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SOME MATHEMATICAL PROBLEMS CONNECTED
WITH THE AXIOMATIC OF SIMILARITY GEOMETRY

1. Introduction

This work concerns the axiomatic of the central geometry of similarities.
In this paper we use for the description of Euclidean space the notions that
are considerably different from the traditional ones. The primitive notions
are: the set F, the distinguished point O, the operation of the addition of
points and the quaternary relation of similarity P. The operation of the
addition of points can be replaced by the ternary relation of parallelogram
with a fixed vertex O. In the Euclidean space the formula P(z,y,z’,y’)
denotes the similarity of triplets (0,z,y) and (0,z',y') with the additional
condition: z # 0. This paper contains an axiom system of dimension-free
geometry (for dimensions > 1). An information about how this axiom system
has been constructed and the proofs of the representation theorems can be
found in [5]. In this work we will briefly discuss these problems.

The paper contains the solution to the problem of independency of the
axioms and the answer to the question what axioms are to be added to the
axiom system in order to obtain a complete theory. These problems were
suggested by L. W. Szczerba.

2. Definitions of notions

We start with the definitions of notions which we will use.

Let us define a linear space with the scalar product (cf. [1]) and a central
similarity geometry.

DeFINITION 1. Let 4 = (V, F,0,4,0) be a linear space over the field
F = (F,+,.,0,1) satisfying the additional conditions:

(i) Fcv,

(i)  +/FP=+,

(i)  of/F? =
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The structure (¥,0) will be called the linear space with the Euclidean
scalar product, if the following axioms are satisfied:

1.1 aca=0&a=0,

1.2 ao (bA) = (aob)A,

1.3 ao(btc)=(aobd)+(aoc),
14 aob=boa,

1.5 a#0=>3X(ar)o(ad)=bob,
1.6 abe€ F =>aob=ab.

We distinguish the spaces satisfying the conditions dimV > 4,
dimV > 2, dimV > 1. (Each of these conditions can be presented by an
elementary axiom.)

DEFINITION 2. Let 9 be a linear space over the field F = (F,+,-,0,1)
with a scalar product. By a dimension-free central Euclidean geometry of
similarities over the field F we mean the elementary theory of structures
Cr=(9,R1,...,Ri, fi,..., [s,0) where R; (i = 1,...,k), f; (i =1,...,9)
are relations and functions with arguments and values in ¥, definable by
elementary formulae of ¥, 0 is zero-vector of # and the group of automorfism
of Cr structure coincides with the group of the orthogonal transformations
of linear space ¥ such that the point 0 is fixed (cf. [2]).

The concept of central geometry of similarities would be defined in a
more general way, if the condition of Euclidean property imposed on the
scalar product was omitted. The isometries and similarities connected with
Minkowskian or Galilean metric form are often discussed in geometry and
algebra.

However, in this paper we restrict ourselves to the Euclidean similarities.

Let us introduce the definition of the similarity space.

Let (¥, 0) be a linear space with a scalar product given by Definition 1.
Let Pr be the similarity relation of the pairs of elements of the (¥, o) space
defined in the following way.

DEFINITION 3. Pr(z,y,2,u)
Sz£0ANINEF (zoz=ANzoz)Auou=Ayoy)Auoz=Xyoz).

DEFINITION 4. The structure £(F) = (94,4 F,0F, Pr) is called the simi-
larity space, where ¥ = (1, o) denotes the linear space according to Definition
1, +p—the operation of addition of vectors, 0 p—the zero-vector and Pp—
the relation described by Definition 3.

The dimension of the space ¥ is called the dimension of similarity space
Z(F).
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3. The axiom system of dimension-free geometry

Let us discuss now the axiom system of dimension-free geometry.

We split this axiom system into two parts. The first is the axiom system
AO constructed by L. Dubikajtis. He formulated the problem of possibility
of the extension of system A0 to the axiom system of central geometry of
similarities. The paper [5] contains the solution of this problem.

