

Andrzej Mach

THE GENERAL SOLUTION OF THE EQUATION

$$\varphi(\varphi(\varphi(\alpha, x), y), z) = \varphi(\alpha, x \cdot \mu(y) \cdot z)$$

Let $n \geq 2$ be a natural number, Γ an arbitrary set and $(G, [\dots])$ denote an arbitrary n -adic group (see [5]). By a result of Hosszu [1], the n -group operation in G can be expressed by

$$[x_1, x_2, \dots, x_n] = x_1 \cdot \mu(x_2) \cdot \mu^2(x_3) \cdot \dots \cdot \mu^{n-1}(x_n) \cdot a,$$

where „ \cdot ” is a binary group operation on G and μ is an automorphism of (G, \cdot) ; $a \in G$, $\mu(a) = a$ and $\mu^{n-1}(x) = a \cdot x \cdot a^{-1}$ (μ^v denotes the v -th iteration). Therefore the translation equation on the n -group G

$$(1) \quad \varphi(\varphi(\varphi(\dots \varphi(\varphi(\alpha, x_1), x_2), \dots), x_{n-1}), x_n) = \varphi(\alpha, [x_1, x_2, \dots, x_n]),$$

has the equivalent form

$$(1') \quad \begin{aligned} \varphi(\varphi(\varphi(\dots \varphi(\varphi(\alpha, x_1), x_2), \dots), x_{n-1}), x_n) \\ = \varphi(\alpha, x_1 \cdot \mu(x_2) \cdot \mu^2(x_3) \cdot \dots \cdot \mu^{n-2}(x_{n-1}) \cdot a \cdot x_n). \end{aligned}$$

The characterization of all solutions of the equation (1') by the solutions of the translation equation

$$(2) \quad F(F(\alpha, x), y) = F(\alpha, x \cdot y)$$

is given in [2].

The paper [3] contains the construction of all solutions of the equation (1') under the additional suppositions: $a = e$, where e is the unit element of (G, \cdot) , and μ is the identity on G .

In this paper we solve the problem of solutions of the equation

$$(3) \quad \varphi(\varphi(\varphi(\alpha, x), y), z) = \varphi(\alpha, x \cdot \mu(y) \cdot z),$$

which is the special case of equation (1') for $n = 3$ and $a = e$. In this case $\mu^2(x) = x$ for every $x \in G$.

First we will present two theorems giving a characterization of solutions of the equation (3) by the solutions of the translation equation (2). The

above mentioned theorems are corollaries of results from the paper [2], but we will present them with proofs for a comfort of the readers.

Remark 1. If $\varphi : \Gamma \times G \rightarrow \Gamma$ is a solution of equation (3), then the function $f(\alpha) := \varphi(\alpha, e)$ satisfies equality

$$(4) \quad f^3 = f.$$

Indeed, by equation (3), we have $f^3(\alpha) = f(f(f(\alpha))) = \varphi(\varphi(\varphi(\alpha, e), e), e) = \varphi(\alpha, e) = f(\alpha)$.

Let us define $F : \Gamma \times G \rightarrow \Gamma$ as follows

$$(5) \quad F(\alpha, x) := \varphi[f(\alpha), \mu(x)].$$

THEOREM 1. If $\varphi : \Gamma \times G \rightarrow \Gamma$ is a solution of the equation (3) and $f(\alpha) := \varphi(\alpha, e)$, then the function $F : \Gamma \times G \rightarrow \Gamma$ defined by (5) is a solution of the translation equation (2) satisfying equalities

$$(6) \quad F(\alpha, e) = f^2(\alpha),$$

$$(7) \quad f(F(\alpha, x)) = F(f(\alpha), \mu(x)),$$

$$(8) \quad \varphi(\alpha, x) = f(F(\alpha, x)).$$

Proof. Since $F(\alpha, e) = \varphi(f(\alpha), e) = f^2(\alpha)$, then (6) holds. Moreover, by (3) and (5), we have

$$F(\alpha, x \cdot y) = \varphi[f(\alpha), \mu(x \cdot y)] \quad \text{and}$$

$$\begin{aligned} F(F(\alpha, x), y) &= F(\varphi[f(\alpha), \mu(x)], y) = \varphi[f(\varphi[f(\alpha), \mu(x)]), \mu(y)] \\ &= \varphi[f(\alpha), \mu(x) \cdot \mu(y)] \end{aligned}$$

which means that F satisfies (2). Further, we have

$$\begin{aligned} F(f(\alpha), \mu(x)) &= \varphi[f^2(\alpha), \mu^2(x)] = \varphi[f^2(\alpha), x] \\ &= \varphi(\varphi(\varphi(\alpha, e), e), x) = \varphi(\alpha, x), \end{aligned}$$

$$\begin{aligned} f(F(\alpha, x)) &= f(\varphi[f(\alpha), \mu(x)]) = \varphi(\varphi(\varphi(\alpha, e), \mu(x)), e) \\ &= \varphi(\alpha, \mu^2(x)) = \varphi(\alpha, x), \end{aligned}$$

i.e., (8) and (7) hold.

THEOREM 2. If $f \in \Gamma^\Gamma$, $f^3 = f$ and $F : \Gamma \times G \rightarrow \Gamma$ is a solution of the translation equation (2) fulfilling conditions (6), (7), then the function $\varphi : \Gamma \times G \rightarrow \Gamma$ defined by $\varphi(\alpha, x) := f(F(\alpha, x))$ is a solution of equation (3) such that $\varphi(\alpha, e) = f(\alpha)$.

