

Wojciech Bartoszek

MORE ON THE EQUATION $\nu * \rho * \mu = \rho$

Let G be an infinite (countable) group and e be its neutral element. By $P(G)$ we denote the convex set of all probability distributions on G . The convolution of two measures ν and μ is denoted by $\nu * \mu$. We recall

$$\nu * \mu(g) = \sum_{h \in G} \nu(gh^{-1})\mu(h) \quad \Big(= \sum_{h \in G} \nu(h)\mu(h^{-1}g) \Big).$$

It is well known that $P(G)$ with the binary operation $*$ is an associative semigroup. In this paper we shall deal with convolution equations on $(P(G), *)$. Namely, given $\nu, \mu \in P(G)$ we consider when

$$(\diamond) \quad \nu * \rho * \mu = \rho.$$

The case $\nu = \check{\mu}$ (where $\check{\mu}(g) = \mu(g^{-1})$) has been recently discussed in [1] and [2]. Here we study a nonsymmetric case. We show that (\diamond) has a solution $\rho \in P(G)$ if and only if ν and μ are concentrated on mutually inverse elements of the quotient group by a finite subgroup. Our notation and definitions follow [1] and [2]. For the completeness of the paper we briefly recall the most important ones.

The support $S(\mu)$ of the measure $\mu \in P(G)$ is the set

$$\{g \in G : \mu(g) > 0\}.$$

A measure $\mu \in P(G)$ is said to be adapted if the smallest subgroup $G(\mu)$ containing $S(\mu)$ coincides with G . If μ is adapted then the smallest normal subgroup H of G such that $S(\mu)$ is contained in a coset of H is denoted by $\mathfrak{h}(\mu)$. It has been proved in [3] that the quotient group $G/\mathfrak{h}(\mu)$ is finite or isomorphic to \mathbb{Z} . In particular, if $\mathfrak{h}(\mu)$ is finite then

$$G/\mathfrak{h}(\mu) = \{g^j \mathfrak{h}(\mu) : j \in \mathbb{Z}, \quad g \in S(\mu)\}.$$

1991 *Mathematics Subject Classification*: 22D40, 43A05, 47A35, 60B15, 60J15.

Key words and phrases: convolution, concentration function, strict aperiodicity.

I thank the Foundation for Research Development for financial support.

Measures μ , for which $\mathfrak{h}(\mu)$ are finite, are characterized in [1] and [2]. Namely, an adapted μ has finite $\mathfrak{h}(\mu)$ if and only if the equation $\dot{\mu} * \rho * \mu = \rho$ has a solution $\rho \in P(G)$, and only if the concentration function $\sup_{g \in G} \mu^{**n}(g)$ does not converge to 0.

It is convenient to look on a mapping $\tau \rightarrow \nu * \tau * \mu$ as a linear operator which is defined on $\ell^1(G)$. Therefore we introduce

$${}_\nu P_\mu f(g) = \sum_{x,y \in G} f(xgy)\nu(x)\mu(y).$$

We notice that ${}_\nu P_\mu$ is the composition ${}_\nu P \circ P_\mu$, where

$${}_\nu P f(g) = \sum_{x \in G} f(xg)\nu(x) \quad \text{and} \quad P_\mu f(g) = \sum_{y \in G} f(gy)\mu(y).$$

The operators ${}_\nu P$ and P_μ commute. It is easy to check that

$${}_\nu P_\mu^n = {}_{\nu^{**n}} P_{\mu^{**n}} \quad \text{and} \quad {}_\nu P_\mu^* = {}_\nu P_{\dot{\mu}},$$

where without any confusion $*$ will stand also for the adjoint operation. If ν and μ are probability measures then ${}_\nu P_\mu$ is a positive linear contraction on $\ell^1(G)$ as well as on $\ell^\infty(G)$. Clearly

$${}_\nu P_\mu \mathbf{1} = {}_\nu P_\mu^* \mathbf{1} = \mathbf{1}$$

where $\mathbf{1}$ denotes the identity function (in particular ${}_\nu P_\mu$ is doubly stochastic). This implies that ${}_\nu P_\mu$ are positive linear contractions on each $\ell^p(G)$ where $1 \leq p \leq \infty$. Given $x, y \in G$, ${}_x \Phi_y$ is the mapping

$$G \ni g \rightarrow {}_x \Phi_y(g) = xgy \in G.$$

A subset $F \subseteq G$ is said to be $[\nu, \mu]$ -invariant if

$${}_x \Phi_y(F) = F \quad \text{for all} \quad x \in S(\nu) \quad \text{and} \quad y \in S(\mu).$$

We note that F is $[\nu, \mu]$ -invariant if and only if it is invariant under actions of the group Φ of all bijections generated by the set

$$\{{}_x \Phi_y : x \in S(\nu), y \in S(\mu)\}.$$

Obviously the whole group G may be decomposed onto pairwise disjoint minimal $[\nu, \mu]$ -invariant sets. Moreover each minimal set F is of the form

$$F = \{\Phi(g) : \Phi \in \Phi\}$$

where $g \in F$ is arbitrary.

