case under consideration according 
to Theorem 2, the limit set is contained in the torus Tk(x),£. Consequently, 
we obtain description of measures from Proposition 1. Thus Theorem 1 is 
proved. 
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