Proof. By (2), (7), (4), (6), we have

$$\varphi(\alpha, x \cdot \mu(y) \cdot z) = f[F(\alpha, x \cdot \mu(y) \cdot z)] = F(f(\alpha), \mu(x) \cdot y \cdot \mu(z)),$$

$$\varphi(\varphi(\varphi(\alpha, x), y), z) = f[F(f[F(f(F(\alpha, x)], y)], z)]$$

$$\begin{aligned}
 &= F(f^2[F(f[F(\alpha, x)], y)], \mu(z)) = F(F(f[F(\alpha, x)], y), \mu(z)) \\
 &= F(F(f(\alpha), \mu(x)), y), \mu(z)) = F(f(\alpha), \mu(x) \cdot y \cdot \mu(z)),
 \end{aligned}$$

then φ satisfies (3). Moreover, on account of condition (6), we get $\varphi(\alpha, e) = f[F(\alpha, e)] = f^3(\alpha) = f(\alpha)$. The proof of Theorem 2 is finished.

COROLLARY 1. *In order to characterize all solutions of equation (3), it is necessary and sufficient to describe all solutions of the translation equation (2) satisfying conditions (6) and (7).*

First, let us remember that the general solution of the translation equation (2) has been given in [6] by the following construction.

CONSTRUCTION C₁. 1° The function $q : \Gamma \rightarrow \Gamma$ is such that $q \circ q = q$.

2° $q(\Gamma) = \bigcup_{k \in K} \Gamma_k$ is a disjoint union of non-empty sets (transitive fibres) such that for every $k \in K$ there exists a subgroup $G_k \leq G$ and a bijection $g_k : G/G_k \rightarrow \Gamma_k$, where G/G_k is the set of right cosets of the group G with respect to subgroup G_k .

3° Then $F(\alpha, x) = g_k(g_k^{-1}(q(\alpha)) \cdot x)$, when $q(\alpha) \in \Gamma_k$.

The function $f : \Gamma \rightarrow \Gamma$ satisfying equality (4) is fixed in the sequel. Let (G, \cdot) be a binary group and μ be an automorphism of (G, \cdot) such that $\mu^2(x) = x$ for $x \in G$, and $F : \Gamma \times G \rightarrow \Gamma$ be a solution of the translation equation (2) fulfilling conditions (6) and (7).

Remark 2. It is clear, by virtue of (4), that the equality $f^2(\Gamma) = f(\Gamma)$ holds true.

According to the point 2° of Construction C₁, we denote by $\{\Gamma_k\}_{k \in K}$ the family of fibres of the solution F .

LEMMA 1. *For every fibre Γ_k only one of the following equalities is fulfilled:*

$$(9) \quad f(\Gamma_k) = \Gamma_k$$

or

$$(10) \quad \exists_{l \in K} : l \neq k \text{ and } f(\Gamma_k) = \Gamma_l.$$

Proof. Let us choose $\alpha_0 \in \Gamma_k$ and let us consider two undermentioned possibilities:

$$(a) \quad f(\alpha_0) \in \Gamma_k, \quad (b) \quad f(\alpha_0) \in \Gamma_l \text{ and } l \neq k.$$

Ad (a). We will prove (9). Let $\alpha \in \Gamma_k$. Hence $F(\alpha_0, x) = \alpha$ for certain $x \in G$. By (7), we have $F(f(\alpha_0), \mu(x)) = f(F(\alpha_0, x)) = f(\alpha)$ and, by supposition (a), we get $f(\alpha) \in \Gamma_k$. Therefore, $f(\Gamma_k) \subseteq \Gamma_k$. Since $\forall_{\alpha \in \Gamma_k} f^2(\alpha) = F(\alpha, e) = \alpha$, then $\Gamma_k = f^2(\Gamma_k) = f(f(\Gamma_k)) \subset f(\Gamma_k) \subset \Gamma_k$, whence $f(\Gamma_k) = \Gamma_k$.

Ad (b). We will prove (10). For every $\alpha \in \Gamma_k$ there exists $x \in G$ such that $F(\alpha_0, x) = \alpha$, hence $F(f(\alpha_0), \mu(x)) = f(F(\alpha_0, x)) = f(\alpha)$, whence, by

(b), $f(\alpha) \in \Gamma_l$. Then $f(\Gamma_k) \subseteq \Gamma_l$. Using the equality $f(f(\alpha_0)) = \alpha_0$, we get easily the converse inclusion.

Let us define $A_f : \{\alpha \in \Gamma : f(\alpha) = f^2(\alpha)\}$, $B_f := \Gamma \setminus A_f = \{\alpha \in \Gamma : f(\alpha) \neq f^2(\alpha)\}$.

Remark 3. It is evident that, if a fibre Γ_k satisfies (10), then $\Gamma_k \subseteq B_f$.

Let us denote

$$E_\alpha(\beta) := \{x \in G : F(\alpha, x) = \beta\}, \alpha, \beta \in \Gamma, \text{ and } G_\alpha := E_\alpha(\alpha).$$

LEMMA 2. *For every $\alpha \in f^2(\Gamma)$ the set G_α is a subgroup of the group G and the equalities*

$$(11) \quad \mu(G_\alpha) = G_{f(\alpha)},$$

$$(12) \quad E_{f(\alpha)}(\alpha) = \mu[E_\alpha(f(\alpha))] = \mu(G_\alpha) \cdot \mu(x_0), \text{ if } x_0 \in E_\alpha(f(\alpha)),$$

hold.

