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THE GENERAL SOLUTION OF THE EQUATION
90(90(90(‘1’ :E), y)Vz) = ‘P(Ol, - ,u(y) : z)

Let » > 2 be a natural number, I” an arbitrary set and (G, [...]) denote
an arbitrary n-adic group (see [5]). By a result of Hosszu [1], the n-group
operation in G can be expressed by

[£1, 22, .., &n] = 21 - p(22) - p¥(23) .. .- "1 (240) - @,
where ,,-” is a binary group operation on G and g is an automorphism of
(G,-); a € G,u(a) = a and p"1(z) = a-z-a”! (u¥ denotes the v-th
iteration). Therefore the translation equation on the n-group G
(1) ele(e(. .- plp(a,z1),22), - ), Tn-1), Tn) = (e, [21,%2,. . ., Ta]),
has the equivalent form

1) ele(e(.. .olp(a,21),22),- . ), Tn-1), Tn)
= p(e, w1 - p(z2) - p*(23) ... p" 2 (Bno1) - @ Tn)
The characterization of all solutions of the equation (1') by the solutions
of the translation equation

(2) F(F(a,x)’y) = F(a,:z: . y)
is given in [2].

The paper [3] contains the construction of all solutions of the equation
(1") under the additional suppositions: a = e, where e is the unit element of
(G,+), and p is the identity on G.

In this paper we solve the problem of solutions of the equation

(3) ‘P(ﬁP(‘P(a, m)’y)a z) = (P(a’ T ,u(y) : Z),
which is the special case of equation (1’) for n = 3 and a = e. In this case
p?(z) = x for every z € G.

First we will present two theorems giving a characterization of solutions
of the equation (3) by the solutions of the translation equation (2). The
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above mentioned theorems are corollaries of results from the paper [2], but
we will present them with proofs for a comfort of the readers.

Remark 1. If o : I' Xx G — I is a solution of equation (3), then the
function f(a) := p(a,e) satisfies equality
(4) P=r
Indeed, by equation (3), we have f3(a) = f(f(f(a))) = o(¢p(p(a,e),e),e) =
ola,€) = f(a).

Let us define F': I' Xx G — I as follows
(5) F(a,z) := ¢[f(a), u(z)].

THEOREM 1. If ¢ : I' X G — I is a solution of the equation (3) and

f(a) := ¢(a, e), then the function F : I'XG — I defined by (5) is a solution
of the translation equation (2) satisfying equalities

(6) F(a,e) = f*(a),
(7 f(F(a,2)) = F(f(a), p(z)),
(8) pla,z) = f(F(a,z)).

Proof. Since F(a,e) = ¢(f(a),e) = f*(a), then (6) holds. Moreover,
by (3) and (5), we have
Fla,z-y) = ¢[f(a),p(z-y)] and
F(F(a,z),y) = F(e{f(a), p(2)], y) = o[ f(#lf (), u(2)]), u(y)]

= ¢lf(@), u(z) - u(y)]
which means that F satisfies (2). Further, we have
F(f(a)u(z)) = olf*(e), u*(2)] = ¢l (@), 2]
= ele(ele,e),0,0) = ela,2),
f(F(e,2)) = f(elf(a), p(2)]) = p(p(p(a,e), u(z)), €)
= ¢(a, u*(2)) = p(a, @),
i.e., (8) and (7) hold.

THEOREM 2. If f € I'T,f3 = fand F : I' x G — I is a solution of
the translation equation (2) fulfilling conditions (6), (7), then the function
¢ : I'x G — I defined by p(a,z) := f(F(a,z)) is a solution of equation
(8) such that p(a,e) = f(a).

Proof. By (2), (7), (4), (6), we have
plasz-w(y) - 2) = flF(a,z - p(y) - 2)] = F(f(e), p(x) -y - u(2)],
p(p(p(a,2),y),2) = FIF(fIF(fF(e,2)],9)),2)]
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= F(f{F(f[F(e,2)],9)],1(2)) = F(F(f[F(e,2)],9), 1(2))
= F(F(F(f(), u(2)), ), () = F(f(@), u(z) - y - u(2)),

then ¢ satisfies (3). Moreover, on account of condition (6), we get p(a,e) =
f[F(a,e)] = f3(a) = f(a). The proof of Theorem 2 is finished.

