

A. Chaudhry, A. B. Thaheem

A NOTE ON AUTOMORPHISMS OF PRIME RINGS

We prove algebraic generalizations of some results of M. Awami and A. B. Thaheem concerning the equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$, where α, β are automorphisms of C^* -algebras. We show that if R is a prime ring of characteristic not equal to 2 and α, β are automorphisms of R satisfying $\alpha + \beta^{-1}\alpha^{-1}\beta = \beta + \beta^{-1}$, then $\alpha = \beta$ or $\alpha = \beta^{-1}$. We also prove a result on the commutativity of α and β .

1. Introduction and Preliminaries

Recently, Brešar [2, Corollary 3] proved the following:

THEOREM A. *Let R be a prime ring of characteristic not equal to 2. Suppose that the automorphisms α, β of R satisfy the equation*

$$(*) \quad \alpha + \alpha^{-1} = \beta + \beta^{-1}.$$

If α and β commute then either $\alpha = \beta$ or $\alpha = \beta^{-1}$.

In [2], Brešar also proposed a problem as under what conditions the assumption that α and β commute can be removed from Theorem A.

In this note we provide (Proposition 2.1) an algebraic generalization of a result of Awami and Thaheem [1] proved for von Neumann algebras by considering the equation $\alpha + \beta^{-1}\alpha^{-1}\beta = \beta + \beta^{-1}$ on prime rings (of characteristic not equal to 2) and show that either $\alpha = \beta$ or $\alpha = \beta^{-1}$. This also generalizes Theorem A because if α, β commute then we get Theorem A as an immediate corollary.

We also consider here Brešar's problem of commutativity of α and β , in general, and provide (Proposition 2.3) a partial answer to this problem. We essentially show that if R is a unital ring with no nontrivial nilpotent elements and α, β are automorphisms of R satisfying the equation $(*)$ such that either α (or β) is inner, then α and β commute. Remark that similar to Proposition 2.1, this result also gives an algebraic generalization of a well-known result on the commutativity of α and β on C^* -algebras ([4]).

We now recall some preliminaries for the sake of completeness. Throughout R denotes an associative ring with unity 1. R is prime if $axb = 0$, for all $x \in R$, implies $a = 0$ or $b = 0$. For automorphisms α and β of R , an additive mapping α of R into itself is called an (α, β) -derivation if

$$d(xy) = \alpha(x)d(y) + d(x)\beta(y) \quad \text{for all } x, y \in R.$$

d is called an α -derivation if

$$d(xy) = \alpha(x)d(y) + d(x)y \quad \text{for all } x, y \in R.$$

Of course, derivations are $(1,1)$ -derivations where 1 is an identity automorphism of R .

We shall need the following generalization of Posner's result on composition of derivations (see Brešar [2, Corollary 1]).

THEOREM B. *Let R be a prime ring of characteristic not equal to 2, d be an (α, β) -derivation of R , and g be a (γ, δ) -derivation of R . Suppose that g commutes with both γ and δ . If the composition dg is an $(\alpha, \gamma, \beta\delta)$ -derivation, then either $d = 0$ or $g = 0$.*

The equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ has been extensively studied for von Neumann algebras and C^* -algebras during the last decade or so. For more information concerning this equation on von Neumann algebras and C^* -algebras, we refer to [3] which also contains further references.

2. Results

We first prove a generalization of Theorem A and a result of Awami and Thaheem [1].

PROPOSITION 2.1. *Let R be a prime ring of characteristic not equal to 2. Let α, β be automorphisms of R satisfying the equation*

$$\alpha + \beta^{-1}\alpha^{-1}\beta = \beta + \beta^{-1}.$$

Then either $\alpha = \beta$ or $\alpha = \beta^{-1}$.

P r o o f. Put $d = (\beta\alpha - 1)$ and $g = (\alpha^{-1}\beta - 1)$. Then it is easy to verify that d is a $(\beta\alpha, 1)$ -derivation and g is an $(\alpha^{-1}\beta, 1)$ -derivation. g commutes with $\alpha^{-1}\beta$ and

$$\begin{aligned} dg &= (\beta\alpha - 1)(\alpha^{-1}\beta - 1) = \beta\alpha\alpha^{-1}\beta - \beta\alpha - \alpha^{-1}\beta + 1 \\ &= \beta[\beta - \alpha - \beta^{-1}\alpha^{-1}\beta + \beta^{-1}] = 0. \end{aligned}$$

Thus dg is obviously a $(\beta\alpha\alpha^{-1}\beta, 1)$ -derivation, or in other words, dg is a $(\beta^2, 1)$ -derivation. By Theorem B, $d = 0$ or $g = 0$. This shows that either $\alpha = \beta$ or $\alpha = \beta^{-1}$. This completes the proof.