The axiom system AO can be extended to the axiom system A2 of
plane geometry and to the axiom system A3 of dimension-free geometry
(for dimensions > 3).

Let us now recall the axiom system A0 (cf. [5]). We consider the structure
(E,+,0, P), where + : E* - E, 0 € E, P C E*, satisfying the following
axioms:

AQ: (E,+,0)is the abelian group with at least two elements,
Al: P(z,y,2,u) = z # 0,
A2: P(z,y,0,y") = ¢' =0,
A3: P(.’I), Y, ‘TI, yl) = P(IE, Y, _zl’ _yl)v
A4:Vz,y,2[z #0 = 3y, u (P(z,y,2,¥) A P(z,y', 2,u)
AP(z,y,z + 2,y + u))],
A5: P(z,y,z',y")A Pz, y,z",y") Az’ #0 = P(z', ¢, 2", y"),
A6: P(z,0,y,9")=>y' =0,
AT: P("E? xlv Y, y’) = P(IE, _xla Y, _yl)v
A8: P(z,2,y,y') = P(z,z+ 2,9,y + "),
A9: V‘T, zl’ .’l'”, Y, yl[xl # 0A P(il?, .’1)’, Y, y,) = Ely”(f)(x, ‘TH, Y, y")
AP, a", g, "),
A10: VI, xl, () [.’E 75 0= Hy’(P(:c, Y, xl, y,) A P(.’I), .’ZI', Y, y,)],
All: P(z,y,z",y") A P(y,v',y',y) = P(z,z’,2',2)],
We denote by A0 = {A0,...,Al1}.
We shall describe now three models of the axiom system AO.

MobpEL L. Let F = (F, +,.,0,1) be an arbitrary commutative field. We
define the structure:

Mg = (Er,+F,0F, Pr); Ep = F*, 0p = (0,...,0),
(21,0 20) +F (Y1 Yn) = (B1 + Y1y, T + Yn ),
Pp(z,y,z,u)
#0AINEF(zoz=Azoz)Auou=Ayoy)Auoz=Ayoz))]

where zoy = z1y1 +...+ Tpyn for o = (21,...,20),¥ = (¥1,-- -, ¥n)- It can
be shown that M2 is the model for AO.

MobpEL IL Interpreting E as the set of vectors of the Euclidean real plane
which are fixed at the point 0, operation + as the addition of vectors (fig. 1)
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and the relation P as the relation of similarity of triangles with common
vertex (fig. 2) we obtain also the model of A0 axiomatics.

Fig. 1

u

Fig. 2

Using the notation introduced in the model I, we see that the model II

is isomorphic with M%.

MobeL III. Let F = (F,+,+,0,1) be an arbitrary commutative field and
Pp(z,y,2,u) & [z # 0 Au = yz~!z]. It can be shown that the structure
(F,+,0, Pr) is the model for AO.

The other models of axiom system AO have been described in [5].

Now, we add the following axioms to the axiom system AO.

Al12:
Al3:
Al4:
Alb:
Al6:
Al7:
Al8:
Al9:
A20:

Vz #0 3:‘/75 z P(.’L‘,y,y,—.’l))
P(.'E, vY, —.'L‘)/\P(.’L",y’
Ve,y# 0 3z [P(y,2,2,y) AVZ'(P(z, z,2,2") = z = 2'))
P(ilI,Z—y,:l),y—Z)/\P(y,Z—(L',y,IE—Z)/\Z¢ 0= P(z,z—y,z,y—w)
P(z,y,—z,y) A P(z,2,—2,2) > P(z,y+ z,—-2,y + 2)
P(z,y,y,2) ANy # -z = P(z+y,2 —y,z+ 9,y — z)

Va,y [o # 0 = 32 (P(a,y,5,2) AV2'(P(a,y + 2,8, 2) = y + 2 = ')
(P(2,9,2,8) = y = )V (P(2,4,2,0) A (3,1, y,0) = u = v)
Jz,y,t,u, v(P(z,y,z,t) ANy # t A P(z,u,z,v) A P(y,u,y,v) A u # v]

7yl7_zl) = P(IL‘, Y, ylazl)

Figures 3 and 4 present the interpretation of axioms A14 and A18, re-
spectively, for the second model described above.