COROLLARY 1. In order to characterize all solutions of equation (3), it is
necessary and sufficient to describe all solutions of the translation equation
(2) satisfying conditions (6) and (7).

First, let us remember that the general solution of the translation equa-
tion (2) has been given in [6] by the following construction.

ConsTtrUcTION C;. 1° The function ¢ : I' — I' is such that go g = g¢.

2° ¢(I') = Ugeg Ik is a disjoint union of non-empty sets (transitive
fibres) such that for every k € K there exists a subgroup Gy < G and a
bijection g : G/Gy — I, where G/G is the set of right cosets of the group
G with respect to subgroup G.

3° Then F(e,z) = gi(g; ' (g(e)) - =), when g(a) € I%.

The function f : I' — I satisfying equality (4) is fixed in the sequel.
Let (G,-) be a binary group and g be an automorphism of (G, -) such that
p*(z) =z for z € G,and F : I' Xx G — I be a solution of the translation
equation (2) fulfilling conditions (6) and (7).

Remark 2. It is clear, by virtue of (4), that the equality f(I') = f(I')
holds true.

According to the point 2° of Construction Cy, we denote by {Ik}rex
the family of fibres of the solution F.

LEMMA 1. For every fibre I, only one of the following equalities is ful-
filled:

(9) f(Ix) =Tk
(10) HzeK:l;ékand f(Fk)=F1.

Proof. Let us choose ag € I'; and let us consider two undermentioned

possibilities:
(a) f(ao) € Iy, (b) f(ao) € I and [ 7/: k.

Ad (a). We will prove (9). Let a € I';. Hence F(ag, ) = a for certain z €
G. By (7), we have F(f(ag), u(z)) = f(F(ao,z)) = f(a) and, by supposition
(a), we get f(a) € I'k. Therefore, f(I'y) C k. Since Voer, f2(a) = F(a,e) =
a, then Iy = f2(I'y) = f(f(Ik)) C f(I's) C Tk, whence f(I}) = I.

Ad (b). We will prove (10). For every o € I there exists z € G such
that F(ag, ) = a, hence F(f(ag), u(2)) = f(F(ap,z)) = f(a), whence, by
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(b), f(a) € It. Then f(Ix) C I. Using the equality f(f(ao)) = ag, we get
easily the converse inclusion.
Let us define Af : {a € I': f(a) = fA(@)},By :=T'\ Ay ={a € I':
fla) # f(e)}.
Remark 3. It is evident that, if a fibre I'; satisfies (10), then Iy C By.
Let us denote
E.(B):={z € G:F(a,z) =0}, a,f €T, and G, := E,(a).
LEMMA 2. For every a € f%(I') the set G is a subgroup of the group G
and the equalities
(11) #MGa) = G f(a)s
(12)  Egoy(a) = plEa(f())] = u(Ga) - p(%0), if 2o € Ea(f(a)),
hold.
Proof. Since a € f2(I'), then @ = f2(0) for certain 8 € I'. Therefore,
F(a,e) = F(fz(ﬂ),e) = F(F(ﬁ,e)’e) = F(ﬂ,e) = fz(ﬂ) = .
By the general construction of solutions of the translation equation in (6],
we have that G is a subgroup of group G. The equality (11) can be verified
as follows:
z € Goa = F(a,2) = a = F(f(a),u(z)) = f(F(a,z)) = f(a)
= ,u(a:) € Gf(a),
¢ € Gya) = F(f(@),z) = f(a) = f[F(a, u(2))] = f(e)
= fH[F(a, p(2))] = f2(a) = F(a,p(2)) = @ > p(z) € Ga.
We will prove (12). Let € Ef(q)(a). We have

F(f(a),z) = a = f[F(a,p(z))] = a = f*[F(a, u(2))] = f()

= F(e, u(z)) = f(a),
then pu(z) € E4(f(a)) and, since ¢ = pu(p(z)), then from the above we get
& € p[Es(f(c))]. Hence the inclusion Ef)(a) € p[Ea(f(e))]. Similarly

HE(f(2))] € Ef(a)(@).
By construction of solutions of the translation equation in [6], there

results that E,(f(a)) = Ga-2o, where 29 € E,(f(a)). Therefore E¢ (o) (a) =
plEo(f(a))] = p(Ga) - #(zo) and the proof of Lemma 2 is finished.

