
DEMONSTRATIO MATHEMATICA 
Vol. XXIX No 4 1996 

Boguslawa Waligora 
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1. Introduction 
This work concerns the axiomatic of the central geometry of similarities. 

In this paper we use for the description of Euclidean space the notions that 
are considerably different from the traditional ones. The primitive notions 
are: the set E, the distinguished point 0, the operation of the addition of 
points and the quaternary relation of similarity P. The operation of the 
addition of points can be replaced by the ternary relation of parallelogram 
with a fixed vertex O. In the Euclidean space the formula P(x,y,x',y') 
denotes the similarity of triplets (0,x,y) and (0 , x ' , y ' ) with the additional 
condition: x ^ 0. This paper contains an axiom system of dimension-free 
geometry (for dimensions > 1 ) . An information about how this axiom system 
has been constructed and the proofs of the representation theorems can be 
found in [5]. In this work we will briefly discuss these problems. 

The paper contains the solution to the problem of independency of the 
axioms and the answer to the question what axioms are to be added to the 
axiom system in order to obtain a complete theory. These problems were 
suggested by L. W. Szczerba. 

2. Definitions of notions 
We start with the definitions of notions which we will use. 
Let us define a linear space with the scalar product (cf. [1]) and a central 

similarity geometry. 

D E F I N I T I O N 1. Let •& = {V, F,0,+,o) be a linear space over the field 
F = (F, + , . ,0,1) satisfying the additional conditions: 

(i) FCV, 
(ii) + / F 2 = + , 
(iii) o/F2 = 
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The structure (1?, o) will be called the linear space with the Euclidean 
scalar product, if the following axioms are satisfied: 

1.1 a o d = 0 « » a = 0, 

1.2 a o (6A) = (a o b)X, 

1.3 a o (6 + c) = (a o b) + (a o c), 

1.4 a o b = b o a, 

1.5 a 0 => 3A (aA) 0 (aA) = bob, 

1 . 6 a.b £ F a o b = ab. 

We distinguish the spaces satisfying the conditions dimV > 4, 
dimV > 2, dimV > 1. (Each of these conditions can be presented by an 
elementary axiom.) 

DEFINITION 2 . Let d be a linear space over the field F = (F, +,•>(), 1 ) 
with a scalar product. By a dimension-free central Euclidean geometry of 
similarities over the field F we mean the elementary theory of structures 
CF = (•&,R1,...,Rk,f1,...,fa,Q) where R{ (i = 1 , . . . , k), f j (j = l,...,s) 
are relations and functions with arguments and values in t?, definable by 
elementary formulae of 1?, 0 is zero-vector of •d and the group of automorfism 
of CF structure coincides with the group of the orthogonal transformations 
of linear space 1? such that the point 0 is fixed (cf. [2]). 

The concept of central geometry of similarities would be defined in a 
more general way, if the condition of Euclidean property imposed on the 
scalar product was omitted. The isometries and similarities connected with 
Minkowskian or Galilean metric form are often discussed in geometry and 
algebra. 

However, in this paper we restrict ourselves to the Euclidean similarities. 
Let us introduce the definition of the similarity space. 
Let (1?, o) be a linear space with a scalar product given by Definition 1. 

Let Pp be the similarity relation of the pairs of elements of the (t?, o) space 
defined in the following way. 

DEFINITION 3 . Pp(x,y,z,u) 

[x ^ 0 A3\ £ F (z o z = A(x o x) A u o u = X(y 0 y) A u o z = A (y o #)]. 

DEFINITION 4. The structure S(-F) = OF, PF) is called the simi-
larity space, where 1? = ($, o) denotes the linear space according to Definition 
1, —the operation of addition of vectors, OF—the zero-vector and PF— 
the relation described by Definition 3. 

The dimension of the space 1? is called the dimension of similarity space 
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3. The axiom sys tem of dimension-free geometry 
Let us discuss now the axiom system of dimension-free geometry. 
We split this axiom system into two parts. The first is the axiom system 

AO constructed by L. Dubikajtis. He formulated the problem of possibility 
of the extension of system AO to the axiom system of central geometry of 
similarities. The paper [5] contains the solution of this problem. 