Proof. Since $\alpha \in f^2(\Gamma)$, then $\alpha = f^2(\beta)$ for certain $\beta \in \Gamma$. Therefore,

$$F(\alpha, e) = F(f^2(\beta), e) = F(F(\beta, e), e) = F(\beta, e) = f^2(\beta) = \alpha.$$

By the general construction of solutions of the translation equation in [6], we have that G_α is a subgroup of group G . The equality (11) can be verified as follows:

$$\begin{aligned} x \in G_\alpha \Rightarrow F(\alpha, x) = \alpha \Rightarrow F(f(\alpha), \mu(x)) &= f(F(\alpha, x)) = f(\alpha) \\ &\Rightarrow \mu(x) \in G_{f(\alpha)}, \end{aligned}$$

$$\begin{aligned} x \in G_{f(\alpha)} \Rightarrow F(f(\alpha), x) = f(\alpha) \Rightarrow f[F(\alpha, \mu(x))] &= f(\alpha) \\ &\Rightarrow f^2[F(\alpha, \mu(x))] = f^2(\alpha) \Rightarrow F(\alpha, \mu(x)) = \alpha \Rightarrow \mu(x) \in G_\alpha. \end{aligned}$$

We will prove (12). Let $x \in E_{f(\alpha)}(\alpha)$. We have

$$\begin{aligned} F(f(\alpha), x) = \alpha \Rightarrow f[F(\alpha, \mu(x))] &= \alpha \Rightarrow f^2[F(\alpha, \mu(x))] = f(\alpha) \\ &\Rightarrow F(\alpha, \mu(x)) = f(\alpha), \end{aligned}$$

then $\mu(x) \in E_\alpha(f(\alpha))$ and, since $x = \mu(\mu(x))$, then from the above we get $x \in \mu[E_\alpha(f(\alpha))]$. Hence the inclusion $E_{f(\alpha)}(\alpha) \subseteq \mu[E_\alpha(f(\alpha))]$. Similarly $\mu[E_\alpha(f(\alpha))] \subseteq E_{f(\alpha)}(\alpha)$.

By construction of solutions of the translation equation in [6], there results that $E_\alpha(f(\alpha)) = G_\alpha \cdot x_0$, where $x_0 \in E_\alpha(f(\alpha))$. Therefore $E_{f(\alpha)}(\alpha) = \mu[E_\alpha(f(\alpha))] = \mu(G_\alpha) \cdot \mu(x_0)$ and the proof of Lemma 2 is finished.

COROLLARY 2. *In virtue of Lemma 2 and by general construction of solutions of the translation equation, we get*

$$(13) \quad x_0 \cdot \mu(G_\alpha) = G_\alpha \cdot \mu(x_0^{-1})$$

for $\alpha \in f^2(\Gamma)$ and $x_0 \in E_\alpha(f(\alpha))$.

Let us remark yet that for every $W = G_\alpha \cdot a \in G/G_\alpha$ we have

$$x_0 \cdot \mu(W) = x_0 \cdot \mu(G_\alpha) \cdot \mu(a) = G_\alpha \cdot \mu(x_0^{-1} \cdot a) \in G/G_\alpha.$$

Remark 4. If the fibre Γ_k satisfies (9) and $\alpha \in \Gamma_k$, then the function $h_\alpha : G/G_\alpha \rightarrow \Gamma_k$ defined by $h_\alpha(W) := F(\alpha, W)$ satisfies $h_\alpha(x_0 \cdot \mu(W)) = f(h_\alpha(W))$, for every $W \in G/G_\alpha$, where x_0 is a fixed element of the set $E_\alpha(f(\alpha))$.

Proof. For arbitrary $W \in G/G_\alpha$ we have

$$\begin{aligned} h_\alpha(x_0 \cdot \mu(W)) &= F(\alpha, x_0 \cdot \mu(W)) = F(F(\alpha, x_0), \mu(W)) = F(f(\alpha), \mu(W)) \\ &= f(F(\alpha, W)) = f(h_\alpha(W)). \end{aligned}$$

COROLLARY 3. If Γ_k satisfies (9), $\alpha \in \Gamma_k$, $x_0 \in E_\alpha(f(\alpha))$ and $h_\alpha(W) = \beta \in \Gamma_k \cap A_f$ (respectively $h_\alpha(W) = \beta \in \Gamma_k \cap B_f$), then $x_0 \cdot \mu(W) = W$ (respectively $x_0 \cdot \mu(W) \neq W$).

Remark 5. If the fibre Γ_k satisfies (10), $\alpha \in \Gamma_k$, $f(\alpha) \in \Gamma_l$, the functions $h_\alpha : G/G_\alpha \rightarrow \Gamma_k$, $h_{f(\alpha)} : G/\mu(G_\alpha) \rightarrow \Gamma_l$ are defined by $h_\alpha(W) := F(\alpha, W)$ and $h_{f(\alpha)}(W) := F(f(\alpha), W)$, respectively, then $h_{f(\alpha)}(\mu(W)) = f(h_\alpha(W))$ for every $W \in G/G_\alpha$. Indeed, $h_{f(\alpha)}(\mu(W)) = F(f(\alpha), \mu(W)) = f(F(\alpha, W)) = f(h_\alpha(W))$.