COROLLARY 2. In virtue of Lemma 2 and by general construction of
solutions of the translation equation, we get

(13) 20 - W(Go) = Ga - p(z5")
for a € fY(I') and 2o € E,(f(c)).
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Let us remark yet that for every W = G, - a € G/G4 we have
o - p(W) = 20 - p(Ga) - (@) = Ga -z - a) € G/Go.

Remark 4. If the fibre I'; satisfies (9) and o € I, then the function
ho : G/Gy — Iy defined by ho(W) := F(a, W) satisfies hq(zo - p(W)) =
f(ha(W)), for every W € G/G4, where z¢ is a fixed element of the set
Eo(f(@))-

Proof. For arbitrary W € G/G, we have

halgo - W(W)) = F(a,z0 - (W) = F(F(a,0), u(W)) = F(f(a), u(W))
= J(F(a, W) = F(ha(W)).

COROLLARY 3. If I; satisfies (9), a € Ik, xo € Eo(f(@)) and ho(W) =
B € I't N Ay (respectively ho(W) = B € I'y N By), then xo - p(W) = W
(respectively zo - p(W) # W).

Remark 5. If the fibre I satisfies (10), a € I, f(a) € I}, the func-
tions hy : G/Go — Ik, hya) : G/W(Ga) — I are defined by ho(W) :=
F(a,W) and hjo)(W) := F(f(a), W), respectively, then h ) (n(W)) =
f(ho(W)) for every W € G/Gq. Indeed, hyo)(p(W)) = F(f(a), u(W)) =
f(F(a,W)) = f(ha(W)).

DEFINITION. The solution F : I' x G — I' of the translation equation (2)
satisfying (6), (7) is called f-compatible (respectively not f-compatible), if
all its fibres satisfy condition (9) (respectively (10)).

First we will describe solutions which are not f-compatible.

THEOREM 3. Let (G,-,€) be a group, u an automorphism of G such
that u? = idg (identity), I' an arbitrary non-empty set and a function
f € I'T' satisfy equalities: f> = f, Aj = 0. All not f-compatible solutions
F :I' x G — I of the translation equation (2) satisfying (6), (7) and only
such we obtain by construction presented below.

ConsTRUCTION C;. 1° Let us denote B} := {{f(«), f()} : @ € I'}
and let us decompose the set B¢ in a disjoint union (J,c7 I¥ of non-empty
sets such that Vier3g, <geardly = cardG/G:.

2° For t € T let us take a selection I of the set I'Y and define I'; := f(I}).
(By:(4), T is a selection of I'? and I; N T, = §, by A7 = 0).

3° For every t € T let us take a bijection g; : G/G; — I, put Gy := u(Gy)
and define the bijection g, : G/G; — Iy as follows

(14) 9:((W)) := f(g:(W))-
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4° The family of sets {I;}ser U {Tt}1cT we denote by {Ix}rex. The
family of subgroups {G}:erU{G:}1eT we denote respectively by {Gr}rexk-
The family of bijection {g:} U {g,}:eT we denote by {gi}rex respectively.

5° We put F(a,z) := gklg; '(f*(a) - ], when f%(e) € I.

Proof. It is evident that the function F' : I' X G — I obtained by
construction C; is a solution of the translation equation not f-compatible
satisfying condition (6). We will verify the condition (7) only. Let a € I,z €
G, f*(a) € Iy, f(a) € I. There exists t € T such that Iy = I and I} = T,.
We have

f(F(a,2)) = flgr(gi (F3(@)) - 2)] = floelgr ' (f2(@)) - 2)],
F(f(@), m(2)) = ailgi ' (f(@) - ()] = Gelgy ' (F(@)) - p(2))].
If W € G/Giand g:(W) = f*(e), then, by (14), g,(u(W)) = f(). From the
above f(F(,2)) = [(g:(W - 2)) and F(f(a), u(2)) = 7,(u(W - ), hence,
by (14), we get f(F(a,z)) = F(f(a),p(z)). This ends the first part of the
proof.