Fig. 3
Let A1 = AOU{A12,...

Fig. 4
,A18}, A2 = A1U {A19}, A3 = A1U {A20}.
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The axiom system A2 is the axiomatics of the plane geometry. The axiom
system A3 is the axiomatics of dimension-free geometry (of dimensions > 3).
Now, we shall formulate the representation theorems.

THEOREM 1. The structure (E,+,0,P) is the model of the system
0? = Cn(A2) if and only if it is isomorphic with the similarity space
E(F) = (9,+F,0F, Pr) of dimension 2.

THEOREM 2. The structure (E,+,0,P) is the model of the system
032 = Cn(A38) if and only if it is isomorphic with the similarity space
E(F) = (9,+F,0F, Pr) of dimension > 3.

The proofs of these theorems can be found in [5].

The axiom A19 can be also written in equivalent form

A19: =3z, y,t,u, v(P(z,y,z,t)Ay # tAP(z,u,z,v)AP(y,u, y,v)Au # v).

It is the dimension axiom, as it restructs the dimensions of the space
to 2. It is also the negation of the condition A20.

Let M be a model for the system Cn(A1). If the condition A19 is fulfilled
in M (M = A19), then M is the model for Cn(A2); thus by Theorem 1 it
is a similarity space of dimension 2. If the condition A19 is not satisfied in
M (-(M = Al19) or M | —A19), then M is the model for Cn(A3) hence
it is a similarity space of dimension > 3 (Theorem 2).

We have thus

THEOREM 3. An arbitrary model of the system Cn(A1l) is isomorphic
with certain space of similarities of dimension > 1.

4. Some properties of the relation P and the relation collinear-
ity L

We shall now consider the relation of similarity P and the additional
relation of collinearity L. Let us define a relation L(0,z,y).

DEFINITION 5. L(0,z,y) & (P(z,y,z,2) = y = 2)).

Now we prove some properties of relations P and L which we shall use
in the sequel.

LEMMA 1.z #0 = P(z,z,y,y).
Proof. Let = # 0. By A10
3t: P(z,z,y,t).
By A7, A8, A6:
P(z,z,y,t)= P(z,—z,y,-t)=> P(z,0,y,y—t)=>t=y. n

On the basis of these axioms it is quite simple to prove:
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LEMMA 2.z # 0= P(z,y,z,y).
LEMMA 3. P(z,y,z',y) A2’ #0= P(z',y,z,y).
Proof. By Al and Lemma 2
P(z,y,2',y) = z # 0 = P(z,y,z,9).
By A5
P(z,y,z',y') A P(z,y,2,y) Az’ #0=> P(z',y',2,y). =
LEmMMA 4. P(z,y,2',y) Az’ # 0= P(y,z,y,2').
Proof. The assumptions and the axiom A9 imply:
Ju: (P(z,z,2',u) A P(y,z,y',u)).
We have to prove that: ' = u. By A6, A7, AS:
P(z,z,2',u) = P(z,0,z',2' —u)=> 2’ =u. m
By A2, Lemmas 3 and 4 we prove
LEMMA 5. P(z,y,2',y)A #0=> P(y',2',y,z2).
LEMMA 6. P(z,y,2',y') & P(z,—y,—2',¢).
The proof of =. By A3 and A7
P(z,y,2',y') = P(z,~-y,2’',-y') = P(z,—y,—z',y).
The proof of converse implication is analogous. =
LEMMA 7. P(z,y,2',y') = P(-z,y,~2',y').