DEFINITION. The solution $F : \Gamma \times G \rightarrow \Gamma$ of the translation equation (2) satisfying (6), (7) is called *f*-compatible (respectively not *f*-compatible), if all its fibres satisfy condition (9) (respectively (10)).

First we will describe solutions which are not *f*-compatible.

THEOREM 3. Let (G, \cdot, e) be a group, μ an automorphism of G such that $\mu^2 = id_G$ (identity), Γ an arbitrary non-empty set and a function $f \in \Gamma^\Gamma$ satisfy equalities: $f^3 = f$, $A_f = \emptyset$. All not *f*-compatible solutions $F : \Gamma \times G \rightarrow \Gamma$ of the translation equation (2) satisfying (6), (7) and only such we obtain by construction presented below.

CONSTRUCTION C₂. 1° Let us denote $B_f^\circ := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\}$ and let us decompose the set B_f° in a disjoint union $\bigcup_{t \in T} \Gamma_t^\circ$ of non-empty sets such that $\forall_{t \in T} \exists_{G_t \leq G} \text{card } \Gamma_t^\circ = \text{card } G/G_t$.

2° For $t \in T$ let us take a selection Γ_t of the set Γ_t° and define $\bar{\Gamma}_t := f(\Gamma_t)$. (By (4), $\bar{\Gamma}_t$ is a selection of Γ_t° and $\Gamma_t \cap \bar{\Gamma}_t = \emptyset$, by $A_f = \emptyset$).

3° For every $t \in T$ let us take a bijection $g_t : G/G_t \rightarrow \Gamma_t$, put $\bar{G}_t := \mu(G_t)$ and define the bijection $\bar{g}_t : G/\bar{G}_t \rightarrow \bar{\Gamma}_t$ as follows

$$(14) \quad \bar{g}_t(\mu(W)) := f(g_t(W)).$$

4° The family of sets $\{\Gamma_t\}_{t \in T} \cup \{\bar{\Gamma}_t\}_{t \in T}$ we denote by $\{\Gamma_k\}_{k \in K}$. The family of subgroups $\{G_t\}_{t \in T} \cup \{\bar{G}_t\}_{t \in T}$ we denote respectively by $\{G_k\}_{k \in K}$. The family of bijection $\{g_t\} \cup \{\bar{g}_t\}_{t \in T}$ we denote by $\{g_k\}_{k \in K}$ respectively.

5° We put $F(\alpha, x) := g_k[g_k^{-1}(f^2(\alpha)) \cdot x]$, when $f^2(\alpha) \in \Gamma_k$.

Proof. It is evident that the function $F : \Gamma \times G \rightarrow \Gamma$ obtained by construction C₂ is a solution of the translation equation not f -compatible satisfying condition (6). We will verify the condition (7) only. Let $\alpha \in \Gamma, x \in G, f^2(\alpha) \in \Gamma_k, f(\alpha) \in \Gamma_l$. There exists $t \in T$ such that $\Gamma_k = \Gamma_t$ and $\Gamma_l = \bar{\Gamma}_t$. We have

$$\begin{aligned} f(F(\alpha, x)) &= f[g_k(g_k^{-1}(f^2(\alpha)) \cdot x)] = f[g_t(g_t^{-1}(f^2(\alpha)) \cdot x)], \\ F(f(\alpha), \mu(x)) &= g_l[g_l^{-1}(f(\alpha)) \cdot \mu(x)] = \bar{g}_t[\bar{g}_t^{-1}(f(\alpha)) \cdot \mu(x)]. \end{aligned}$$

If $W \in G/G_t$ and $g_t(W) = f^2(\alpha)$, then, by (14), $\bar{g}_t(\mu(W)) = f(\alpha)$. From the above $f(F(\alpha, x)) = f(g_t(W \cdot x))$ and $F(f(\alpha), \mu(x)) = \bar{g}_t(\mu(W \cdot x))$, hence, by (14), we get $f(F(\alpha, x)) = F(f(\alpha), \mu(x))$. This ends the first part of the proof.

Let us suppose now that $f^3 = f, A_f = \emptyset$ and $F : \Gamma \times G \rightarrow \Gamma$ is not f -compatible solution of the translation equation (2) fulfilling conditions (6), (7), where μ is an automorphism of G such that $\mu^2 = id_G$. By construction C₁, we have: the family $\{\Gamma_k\}_{k \in K}$ of fibres such that $f^2(\Gamma_k) = \bigcup_{k \in K} \Gamma_k$, the family $\{G_k\}_{k \in K}$ of subgroups of G such that $card\Gamma_k = cardG/G_k$ and the family $\{g_k\}_{k \in K}$ of bijections $g_k : G/G_k \rightarrow \Gamma_k$. Let $\{\Gamma_t\}_{t \in T}$ denote the selection of the set $\{\{\Gamma_k, f(\Gamma_k)\} : k \in K\}$ and $\{g_t\}_{t \in T}$ the family of bijections adequate to $\{\Gamma_t\}_{t \in T}$. For every $t \in T$ we put $\bar{\Gamma}_t := f(\Gamma_t), \bar{G}_t := \mu(G_t), \bar{g}_t(\mu(W)) := f(g_t(W))$ for $W \in G/\bar{G}_t, \Gamma_t^\circ := \{\{f(\alpha), \alpha\} : \alpha \in \Gamma_t\}, B_f^\circ := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\}$.