Let us suppose now that f> = f,A; =@ and F: I'x G — I is not f-
compatible solution of the translation equation (2) fulfilling conditions (6),
(7), where p is an automorphism of G such that u? = idg. By construction
Ci, we have: the family {Ix}xex of fibres such that f3(I}) = UkeK Iy,
the family {Gy}rex of subgroups of G such that cardly = cardG /G and
the family {gx}rex of bijections gx : G/Gx — Iy. Let {Ii}ier denote
the selection of the set {{I, f({%)} : ¥ € K} and {g:}:er the family of
bijections adequate to {I;};er. For every t € T we put I’y := f(I3), Gy :=
#(G), To(p(W)) := f(g:(W)) for W € GGy, IY = {{f(a), e} : a € I},
B2 = {{J(a), F(a)} s e € T},

For arbitrary ¢ € T and arbitrary W € G /G we have g;(W) = F(ay, W)
= hq, (W), where a; := ¢;(G:), and, by Remark 5, g,(W) = f(g:(W)) =
F(haW)) = gy (W) = F(f(er), w(W)).

By virtue of the proof of Theorem 1 in [6], the proof of Theorem 3 is
finished.

We will describe now solutions which are f-compatible. First, let us
define G/GL™ := {W € G/Gy : z - y(W) = W}, if Gy is the subgroup of
group G,zx € G and zi - u(Gy) = Gy - p(zi ).

THEOREM 4. Let (G, -, €) be a group, p an automorphism of G such that
p? = idg, I an arbitrary non-empty set and let a function f satisfy equality:
2 = f. All f-compatible solutions of the translation equation (2) satisfying
(6), (7) and only such we obtain by construction presented below.

CoNSTRUCTION Cs. 1° Let us denote B} := {{f(a), f2(a)} : « € T'}.
We decompose B} = Urex I'? into a disjoint union of non-empty sets such
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that
Vrek 3o, <cIaeaar - p(Gr) = Gy - p(eit),
card(I¢ N {{f(c)} : @ € A7}) = card(G/GL™),
2card(IE N {{f(a), f2(a)} : @ € Bs}) = card(G/G \ G/GH™).

2° For every k from K we denote by I'l a selection of the set I'? and by
S a selection of the set {{W,z-u(W)}: W € G/Gg}.

3° Let us put I'x := I't U f(I't) and define the bijection gx : G/Gx — I
by the formula

(19) W) = { s w53,
where g} : Sy — I} is an arbitrary bijection satisfying conditions
(16) W € G/GE™ = gi(W) € i N Ay,
(17) W € G/Gp\ G/GY™* = gx(W) € I} N By.
4° The function F : I' X G — I is defined by equality
(18) F(a,2) := gu(g; ' (f*(@)) - 2), when f*(a) € I

Proof. By (4) and by Construction Cy, it results that the function F :
I'xG — I obtained by Construction Cj is a solution of the translation equa-
tion (2) satisfying condition (6). Since f(I%x) = f(I})U fH(I}) = F(I}) U
I'l = I't, k € K, the function F is f-compatible. We will prove the condition
(7) only. Let @ € I', z € G, f(a), f2(a) € I'x. We have F(f(a),u(z)) =
gk(g; (£2(@) - w(@) = glgr'(f(@) - u(z)) and f(F(e,2)) =
Flar(gr (f2(a)) - ).

Let us consider two cases: (a) a € Ay, (b) a € By.

Ad (a). In this case f(a) = f%(a) and gx(W) = f(e) for W € G/GL"*.
Therefore we have F( f(a), u(z)) = gx(W-p(z)) and f(F(a, z))= flge(W-z)].
From the above we state:

() fW-u(z) € Sk and zf - u(W - pu(z)) = 2 - p(W) -2 =W -2 € 5,
then, by definition of Sk, W -2 = W - u(z) and g5(W - z) € Ay, hence,
by (15), F(f(a), u(c)) = ge(W - u(2)) = g5(W - i(x)) = g7(W - z) and
F(F(0y2)) = flge(W - )] = flgs(W - 2)] = PLgp(W - o) = gi(W - ).