Proof. So, if P(z,y,z',y'), then by Al, Lemma 2 and A3 we get
P(z,y,—z,—y), hence, by A5 it follows that

(P(J), Yy, -z, —'y) A P(.’E, Y, (L”, yl) = P(_z’ -Y .’DI, 3/'))
By Lemma 6 we get the thesis. =
LEmMMA 8.Vz [L(0,z,0)A L(0,z,2) A L(0, 2, —2)].

Proof. The case z = 0 is obvious so, if z # 0 then by A6 we obtain
L(0,z,0) and by A6, A7, A8 we prove the other properties. m

In simple way by A7 we prove

LEmMaA 9. L(0,z,y) = L(0,z,-y).
By Lemma 7 and A7 we deduce

LeMmMmA 10. L(0,z,y) = L(0, -z, —y).
By A7 and A8 we get

LEmMMA 11. L(0,z,y) = L(0,z,z + y).
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An interpretation of the next property is the following: if the triangles
(0,z,y) and (0,z',y’) are similar and the points 0,z,y are collinear then
the points 0,z’,y’ are collinear too.

LEMMA 12. L(0,z,y) A P(z,y,2',y") = L(0,2',y").

Proof. The cases z' = 0 and y' = 0 are obvious.

Thus we assume that: y' # 0. We have to prove that P(z',y',z’,2) =
y' = z. From the assumptions and P(z’',y,2’, 2) by Lemma 3 and Lemma 5
we have

(1) P(y,az”y’z)’ (2) P(xl’ y',a:',y), (3) P(wlvzawla yl)'
From (2) by A9 we get |
(4) Ju: (P(y', 2z, y,u) A P(z', 2,2, u).
Applying A5 and from (2), (3) and (4) we obtain P(z,y,z,u).
The assumption L(0,z,y) and the condition P(z,y,z,u) imply y = u

hence from (4) we have P(y', z,y,9y).
Now we can apply Lemma 11 because y' # 0 hence y # 0 and we get

P(y,9,9', 2).
By A6, A7, A8 we prove that y' = 2. m

LemMA 13. P(z,y,z,u)A L(0,z,y) = P(z,y,z+ z,y + u).
Proof. From the assumption P(z,y, z,u) by Al and A4 we get
Jv, w(P(z,y,z,v) A P(z,v,z,w)A P(z,v,2+ z,v + w)

since L(0,z,y) then from Definition 1 it follows that: ¥y = v. The case
z = 0 is trivial. When z # 0 by A5 and Lemma 12 we prove that w = u
hence P(z,y,z + 2,y + u). =

LemMA 14. L(0,z,2z') = L(0,2',z).

Proof. The cases z' = 0 and z = 0 are obvious, thus we assume

(Dz#0Az' #0A P(2',z,2', 2).

We have to prove that z = z. By Lemma 4 and A3, (1) implies
P(z,z',—z,—z').

Applying the assumption L(0,z,z') and Lemma 13 we obtain
P(z,z2',z — 2z,0). Then by Lemma 4 and A2, (1) implies z = 2. =

LEMMA 15. z # 0 A L(0,z,2") A L(0,z,2") = L(0,2',z").

Proof. Putting particular cases aside we assume that z’ # 0 and 2" # 0.

We have to prove that P(z',2",2',u) = 2" = u. By A9 we have

3z (P(z',z,2',2) A P(2",2',u, 2))
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then from the assumptions, Lemma 14, Lemma 4 and Definition 1 we obtain
that z = 2z and P(z,z",z,u). On the basis of Definition 1 we get 2" = u. =

As a direct consequence of Lemma 14 and Lemma 15 we obtain:
LEMMA 16.y # 0A L(0,z,y) A L(0,y,2) = L(0,z, 2).
LEMMA 17. L(0,z,y) A L(0,2,y') = L(0,z,y + ¥').