For arbitrary $t \in T$ and arbitrary $W \in G/G_t$ we have $g_t(W) = F(\alpha_t, W) = h_{\alpha_t}(W)$, where $\alpha_t := g_t(\Gamma_t)$, and, by Remark 5, $\bar{g}_t(W) = f(g_t(W)) = f(h_{\alpha_t}(W)) = h_{f(\alpha_t)}(\mu(W)) = F(f(\alpha_t), \mu(W))$.

By virtue of the proof of Theorem 1 in [6], the proof of Theorem 3 is finished.

We will describe now solutions which are f -compatible. First, let us define $G/G_k^{\mu, x_k} := \{W \in G/G_k : x_k \cdot \mu(W) = W\}$, if G_k is the subgroup of group $G, x_k \in G$ and $x_k \cdot \mu(G_k) = G_k \cdot \mu(x_k^{-1})$.

THEOREM 4. *Let (G, \cdot, e) be a group, μ an automorphism of G such that $\mu^2 = id_G, \Gamma$ an arbitrary non-empty set and let a function f satisfy equality: $f^3 = f$. All f -compatible solutions of the translation equation (2) satisfying (6), (7) and only such we obtain by construction presented below.*

CONSTRUCTION C₃. 1° Let us denote $B_f^\circ := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\}$. We decompose $B_f^\circ = \bigcup_{k \in K} \Gamma_k^0$ into a disjoint union of non-empty sets such

that

$$\begin{aligned} \forall_{k \in K} \exists_{G_k \leq G} \exists_{x_k \in G} x_k \cdot \mu(G_k) &= G_k \cdot \mu(x_k^{-1}), \\ \text{card}(\Gamma_k^o \cap \{\{f(\alpha)\} : \alpha \in A_f\}) &= \text{card}(G/G_k^{\mu, x_k}), \\ 2\text{card}(\Gamma_k^o \cap \{\{f(\alpha), f^2(\alpha)\} : \alpha \in B_f\}) &= \text{card}(G/G_k \setminus G/G_k^{\mu, x_k}). \end{aligned}$$

2° For every k from K we denote by Γ_k^1 a selection of the set Γ_k^o and by S_k a selection of the set $\{\{W, x_k \cdot \mu(W)\} : W \in G/G_k\}$.

3° Let us put $\Gamma_k := \Gamma_k^1 \cup f(\Gamma_k^1)$ and define the bijection $g_k : G/G_k \rightarrow \Gamma_k$ by the formula

$$(15) \quad g_k(W) := \begin{cases} g_k^*(W) : W \in S_k, \\ f(g_k^*(x_k \cdot \mu(W))) : W \notin S_k, \end{cases}$$

where $g_k^* : S_k \rightarrow \Gamma_k^1$ is an arbitrary bijection satisfying conditions

$$(16) \quad W \in G/G_k^{\mu, x_k} \Rightarrow g_k^*(W) \in \Gamma_k^1 \cap A_f,$$

$$(17) \quad W \in G/G_k \setminus G/G_k^{\mu, x_k} \Rightarrow g_k^*(W) \in \Gamma_k^1 \cap B_f.$$

4° The function $F : \Gamma \times G \rightarrow \Gamma$ is defined by equality

$$(18) \quad F(\alpha, x) := g_k(g_k^{-1}(f^2(\alpha)) \cdot x), \text{ when } f^2(\alpha) \in \Gamma_k.$$

Proof. By (4) and by Construction C₁, it results that the function $F : \Gamma \times G \rightarrow \Gamma$ obtained by Construction C₃ is a solution of the translation equation (2) satisfying condition (6). Since $f(\Gamma_k) = f(\Gamma_k^1) \cup f^2(\Gamma_k^1) = f(\Gamma_k^1) \cup \Gamma_k^1 = \Gamma_k$, $k \in K$, the function F is f -compatible. We will prove the condition (7) only. Let $\alpha \in \Gamma$, $x \in G$, $f(\alpha), f^2(\alpha) \in \Gamma_k$. We have $F(f(\alpha), \mu(x)) = g_k(g_k^{-1}(f^3(\alpha)) \cdot \mu(x)) = g_k(g_k^{-1}(f(\alpha)) \cdot \mu(x))$ and $f(F(\alpha, x)) = f[g_k(g_k^{-1}(f^2(\alpha)) \cdot x)]$.

Let us consider two cases: (a) $\alpha \in A_f$, (b) $\alpha \in B_f$.

Ad (a). In this case $f(\alpha) = f^2(\alpha)$ and $g_k(W) = f(\alpha)$ for $W \in G/G_k^{\mu, x_k}$. Therefore we have $F(f(\alpha), \mu(x)) = g_k(W \cdot \mu(x))$ and $f(F(\alpha, x)) = f[g_k(W \cdot x)]$. From the above we state:

(i) if $W \cdot \mu(x) \in S_k$ and $x_k \cdot \mu(W \cdot \mu(x)) = x_k \cdot \mu(W) \cdot x = W \cdot x \in S_k$, then, by definition of S_k , $W \cdot x = W \cdot \mu(x)$ and $g_k^*(W \cdot x) \in A_f$, hence, by (15), $F(f(\alpha), \mu(x)) = g_k(W \cdot \mu(x)) = g_k^*(W \cdot \mu(x)) = g_k^*(W \cdot x)$ and $f(F(\alpha, x)) = f[g_k(W \cdot x)] = f[g_k^*(W \cdot x)] = f^2[g_k^*(W \cdot x)] = g_k^*(W \cdot x)$.