(i) f W - p(z) € Sk and z - wW(W - p(z)) = W -z ¢ Sy, then, by
(15), F(f(a), u(2)) = gi(W - p(x)) € By and f(F(a2)) = flgn(W - o)] =
Flgr(W - p(2))] = gi[W - u(2)).

In the case W - u(z) € S the reasoning is similar.

Ad (b). We have f(a) # (), ge(W) = f(a) and ge(zx - p(W)) =
7(a) for W ¢ G/GL™. By (18), we get F(f(a), 1(z)) = ga(W - u(z)) and
f(F(a,2)) = flgr(zx - W(W) - 2)).
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If (i) holds, i.e., W pu(z) € Sk and zj - u(W) - x € S, then, by definition
of S and by (15), we get W - pu(z) = zp - p(W) - z and gx(W - pu(z)) =
g3(W - (z)) € Ay, therefore F(f(a), (=) = g5(W - (z)) and f(F(a,2)) =
FlgrW - p(2))] = f2{gx(W - p(2))) = gx(W - u(<))-

If (ii) holds, ie., W - u(z) € Sk and zf - p(W) -z ¢ Sk, then,
by (15) and by definition of zx, we get F(f(a),u(z)) = gx(W - u(z)) € By
and f(F(a,2)) = flox(zi - p(W) - 2)] = flgp(er - p(zx) - W - p(2))] =
F*lgx(W - p(2))] = gp(W - p(2))-

In the case W - u(z) € Sk the reasoning is similar. This ends first part
of the proof of Theorem 4.

Let us assume now that F': I' X G — I is a solution of the translation
equation (2) fulfilling conditions (6), (7) and f-compatible. By Construc-
tion C;, we have the following parameters: the family {Ix}xex of fibres
such that f2(I') = Ugex Ik, the family of subgroups {Gi}rex and the
family of bijection gx : G/Gx — I for which the equality (18) is satisfied.
Let .oy := gx(Gy) for k € K. Evidently ViexGo, = Gi. Let us choose
an arbitrary element z; of the set E,, (f(ax)). By Corollary 2, we have
2y - (Gr) = Gi - p(zy ).

Define B} := Upex IR, where I} := {{f(e), f(@)} : @ € I\}. By
Corollary 3, we have card(I'? N {{f(a), f>(a)}: @ € As} = card(G/G}"™*)
and 2card(I? N {{f(a), fi(a)} : a € Bs} = card(G/Gr \ G/G}'™*), There-
fore the point 1° of construction Cj is fulfilled. Let Si be a selection of the
set {{W,zr-u(W)} : W € G/Gi} such that G € Sx. We define g as follows
gi(W) := F(ay, W) for W € Si. By Corollary 3, the conditions (16), (17)
are true. Let I} := {g;(W) : W € Si}. By Remark 4, the condition (15) is
fulfilled, because gx(W) = F(ag, W) = ho (W),W € G/Gk. The proof of
Theorem 4 is finished.

THEOREM 5. Let (G, -, €) be a group, I' an arbitrary non-empty set and
let the function f € I'T satisfy equality f° = f. All solutions F : I'xG — I
of the translation equation (2) satisfying (6), (7) and only such can be
obtained by the following construction.

CoNSTRUCTION Cy. 1° Let Ay := {a@ € I' : f(a) = f?(a)} and By :=
I'\ A;. We decompose the set {{f(a), f(a)}:a € I'} = E; UE; into a
disjoint union of sets Ey, E5 such that Ey C {{f(e), f?(a)} : @ € By}. Let
Ri:={aeTl:{f(a), f*()} € E},i=1,2.

2° Let Fy : Ry X G — R; be a not f-compatible solution of the trans-
lation equation (2) satisfying (6), (7). This means that F; is obtained by
construction C,.
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3° Let F3 : R; X G — R; be a f-compatible solution of the translation
equation (2) satisfying conditions (6), (7). This means that F; is obtained
by construction Cs.

4° We put F := Fy U F3.