Proof. The case z = 0 is obvious. So we assume z # 0. From the
assumptions by Lemma 9, Lemma 11, Lemma 15 we get

L(0,z,z+ y) A L(0,z,2 — ¢y') = L(0,z + y,2 — ¥') = L(0,z + y,y + ¥').
When y # —z by Lemma 16 we get the thesis. If y = —z then from assump-
tion L(0,z,y') by Lemma 9, Lemma 10 and Lemma 11 we obtain

L(0,z,y+y'). =
LemMma 18. P(z,y,z',y') A P(y,2,y',2') A L(0,y,2) = P(z,z,2',2").
Proof. Al and P(y,z,y'2') imply y # 0 thus by A9 we get:
(1) Ju (P(z,z,2',u) A P(y, 2,7y, u).

If y' = 0 from (1) and the assumption P(y, z,y’,2') by A2 it follows that
v = 2.y # 0 from (1) and P(y,z,9',2') by A5 it follows that
P(y',2',y',u), by Lemma 12 we get L(0,y',2'). We get z' = u by virtue
of Definition 1 and this completes the proof. m

The fig. 5 presents the interpretation of Lemma 18 for the
model II.

Fig. 5

LEMMA 19.’z+x=0¢:c=0.
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Proof. Suppose z # 0. By Lemma 1 we get P(z,z,2,z) since ¢ = —z
hence P(z,z,z,~2). So  # 0 then by A12 we have

(1) Hy # T P(l‘,y,y,—z)
thus by A13 P(z,z,y,z).

By A6, A7, A8 we prove that P(z,z,y,2) = P(z,0,y,y—2z)=>y =21
what contradicts (1). m

5. The axiom system of the complete theory

In this section we show the solution of a problem of an extension of the
introduced in section 3 systems of axioms to complete theories.

We shall construct the theory for which models will be the similarity
spaces over the real-closed fields.

We add the axiom AE to the axiom system Al:

AEVz,y [z # 0= 3z (P(z,2,2,y)V P(z,—z,2,y)).

Now, we verify the condition AE in an algebraic model.

Let ¥(F) be a similarity space over Euclidean field F'. We prove that the
condition AE is satisfied in this space. To this aim the following lemma will
be used:

LEMMA 20. Let z,y € V. The vectors z,y are linearly independent if and
only if
w(z,y) = (zoz)(yoy) - (zoy)’ #0.

Proof. If y = az and a € F, then w(z,y) = 0. We assume
VDax+Py=0=>a=4=0,

and suppose
(2) w(z,y) =0,

then the system of equations

a(zow)+h(zoy) =0, alyoz)+A(yoy)=0

has a solution different from zero.

There exists 8 # 0 such that the pair (—3(yoz)/(zoz), ) is the solution
of this system of equations.

If t = —B(yoz)/(xoz)r+ Py then t ot = 0, hence by Definition 1
(1.1) t = 0. There exists a pair (a, ) # (0,0) such that az + By = 0 what
contradicts the condition (1). m

THEOREM 4. z # 0 = 3z (Pp(=,2,2,y)V Pp(z,~2,2,y)), where Pp is
the algebraic equivalent of relation P (see Definition 3).
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Proof. We have to prove that there exist A, u, z such that
(%) yoy=Azoz)Azoz=ANzoz)Ayoz= Azo2)V
*

yoy=uzoz)Azoz=p(zoz)Ayoz=—pzo0z).
Let us notice that A and p satisfy the condition
M=p=yoy/zoz.
We consider two possibilities:

(i) z,y are linearly independent.

Let us notice that [A(z o z) + (z o y)][Mz 0 z) — (z 0 y)] = w(z,y) thus
by Lemma 20 we have A(zoz)+ (zoy) # 0.

o

Let s = sxzent@en)” Ja : o? = s or a® = —s because F is the
Euclidean field. Let z = a(z + 1/Ay). If we take u = A when o = s and
g = —A when a? = —sit is easy to check that the conditions (*) are satisfied.

(ii) y = Bz.

There exist v such that 2 = 8 or 2 = -3 because F is the Euclidean
field. If we take z = yz and 4 = A = 8 when ¥ = B or z = 4z and
¢ =X = —f3 when 42 = —8 we can easily check that the conditions () are
satisfied. m

We have proved that AE is satisfied in the similarity space over Euclidean
field.