(ii) if $W \cdot \mu(x) \in S_k$ and $x_k \cdot \mu(W \cdot \mu(x)) = W \cdot x \notin S_k$, then, by (15), $F(f(\alpha), \mu(x)) = g_k^*(W \cdot \mu(x)) \in B_f$ and $f(F(\alpha, x)) = f[g_k(W \cdot x)] = f^2[g_k^*(W \cdot \mu(x))] = g_k^*[W \cdot \mu(x)]$.

In the case $W \cdot \mu(x) \notin S_k$ the reasoning is similar.

Ad (b). We have $f(\alpha) \neq f^2(\alpha)$, $g_k(W) = f(\alpha)$ and $g_k(x_k \cdot \mu(W)) = f^2(\alpha)$ for $W \notin G/G_k^{\mu, x_k}$. By (18), we get $F(f(\alpha), \mu(x)) = g_k(W \cdot \mu(x))$ and $f(F(\alpha, x)) = f[g_k(x_k \cdot \mu(W) \cdot x)]$.

If (i) holds, i.e., $W \cdot \mu(x) \in S_k$ and $x_k \cdot \mu(W) \cdot x \in S_k$, then, by definition of S_k and by (15), we get $W \cdot \mu(x) = x_k \cdot \mu(W) \cdot x$ and $g_k(W \cdot \mu(x)) = g_k^*(W \cdot \mu(x)) \in A_f$, therefore $F(f(\alpha), \mu(x)) = g_k^*(W \cdot \mu(x))$ and $f(F(\alpha, x)) = f[g_k^*(W \cdot \mu(x))] = f^2[g_k^*(W \cdot \mu(x))] = g_k^*(W \cdot \mu(x))$.

If (ii) holds, i.e., $W \cdot \mu(x) \in S_k$ and $x_k \cdot \mu(W) \cdot x \notin S_k$, then, by (15) and by definition of x_k , we get $F(f(\alpha), \mu(x)) = g_k^*(W \cdot \mu(x)) \in B_f$ and $f(F(\alpha, x)) = f[g_k(x_k \cdot \mu(W) \cdot x)] = f^2[g_k^*(x_k \cdot \mu(x_k) \cdot W \cdot \mu(x))] = f^2[g_k^*(W \cdot \mu(x))] = g_k^*(W \cdot \mu(x))$.

In the case $W \cdot \mu(x) \notin S_k$ the reasoning is similar. This ends first part of the proof of Theorem 4.

Let us assume now that $F : \Gamma \times G \rightarrow \Gamma$ is a solution of the translation equation (2) fulfilling conditions (6), (7) and f -compatible. By Construction C₁, we have the following parameters: the family $\{\Gamma_k\}_{k \in K}$ of fibres such that $f^2(\Gamma) = \bigcup_{k \in K} \Gamma_k$, the family of subgroups $\{G_k\}_{k \in K}$ and the family of bijection $g_k : G/G_k \rightarrow \Gamma_k$ for which the equality (18) is satisfied. Let $\alpha_k := g_k(G_k)$ for $k \in K$. Evidently $\bigvee_{k \in K} G_{\alpha_k} = G_k$. Let us choose an arbitrary element x_k of the set $E_{\alpha_k}(f(\alpha_k))$. By Corollary 2, we have $x_k \cdot \mu(G_k) = G_k \cdot \mu(x_k^{-1})$.

Define $B_f^0 := \bigcup_{k \in K} \Gamma_k^0$, where $\Gamma_k^0 := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma_k\}$. By Corollary 3, we have $\text{card}(\Gamma_k^0 \cap \{\{f(\alpha), f^2(\alpha)\} : \alpha \in A_f\}) = \text{card}(G/G_k^{\mu, x_k})$ and $2\text{card}(\Gamma_k^0 \cap \{\{f(\alpha), f^2(\alpha)\} : \alpha \in B_f\}) = \text{card}(G/G_k \setminus G/G_k^{\mu, x_k})$. Therefore the point 1° of construction C₃ is fulfilled. Let S_k be a selection of the set $\{\{W, x_k \cdot \mu(W)\} : W \in G/G_k\}$ such that $G_k \in S_k$. We define g_k^* as follows $g_k^*(W) := F(\alpha_k, W)$ for $W \in S_k$. By Corollary 3, the conditions (16), (17) are true. Let $\Gamma_k^1 := \{g_k^*(W) : W \in S_k\}$. By Remark 4, the condition (15) is fulfilled, because $g_k(W) = F(\alpha_k, W) = h_{\alpha_k}(W)$, $W \in G/G_k$. The proof of Theorem 4 is finished.

THEOREM 5. *Let (G, \cdot, e) be a group, Γ an arbitrary non-empty set and let the function $f \in \Gamma^\Gamma$ satisfy equality $f^3 = f$. All solutions $F : \Gamma \times G \rightarrow \Gamma$ of the translation equation (2) satisfying (6), (7) and only such can be obtained by the following construction.*

CONSTRUCTION C₄. 1° Let $A_f := \{\alpha \in \Gamma : f(\alpha) = f^2(\alpha)\}$ and $B_f := \Gamma \setminus A_f$. We decompose the set $\{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\} = E_1 \cup E_2$ into a disjoint union of sets E_1, E_2 such that $E_1 \subseteq \{\{f(\alpha), f^2(\alpha)\} : \alpha \in B_f\}$. Let $R_i := \{\alpha \in \Gamma : \{f(\alpha), f^2(\alpha)\} \in E_i\}$, $i = 1, 2$.