Proof. It is evident that F' obtained by construction Cj is a solution
of (2) fulfilling (6), (7). Assume that F' : I' x G — I is a solution of (2)
satisfying (6), (7). By Lemma 1, all fibres of F satisfy (9) or (10). Let us
define

FE = {{f(a),fz(a)} o € Bf and Hk,,el{,k;é,f(a) €I} and f2(a) € F[},
E,; = {{f(a)7 fz(a)} o€ F} \ Ey,
and
R; := {a erl: {f(a),f2(a)} € Ei}, F;:= FIR.-xG, 1= 1,2.
It is visible that F = Fy U Fy, where A #,Ri, Ra, F1, F, are such as in Con-
struction Cy.

ExaMPLE 1. Let I := R,G := (R,+,0) and f : I’ — I be defined
by f(a) := —a. Let p € AutG defined by equality u(z) := —z. Evidently
f3 = fand p? = idg. Let F : I' x G — I be defined by the formula
F(a,z) := a+ z. Then F is a solution of the translation equation (2)
satisfying equalities F(a@,0) = a = f(a), F(f(@),u(z)) = F(-a,-z) =
—a—z=—(a+1)= f(F(a,2)).

The function ¢(a, z) := f(F(a,z)) = —a—=z is a solution of the equation

pla,z -y +2) = p(¢(¢(a,2),y), 2).
Indeed, we have p(a,z —y+2) = —a—z+ y— z and p(p(p(a,z),y),2) =
plp(-e-=z,9),2)=platz-y,2z)=-a-z+y-=z
ExaMPLE 2. Let I' := {ao, 1, 00,51,%,71,72,73}, and let G :=

({0,1,2,3},+4,0) be the group of residues modulo 4. Let f : I' — I be
defined as follows:

f(ao) = ap, f(a1) = a1, f(Bo) = b1, f(B1) = Bo,
F(0) =11, f(11) = Y0, f(72) = 73, f(73) = 2.

Evidently f3 = f and A; = {ao, a1}. We define also p € AutG as follows:
u(z) := z for z € {0,2},u(z) := z +4 2 for = € {1,3}. Evidently u? = idg.
According to the Construction C4, we decompose the set {{f(a), f*(a)} :
a € I'} = Ey U E; into a disjoint union of sets: £y := {{y0,11},{72,73}},
E; = {{ao},{@1},{Bo,B1}}. Therefore Ry = {v,71,72,73},R2 =
{ao, 1, Bo, b1}

We define first, according to Construction C,, a solution not f-compat-
ible, namely F; : Ry x G — Ry. Let I} := B} = {{y0,11},{72,73}},G1 :=
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{0,2}. Then cardl? = cardG/G; = 2. Therefore, the point 1° is satis-
fied. In accordance with the point 2° of the Construction Cs, we take the
selection I} := {y0,72} of I? and put Iy := f(I1) = {m,73}- As in
the point 3° we take the bijection g; : G/G1 — I3 defined by equalities
91({0,2}) := 70,41({1,3}) = 72. Let Gy = p(G1) = Gy and put g :
G/G1 — I',5:({0,2}) := f(g1({0,2})) = 1,9:({1,3}) == f(62({1,3}) =
vs. We denote {I,In} =: {I1,12},{G1,G1} =: {G1,G2},{91,51} =:
{91, 92} and we put F(a,z) = gr(97 (f3(@)) +4 2), f2(a) € Ik, k € {1,2},
a € R,.

Now we will define a solution f-compatible, namely F3 : Ry X G — R;.
We will use the Construction C3. We have B? = {{ao},{a1},{0o,01}}
and we define BS =: IY,G; := {0},2; := 2. We have z; + {0} = {0} +
zy,card(I? N {{ao},{1}}) = 2 = card(G/G}"™*) = card({{1},{3}}) and
2card(I N {{fo,B1}}) = 2 = card(G/G1\ G/G}'"*) = card({{0},{2}}).

According to the point 2° of Construction Cz, we denote I} :=
{@0, 1,00} and S := {{0},{3},{1}}. As in the point 3° we put I} := Il U
f(I) = {0, 1,80, 1} and g5({0}) := Bo,97({1}) := a0,97({3}) := 0.
By (15), g1({2}) = B1 and the conditions (16), (17) are satisfied. In accor-
dance with the point 4°, we define F(a,z) := g1(g97 ' (f*(a)) +4 =), when
ae {a07a1aﬂ07/@1}'

One can present this solution on the figure as below.
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By a Bwe understand that F(a,z) = 8, F(a,y) = 8.
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