We now come to the problem of the commutativity of automorphisms which is also an algebraic generalization of a result of Thaheem [4] for C^* -algebras. We first prove the following.

LEMMA 2.2. *Let α be an automorphism of a 2-torsion free ring R with no nontrivial nilpotent elements and b be an element of R such that*

$$(i) \quad (\alpha + \alpha^{-1})(b) = 2b$$

and

$$(ii) \quad (\alpha + \alpha^{-1})(b^2) = 2b^2.$$

Then $\alpha(b) = b$.

P r o o f. By equation (ii), $(\alpha - 1)(b^2) + (\alpha^{-1} - 1)(b^2) = 0$. Since $(\alpha - 1)$ is an α -derivation and $(\alpha^{-1} - 1)$ is an α^{-1} -derivation, therefore we get

$$(iii) \quad \alpha(b)(\alpha - 1)(b) + (\alpha - 1)(b)b + \alpha^{-1}(b)(\alpha^{-1} - 1)(b) + (\alpha^{-1} - 1)(b)b = 0.$$

It follows from (i) and (iii) that

$$\alpha(b)(\alpha - 1)(b) + (\alpha - 1)(b)b + \alpha^{-1}(b)(1 - \alpha)(b) + (1 - \alpha)(b)b = 0.$$

That is,

$$\alpha(b)(\alpha - 1)(b) - \alpha^{-1}(b)(\alpha - 1)(b) = 0$$

or

$$(iv) \quad (\alpha(b) - \alpha^{-1}(b))(\alpha - 1)(b) = 0.$$

By equation (i), $\alpha^{-1}(b) = 2b - \alpha(b)$ and substituting in (iv), we get

$$(\alpha(b) - 2b + \alpha(b))(\alpha - 1)(b) = 0$$

or

$$2((\alpha - 1)(b))^2 = 0.$$

That R is 2-torsion free and R has no nontrivial nilpotent elements imply that $\alpha(b) = b$. This completes the proof.

PROPOSITION 2.3. *Let α, β be automorphisms of a 2-torsion free ring R with no nontrivial nilpotent elements such that*

$$\alpha(x) + \alpha^{-1}(x) = \beta(x) + \beta^{-1}(x) \quad \text{for all } x \in R.$$

If β (or α) is inner then α, β commute.

P r o o f. Assume that β is inner, induced by an element $b \in R$. Then $\beta(x) = bxb^{-1}$ for all $x \in R$. In particular for $x = b$ and b^2 , we have $\beta(b) = \beta^{-1}(b) = b$ and $\beta(b^2) = \beta^{-1}(b^2) = b^2$. Thus we have $\alpha(b) + \alpha^{-1}(b) = 2b$ and $\alpha(b^2) + \alpha^{-1}(b^2) = 2b^2$. By Lemma 2.2, $\alpha(b) = b$. Thus for all $x \in R$, we have

$$(\beta\alpha)(x) = \beta(\alpha(x)) = b\alpha(x)b^{-1} = \alpha(b)\alpha(x)\alpha(b^{-1}) = \alpha(bxb^{-1}) = (\alpha\beta)(x).$$

This proves that α, β commute.

We conclude the note with the following corollary which is an immediate consequence of Lemma 2.2.

COROLLARY 2.4. *Let α, β be automorphisms of a 2-torsion free ring R with no non-trivial nilpotent elements such that*

$$\alpha(x) + \alpha^{-1}(x) = \beta(x) + \beta^{-1}(x) \quad \text{for all } x \in R.$$

Then α and β have the same fixed points.

Acknowledgement. The authors gratefully acknowledge the support provided by King Fahd University of Petroleum and Minerals during this research.

References

- [1] M. Awami and A. B. Thaheem, *A short proof of a decomposition theorem of a von Neumann algebra*, Proc. Amer. Math. Soc., 92 (1984), 81–92.
- [2] M. Brešar, *On the composition of (α, β) -derivations of rings and applications to von Neumann algebras*, Acta Sci. Math., 56 (1992), 369–375.
- [3] A. B. Thaheem, *On certain decompositional properties of von Neumann algebras*, Glasgow Math. J., 29 (1987), 177–179.
- [4] A. B. Thaheem, *A functional equation on C^* -algebras*, Funkcial. Ekvac., 31 (1988), 411–413.

DEPARTMENT OF MATHEMATICAL SCIENCES
 KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 DHAHRAN 31261, SAUDI ARABIA
 (anw 1942)

Received September 26, 1995.