2° Let $F_1 : R_1 \times G \rightarrow R_1$ be a not f -compatible solution of the translation equation (2) satisfying (6), (7). This means that F_1 is obtained by construction C₂.

3° Let $F_2 : R_2 \times G \rightarrow R_2$ be a f -compatible solution of the translation equation (2) satisfying conditions (6), (7). This means that F_2 is obtained by construction C_3 .

4° We put $F := F_1 \cup F_2$.

Proof. It is evident that F obtained by construction C_3 is a solution of (2) fulfilling (6), (7). Assume that $F : \Gamma \times G \rightarrow \Gamma$ is a solution of (2) satisfying (6), (7). By Lemma 1, all fibres of F satisfy (9) or (10). Let us define

$$E_1 := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in B_f \text{ and } \exists_{k,l \in K, k \neq l} f(\alpha) \in \Gamma_k \text{ and } f^2(\alpha) \in \Gamma_l\},$$

$$E_2 := \{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\} \setminus E_1,$$

and

$$R_i := \{\alpha \in \Gamma : \{f(\alpha), f^2(\alpha)\} \in E_i\}, \quad F_i := F|_{R_i \times G}, \quad i = 1, 2.$$

It is visible that $F = F_1 \cup F_2$, where A_f, R_1, R_2, F_1, F_2 are such as in Construction C_4 .

EXAMPLE 1. Let $\Gamma := R, G := \langle R, +, 0 \rangle$ and $f : \Gamma \rightarrow \Gamma$ be defined by $f(\alpha) := -\alpha$. Let $\mu \in \text{Aut}G$ defined by equality $\mu(x) := -x$. Evidently $f^3 = f$ and $\mu^2 = \text{id}_G$. Let $F : \Gamma \times G \rightarrow \Gamma$ be defined by the formula $F(\alpha, x) := \alpha + x$. Then F is a solution of the translation equation (2) satisfying equalities $F(\alpha, 0) = \alpha = f^2(\alpha), F(f(\alpha), \mu(x)) = F(-\alpha, -x) = -\alpha - x = -(\alpha + x) = f(F(\alpha, x))$.

The function $\varphi(\alpha, x) := f(F(\alpha, x)) = -\alpha - x$ is a solution of the equation

$$\varphi(\alpha, x - y + z) = \varphi(\varphi(\varphi(\alpha, x), y), z).$$

Indeed, we have $\varphi(\alpha, x - y + z) = -\alpha - x + y - z$ and $\varphi(\varphi(\varphi(\alpha, x), y), z) = \varphi(\varphi(-\alpha - x, y), z) = \varphi(\alpha + x - y, z) = -\alpha - x + y - z$.

EXAMPLE 2. Let $\Gamma := \{\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1, \gamma_2, \gamma_3\}$, and let $G := \{\{0, 1, 2, 3\}, +_4, 0\}$ be the group of residues modulo 4. Let $f : \Gamma \rightarrow \Gamma$ be defined as follows:

$$f(\alpha_0) = \alpha_0, f(\alpha_1) = \alpha_1, f(\beta_0) = \beta_1, f(\beta_1) = \beta_0,$$

$$f(\gamma_0) = \gamma_1, f(\gamma_1) = \gamma_0, f(\gamma_2) = \gamma_3, f(\gamma_3) = \gamma_2.$$

Evidently $f^3 = f$ and $A_f = \{\alpha_0, \alpha_1\}$. We define also $\mu \in \text{Aut}G$ as follows: $\mu(x) := x$ for $x \in \{0, 2\}$, $\mu(x) := x +_4 2$ for $x \in \{1, 3\}$. Evidently $\mu^2 = \text{id}_G$. According to the Construction C_4 , we decompose the set $\{\{f(\alpha), f^2(\alpha)\} : \alpha \in \Gamma\} = E_1 \cup E_2$ into a disjoint union of sets: $E_1 := \{\{\gamma_0, \gamma_1\}, \{\gamma_2, \gamma_3\}\}$, $E_2 := \{\{\alpha_0\}, \{\alpha_1\}, \{\beta_0, \beta_1\}\}$. Therefore $R_1 = \{\gamma_0, \gamma_1, \gamma_2, \gamma_3\}, R_2 = \{\alpha_0, \alpha_1, \beta_0, \beta_1\}$.

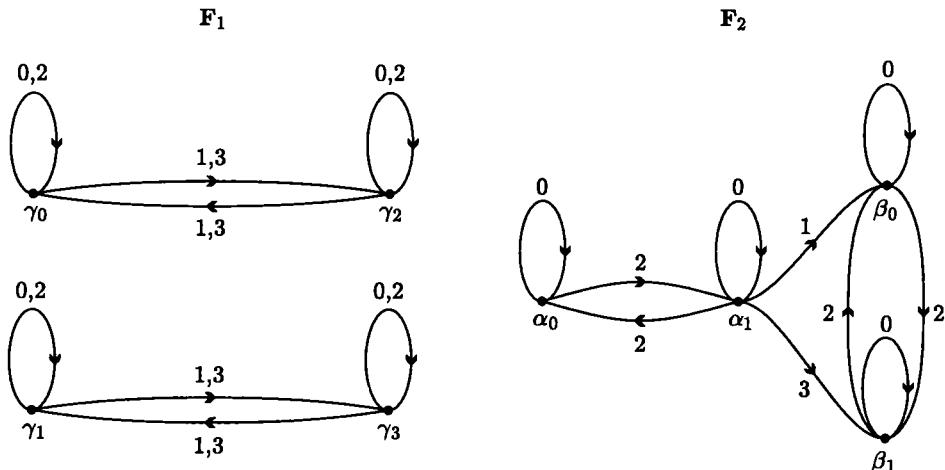
We define first, according to Construction C_2 , a solution not f -compatible, namely $F_1 : R_1 \times G \rightarrow R_1$. Let $\Gamma_1^0 := B_f^0 = \{\{\gamma_0, \gamma_1\}, \{\gamma_2, \gamma_3\}\}, G_1 :=$