Given adapted $\nu, \mu \in P(G)$ by $\mathfrak{h}(\nu, \mu)$ we denote the smallest normal subgroup H of G such that $S(\nu)$ and $S(\mu)$ are contained in cosets of H .

Now we are in a position to formulate the main result of the paper.

THEOREM. *Let ν, μ be adapted probability measures on a countable group G . Then the following conditions are equivalent:*

(a) there exist a finite set $K \subseteq G$ and a sequence $g_n \in G$ so that for some $\varepsilon > 0$ we have

$$\mu^{*n}(g_n K) \geq \varepsilon \quad \text{and} \quad \check{\nu}^{*n}(g_n K) \geq \varepsilon,$$

(b) there exists a probability measure (with finite support) ρ so that

$$\nu * \rho * \mu = \rho,$$

(c) the subgroups $\mathfrak{h}(\nu, \mu)$, $\mathfrak{h}(\nu)$, $\mathfrak{h}(\mu)$ are finite and equal, and

$$S(\mu) \cup S(\check{\nu}) \subseteq g\mathfrak{h}(\mu)$$

where $g \in S(\mu)$ arbitrary.

Proof. (a) \Rightarrow (b). Let us consider ${}_v P_\mu$ to be a positive linear contraction on $\ell^2(G)$. By the von Neumann Mean Ergodic Theorem the Cesaro means $\frac{1}{N} \sum_{n=0}^{N-1} {}_v P_\mu^n$ are convergent in the strong operator topology to a projection onto the space of all ${}_v P_\mu$ -invariant functions. Let f be the characteristic function of the set $K^{-1}K$. Then for each N we have

$$\frac{1}{N} \sum_{n=0}^{N-1} {}_v P_\mu^n f(e) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{x,y} \mathbf{1}_{K^{-1}K}(xy) \nu^{*n}(x) \mu^{*n}(y) \geq \varepsilon^2.$$

This implies that there exists a nonzero ${}_v P_\mu$ -invariant function $f_* \in \ell^2(G)$ (nonnegative). Obviously it is also invariant for the adjoint operator. Hence

$${}_v P_\mu^* f_* = {}_v P_{\check{\mu}} f_* = f_*.$$

From the uniform convexity of $\ell^2(G)$ we get

$${}_{\delta_x} P_{\delta_y} f_* = f_*$$

for all pairs x, y satisfying

$$x \in S(\nu^{*n}), \quad y \in S(\mu^{*n}) \quad \text{or} \quad x \in S(\check{\nu}^{*n}) \quad \text{and} \quad y \in S(\check{\mu}^{*n}).$$

As a result $f_* \circ \Phi = f_*$ for any $\Phi \in \Phi$. Since $f_*(e) > 0$, thus the minimal set F containing e (denoted by F_e) must be finite. All the mappings ${}_x \Phi_y$ are 1-1, so we get

$${}_x \Phi_y(F_e) = F_e \quad \text{for all} \quad x \in S(\check{\nu}^{*n}) \quad \text{and} \quad y \in S(\check{\mu}^{*n}).$$

As a result the probabilities

$$\nu^{*n} * \mu^{*n} = \nu^{*n} * \delta_e * \mu^{*n}$$

are concentrated on F_e . The Cesaro means $\frac{1}{N} \sum_{n=0}^{N-1} \nu^{*n} * \mu^{*n}$ converge to the

probability measure

$$\rho = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \nu P_\mu^n \delta_e \quad (\text{with } S(\rho) \subseteq F_e),$$

where νP_μ is considered as an operator on $\ell^1(G)$. We notice that ρ is νP_μ -invariant, what is equivalent to

$$\nu * \rho * \mu = \rho.$$

(b) \Rightarrow (c)

Let F_{\max} denote the set (finite)

$$\{g : \rho(g) = \max_{\tilde{g} \in G} \rho(\tilde{g})\}.$$

Then for each $g \in F_{\max}$ we get

$$\rho(g) = \nu * \rho * \mu(g) = \sum_{x,y} \rho(x^{-1}gy^{-1})\nu(x)\mu(y),$$

which implies that F_{\max} is $[\nu, \mu]$ -invariant. In particular

$$S(\nu^{*n})F_{\max}S(\mu^{*n}) = F_{\max}.$$

From this we easily get

$$\lim_{n \rightarrow \infty} \#S(\nu^{*n}) \leq \#F_{\max} \quad \text{and} \quad \lim_{n \rightarrow \infty} \#S(\mu^{*n}) \leq \#F_{\max}.$$