Let X(F) be a similarity space for Cn(A1U {AE}).

Now we prove that F is an Euclidean field.

THEOREM 5.Va e F 3B € F (2 =aV % = —a).
Proof. Let z =1 and y = a. By AE and Def. 1 (1.6) 3\, 1, z satisfying
the conditions (22 = AN a2 = A2 Aaz=2A2)V (2 =pAal = pl ANaz =

—pz). If @ = 0 then it suffices to take § = 0, if @ # 0, then z # 0. So we get

a=zora=-22.m

Let us define an ordering in F as:
t>03reF:a=r3%
From the condition AE is results that
Vz (z2>0Vvz<0).

The monotony of multiplication is obvious. The monotony of addition
results from the fact that F' is a Pitagorean field because

>0Ay>0z=r’Ay=s"=ae4+y=r4+s=t"=22+y>0.
Thus an addition of the condition AE ensures that £(F') is a similarity space

over the orderly field.
Let us define Tarski’s relation B in Cn(A2 U {AE}) system (cf. [4]).
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DEFINITION 6.
B(0,z,y) & [Ju # 0 Vt (P(u,t,t,u) = P(z,t,t,y)) Ve =0),
B(z,y,2) & B0,y —z,z — ).

Now we verify the correctness of this definition.

Let X(F) be a similarity space over a Euclidean field.

LEMMA 21. [Pp(z,y,z,2)=>y=z| & Ja€ F y=az.

Proof «. In agreement with Def. 3 we assume that 202 = yoy and
z oz =z oy. We prove that (2 — az) o (2 — az) = 0 using the conditions
(1.1), (1.2), (1.3) from Definition 1. Hence z = ax thus z = y.

Proof =. We define the function II : V xV — F:
T°Y  whenz #0

(z,y) = { zoz’

0, when 2z =0

(cf. [1]). We assume that: Pp(z,y,2,2) = y = z then by Definition 3 the
conditions 20z = yoy and £ 0o z = y o z are satisfied. Let us notice that
u = 2II(z, y)z —y satisfies these conditions too hence u = yie. y = II(z,y)z.

[

Let us define Br(0,7,y) < 3k # 0 y = k’z.

THEOREM 6.

z #0A Bp(0,z,y) < [Ju # 0Vt (Pr(u,t,t,u) > Pr(z,t,t,y))].

Proof <. We assume that Ju # 0 Vt (Pr(u,t,t,u) = Pr(z,t,1,9)),in
particular we have Pp(u,u,u,u) = Pr(z,u,u,y) hence z # 0. By A14 we
have 3z'( Pp(u,2',2',u) A Lp(0,z,2')), but by the assumption

Pp(u,a’,z',u) = Pr(z,2',2',y).
By Lemma 12 we get
Pp(z,z',2',y) A Lr(0,2,2") = Lr(0,2,y).

By Definition 3, Definition 5 and Lemma 21 we get
yoy=Aa'oz')Az' 0oz’ = Azoz)Az' oy =A(z'0z)Ay=62'A2' =72
so B(z' o ') = Ay(z o z), what implies B(z' o ') = 7(z’ 0 '), since z' # 0
then g = ~.

Finally we get y = y%z and v # 0.

Proof =.If z # 0 and Br(0,z,y), that is y = k%z, then it is easy to
check that u = 1/ky satisfies the required conditions.

Let us add the primary schema to axioms of the system Cn(A2U {AE})
in the form:
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AC: All sentences in the form:
JaVz,y(@ A9 = [Fu # 0 Vt (P(u,t,t,u) = P(z —a,t,t,y—a)) Ve =al)
= ez, y(pAY = [w # 0 Vo (P(w,v,v,w) = P(c—z,v,v,y—2))Vz = c]),

where ¢, 1 are expressions in which variables a, ¢,y and a,c, z, respectively,
cannot be free.