$\{0, 2\}$. Then $\text{card } \Gamma_1^0 = \text{card } G/G_1 = 2$. Therefore, the point 1° is satisfied. In accordance with the point 2° of the Construction C_2 , we take the selection $\Gamma_1 := \{\gamma_0, \gamma_2\}$ of Γ_1^0 and put $\bar{\Gamma}_1 := f(\Gamma_1) = \{\gamma_1, \gamma_3\}$. As in the point 3° we take the bijection $g_1 : G/G_1 \rightarrow \Gamma_1$ defined by equalities $g_1(\{0, 2\}) := \gamma_0, g_1(\{1, 3\}) := \gamma_2$. Let $\bar{G}_1 := \mu(G_1) = G_1$ and put $\bar{g}_1 : G/G_1 \rightarrow \bar{\Gamma}_1, \bar{g}_1(\{0, 2\}) := f(g_1(\{0, 2\})) = \gamma_1, \bar{g}_1(\{1, 3\}) := f(g_1(\{1, 3\})) = \gamma_3$. We denote $\{\Gamma_1, \bar{\Gamma}_1\} =: \{\Gamma_1, \Gamma_2\}, \{G_1, \bar{G}_1\} =: \{G_1, G_2\}, \{g_1, \bar{g}_1\} =: \{g_1, g_2\}$ and we put $F(\alpha, x) = g_k(g_k^{-1}(f^2(\alpha)) +_4 x), f^2(\alpha) \in \Gamma_k, k \in \{1, 2\}, \alpha \in R_1$.

Now we will define a solution f -compatible, namely $F_2 : R_2 \times G \rightarrow R_2$. We will use the Construction C_3 . We have $B_f^0 = \{\{\alpha_0\}, \{\alpha_1\}, \{\beta_0, \beta_1\}\}$ and we define $B_f^0 =: \Gamma_1^0, G_1 := \{0\}, x_1 := 2$. We have $x_1 + \{0\} = \{0\} + x_1, \text{card}(\Gamma_1^0 \cap \{\{\alpha_0\}, \{\alpha_1\}\}) = 2 = \text{card}(G/G_1^{\mu, x_1}) = \text{card}(\{\{1\}, \{3\}\})$ and $2\text{card}(\Gamma_1^0 \cap \{\{\beta_0, \beta_1\}\}) = 2 = \text{card}(G/G_1 \setminus G/G_1^{\mu, x_1}) = \text{card}(\{\{0\}, \{2\}\})$.

According to the point 2° of Construction C_3 , we denote $\Gamma_1^1 := \{\alpha_0, \alpha_1, \beta_0\}$ and $S_1 := \{\{0\}, \{3\}, \{1\}\}$. As in the point 3° we put $\Gamma_1 := \Gamma_1^1 \cup f(\Gamma_1^1) = \{\alpha_0, \alpha_1, \beta_0, \beta_1\}$ and $g_1^*(\{0\}) := \beta_0, g_1^*(\{1\}) := \alpha_0, g_1^*(\{3\}) := \alpha_1$. By (15), $g_1(\{2\}) = \beta_1$ and the conditions (16), (17) are satisfied. In accordance with the point 4° , we define $F(\alpha, x) := g_1(g_1^{-1}(f^2(\alpha)) +_4 x)$, when $\alpha \in \{\alpha_0, \alpha_1, \beta_0, \beta_1\}$.

One can present this solution on the figure as below.



By $\alpha \xrightarrow{x,y} \beta$ we understand that $F(\alpha, x) = \beta, F(\alpha, y) = \beta$.

References

- [1] M. Hosszu, *On the explicit form of n -group operations*. Publ. Math., Debrecen 10 (1963), 88–92.
- [2] A. Mach, *L'équation de translation sur un n -groupe*. Tensor, submitted.
- [3] A. Mach, *The translation equation on certain n -groups*. Aequationes Math. 47 (1994), 11–30.
- [4] A. Mach, *On solutions of the translation equation commuting with some functions*. Rocznik Nauk.-Dydak. WSP w Krakowie, Prace Mat. 13, z. 159, (1990), 215–232.
- [5] J. D. Monk, F. M. Sioson, *On the general theory of m -groups*, Fund. Math. 72 (1971), 233–244.
- [6] Z. Moszner, *Structure de l'automat plein, reduit et inversible*. Aequationes Math. 9 (1973), 46–59.

PEDAGOGICAL COLLEGE OF KIELCE
INSTITUTE OF MATHEMATICS
Konopnickiej 15
PL-25-546 KIELCE, POLAND

Received April 19, 1995.