Now by [1] (or [2]) both groups $\mathfrak{h}(\nu)$ and $\mathfrak{h}(\mu)$ are finite. Since

$$\mathfrak{h}(\nu) = S(\check{\nu}^{*n} * \nu^{*n}) \quad \text{and} \quad \mathfrak{h}(\mu) = S(\mu^{*n} * \check{\mu}^{*n})$$

for n large enough (see [2] for all details) we obtain

$$\begin{aligned} F_{\max} &= S(\check{\nu}^{*n})S(\nu^{*n})F_{\max}S(\mu^{*n})S(\check{\mu}^{*n}) \\ &= \mathfrak{h}(\nu)F_{\max}\mathfrak{h}(\mu). \end{aligned}$$

In particular F_{\max} is a finite union of cosets of $\mathfrak{h}(\nu)$ and $\mathfrak{h}(\mu)$, and $\tilde{h}F_{\max} = F_{\max}$ for any $\tilde{h} \in \mathfrak{h}(\nu)$.

Now we consider the quotient group $G/\mathfrak{h}(\mu)$, which is isomorphic to \mathbb{Z} (see [3]). For any $g \in S(\mu)$ we have

$$G = \bigcup_{j=-\infty}^{+\infty} g^j \mathfrak{h}(\mu).$$

Hence, for some integer $j_1 < j_2 < \dots < j_k$ we get

$$F_{\max} = g^{j_1} \mathfrak{h}(\mu) \cup \dots \cup g^{j_k} \mathfrak{h}(\mu).$$

Suppose $\mathfrak{h}(\nu) \not\subseteq \mathfrak{h}(\mu)$. Then $g^j h \in \mathfrak{h}(\nu)$ for some $j \neq 0$ and $h \in \mathfrak{h}(\mu)$. We get

$$g^j h \bigcup_{l=1}^k g^{j_l} \mathfrak{h}(\mu) = \bigcup_{l=1}^k g^{j+j_l} \mathfrak{h}(\mu) \neq \bigcup_{l=1}^k g^{j_l} \mathfrak{h}(\mu)$$

what contradicts the invariance of F_{\max} .

Similarly we may obtain $\mathfrak{h}(\mu) \subseteq \mathfrak{h}(\nu)$. Hence the subgroups $\mathfrak{h}(\mu)$ and $\mathfrak{h}(\nu)$ are equal. Obviously they coincide with $\mathfrak{h}(\nu, \mu)$. Let $g \in S(\mu)$ and $g_{-1} \in S(\nu)$. We have the representation

$$g_{-1} = g^j h \quad \text{where} \quad h \in \mathfrak{h}(\mu) \quad \text{and} \quad j \in \mathbb{Z}.$$

For suitable $h_n, \tilde{h}_n \in \mathfrak{h}(\mu)$ we have

$$\begin{aligned} F_{\max} &= g_{-1}^n F_{\max} g^n = g^{nj} h_n \left(\bigcup_{l=1}^k g^{j_l} \mathfrak{h}(\mu) \right) g^n = \\ &= \tilde{h}_n \bigcup_{l=1}^k g^{j_l} \mathfrak{h}(\mu) g^{n(j+1)} = F_{\max} g^{n(j+1)}. \end{aligned}$$

Since F_{\max} is a finite union of classes of $\mathfrak{h}(\mu)$ it is possible only if $j = -1$, and we finally get

$$S(\nu) \subseteq g^{-1} \mathfrak{h}(\mu).$$

(c) \Rightarrow (a)

We have $S(\nu^{*n}) \subseteq g^{-n} \mathfrak{h}(\mu)$ where $g \in S(\mu)$ arbitrary. Hence

$$\mu^{*n}(g^n \mathfrak{h}(\mu)) = \nu^{*n}(g^n \mathfrak{h}(\mu)) \equiv 1 \quad \text{for all } n,$$

and the proof of theorem is complete.

References

- [1] W. Bartoszek, *On concentration functions on discrete groups*, Ann. Probability 22 No 3 (1994), 1596–1599.
- [2] W. Bartoszek, *On the equation $\mu * \rho * \mu = \rho$* , Demonstratio Math. 28 (1995), 161–170.
- [3] Y. Derrenic and M. Lin, *Convergence of iterates of averages of certain operator representations and of convolution powers*, J. Funct. Analysis 85 (1989), 86–102.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH AFRICA

P.O. BOX 392, PRETORIA 0003, SOUTH AFRICA

E-mail: bartowk@risc5.unisa.ac.za

Received August 30, 1995.