THEOREM 7. A theory 02 = Cn(A2 U {AE}) is the complete theory
and each of its models is a two-dimensional similarity space X(F) over a
real-closed field F.

COROLLARY. Any model of the theory o? is primary elementary equiva-
lent to a two-dimensional similarity space (R) over the real field.

Replacing an elementary schema by a nonprimary elementary axiom
of continuity in the form Jda B(e,X,Y) = 3¢ B(X,c,Y), we shall get a
categorical theory o2.

(B(a,X,Y) is a short notation of:

B(a,X,Y) &
Ve, y(z € XAy €Y = [Fu # 0Vt (P(u,t,t,u) = P(z—a,t,t,y—a))Ve = a])
and by analogy for B(X,c,Y).)

THEOREM 8. Any model of the o? theory is isomorphic with two-dimen-
sional similarity space £(R) over the real field.

The dimension free geometries cannot be complete, because when we
add the axiom of actual dimension we get the consistent theory as before.

THEOREM 9. The unique models of Cn(A1U {AE, AC}) system are the
similarity space X(F') over the real-closed fields of dimension > 1.

If we add the axiom of dimension, we obtain the completeness of this
theory.

Thus we have given rather simple procedure of extension of n-dimen-
sional central geometry of similarities to the complete theory.

6. The problem of independency of axioms

Now, we discuss the problem of independency of axioms.

We introduce independence models for some axioms of axiom system Al.

The independence model for A12:

We assume F = R in the model III. The relation Pr does not satisfy
A12 because for z # 0 and y # = ~(—z = yz~ly).

The remaining axioms from A1l are satisfied.

The independence model for A13:
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We assume F' = C in themodel Il and z = 1,y = 7,2’ = —i,y' = 1. We
get —1 =¢-1-7 hence Pe(z,y,y,—2z)and i = 1-"7.1-1 hence Py(z',y',y', —z')
but —i #¢-1-1 then - P(z,y,y,z').

The remaining axioms from A1 are satisfied.

The independence model for Al4:

Let F = Q(i),+— the addition in this field and

PQ($,y,z,u)<:> [il;#()/\(.’z:u:yzvzﬁz yz)]
where if z = a + bi then Z = a — bs.

Weassumez =1,y =1+ 1.
In order to satisfy the axiom A14 there must exist

z=v2or z=v/~2 but VE2 ¢ Q(i).

The remaining axioms from A1 are satisfied.

As the axioms A19 and A20 are the dimension axioms, they are inde-
pendent. '

Now we shall prove that the axiom A17 depends on the others.

TueoreM 10. P(z,y,y,2)Ay # —z = P(z + y,z — y,2 + 4,y — z).

Proof. If y = 2 then by Lemma 2 and Lemma 19 we get the thesis. So
we assume

(i) y # 2.

By A7, A8, Lemma 4 and (i) we get
P(ﬂ?,y,y,z) = P(m,—y,y,—a:) = P(m)w—yay’y_x) = P(-T—y,x,y—x,y)-
By Al, Lemma 1 and A8 we prove that P(z,z + z,y,y + y). By Lemma 8,
Lemma 11 and Lemma 18 we get P(z —y,z + z,y — z,y + y) hence by A7
and A8 it follows that P(z —y,—y — z,y — z,—z — y).

By A7 and Lemma 4 obtain the thesis. m

The axiom A15 follows from the condition of simple form:

WA 15: P(zvy):%z)/\ P(z,z,z,:z:) = P(yazvz,y)‘
Therefore A15 can be replaced by WA15. The fig. 6 presents the inter-
pretation of WA15 in the model II.

Fig. 6
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THEOREM 11.
P(:l:,y—z,:z:,y—z)/\P(y,z—:v,y,:v—z)/\z#0=>P(z,m—y,z,y—z)

Proof. We denote the conditions from the antecedent of the implication
by (1), (2), (3) respectively.

Let us suppose that z = z +y. From (1) by A7, A8, A6 weget z+z =0
which by Lemma 19 and Al leads to contradiction, hence

() z£z+y.
From (1) and (2) by A3 and A8 we get

P(z,z—y+z,—z,z2—y—z)and P(y,z—z+y,-y,2— 2z —y).
Applying to these formulae and (4) by Lemma 5 and Lemma 6 we obtain
P(z—y—z,z,y—z—2z,x)and P(z—z —9y,y,2— y — 2,¥).

By Lemma 1 and A1l we have
Plz—y—z,y—2z—2,y—2—2,2— 2 —y) and
Plz-y—-z,2—y—2z,2—y—2,2—2—Y)

then by WA15 we have P(y—z — 2,2 —y— 2,2 —y — 2,y — = — z) hence by
Theorem 10 it follows that P(-z,—z,~z —z+y+y,z4+2,y—y—z —z).
Then by Lemma 18, Lemma 7 and Lemma 6 we obtain the thesis. m

It is possible to prove that if we add the axiom A19 to the axiom system
A1l then the axioms A16 and A18 become dependent on the others.

At first we prove the additional property of relations P and L, which we
get using the axiom A19.

As a direct consequence of A19 we obtain

THEOREM 12. P(z,z',z,z") A P(y,2,y,2") Az’ # 2" = L(0, z,y).

Fig. 7 presents the interpretation of this theorem in the model II.

=)
zll
Fig. 7

THEOREM 13. P(z,z',z,2") Az’ # 2" = L[(0,z,2' + z").

Proof. By Lemma 8 the case 2” = —z' is obvious so we assume:
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(1) 2" # —z'. Then by A6, Lemma 1, Lemma 4 and A1l we prove that
P(2',2",z",2') hence by A8 we get P(a',z' +z",2",2' 4+ z") which by (1)
and Lemma 4 gives P(z' + z",z',z' + 2", 2").

Then the thesis follows from Theorem 12. m

Now, we present the proof of the dependence for A16.
THEOREM 14. P(z,y,—z,y) A P(z,2,—z,2) = P(z,y+ z,—-2,y + 2).

Proof. The cases y = 0 and z = 0 are obvious. Let us assume y # 0 and
z # 0. Applying the properties of Lemma 4, Lemma 19 and Theorem 12 we
obtain L(0,y, 2), thus the thesis follows from the assumption P(z,y,—z,y)
and the properties of Lemma 17 and Lemma 18. =

Now we present the proof of the dependence for A18, which by Def. 8 is
equivalent to:

THEOREM 15. z # 0 = 32 P(z,y,z,z)A L(0,z,y+ 2).

Proof. By A10 and A12 we prove that: 3zP(z,y,z,2) Ay # z then the
Theorem 13 yields L(0,z,y+ 2). »

Taking into consideration these results we notice that it is possible to
obtain the axiom system of plane by adding to AO the four independent
axioms Al12, A13, A14, A19 and the condition WA15.

7. Final remarks

The paper contains the axiom system Al of dimension-free geometry
and the representation Theorems 1, 2 and 3).

In the paper we have presented the construction of the axiom system
A1U{AE, AC} of the complete theory and the representation theorem (The-
orem 9).

The problem of independence of axioms has been also considered. The
paper contains the models of independence for the axioms A12, A13, A14
and the proof od dependence of the axiom A17.

In the paper we have discussed the problem of dependence of the axioms
Al6 and A18.

It is also interesting that the system of primitive notions considered
here can lead to the axiomatics of one dimensional geometry and universal
axiomatics that does not neglect any case of axiomatics of dimension-free
geometry. Some problems will be discussed in a separate paper.

Let us notice that from 4-ary relation P we can pass to some 5-ary
relation of similarity concerning the pair of similar triangles with common
vertex (not necessarily fixed). Thus the obtained results can be used for
axiomatization of the non-central Euclidean geometry.
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