The axiom system AO can be extended to the axiom system A2 of 
plane geometry and to the axiom system A 3 of dimension-free geometry 
(for dimensions > 3). 

Let us now recall the axiom system AO (cf. [5]). We consider the structure 
(E, +, 0, P), where + : E2 E, 0 e E, P C E4, satisfying the following 
axioms: 
AO: (E , + , 0 ) is the abelian group with at least two elements, 
A l : P(x, y,z,u) x ^ 0 , 
A 2 : P(x,y,0,y')=>y' = 0 , 
A3: P(x, y, x', y') =» P(x , y, - x ' , - y ' ) , 
A4: Vx, y, z[x / 0 3 y ' , u (P(x, y, x, y') A P(x, y', z, u) 

A P(x,y',x + z,y' + u))}, 
A5: P(x , y, x', y') A P(x , y, x", y") P(x', y', x", y"), 
A 6 : P ( x , 0 , y , y ' ) ^ y ' = 0, 
A 7 : P(x,x',y,y') => P{x, - x ' , y , - y ' ) , 
A 8 : P(x, x', y, y') P(x, x + x',y,y + y'), 
A 9 : Vx, x', x", y, y'[x' / O A P(x, x\ y, y') 3 y " ( P ( x , x", y, y") 

A P(x',x",y',y'% 
A 1 0 : Vx, x',y[x?0=> 3 y ' ( P ( x , y, x ' , y>) A P ( x , x ' , y, y ' ) ] , 
A l l : P(x , y, x', y') A P(y, y', y', y) => P(x, x', x', x)], 

We denote by AO = {AO,.. . , A l l} . 
We shall describe now three models of the axiom system AO. 

MODEL I. Let F = (F,+, . ,0,1) be an arbitrary commutative field. We 
define the structure: 

= ( E f , + f , 0 f , P f ) ; EF = Fn, 0 F = ( 0 , . . . , 0 ) , 

( x i , . . . , x „ ) + F (?/! , . . . , j /n) = (xi + yi,...,xn + yn), 

PF(x,y,z,u) 

^ [x / 0 A 3A G F(z 02 = A(x o x) A u o u = A (y oy) A uo z = A (y o x))] 

where xoy = xx j/i + . . . + xnyn for x = ( x i , . . . , xn), y = (yi,...,yn)- It can 
be shown that Mft is the model for AO. 

MODEL II. Interpreting E as the set of vectors of the Euclidean real plane 
which are fixed at the point 0, operation + as the addition of vectors (fig. 1) 
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and the relation P as the relation of similarity of triangles with common 
vertex (fig. 2) we obtain also the model of AO axiomatics. 

X 

Fig. 1 Fig. 2 

Using the notation introduced in the model I, we see that the model II 
is isomorphic with M ^ . 

M O D E L III. Let F = (F, + , •, 0 , 1 ) be an arbitrary commutative field and 
P p ( x , y , z,u) o [ i / 0 A ii = yx~xz\. It can be shown that the structure 
(F, + , 0, PF) is the model for AO. 

The other models of axiom system AO have been described in [5]. 
Now, we add the following axioms to the axiom system AO. 

A12: Vx ^ 0 3y ± x P(x, y, y, - x ) 

A13: P(x, y, y, - x ) A P(x', y', y', - x ' ) => P(x, y, y', x') 

A 1 4 : V z , y / 0 3 z [P(y, z, z, y) A Vz'(P(x, z, x, z') => z = z')] 

A 1 5 : P ( x , z - y , x , y - z ) A P ( y , z - x , y , x - z ) A z ^ 0 = > P(z, x - y, z, y— x) 

A 1 6 : P(x, y, - x , y) A P(x, z, - x , z ) => P(x, y + z , - x , y + z ) 

A17: P(x, y, y, x) A y ± - x =>• P(x + y, x - y, x + y, y - x) 

A18: Vz, y [x ± 0 =>• 3z (P(x, y, x, z) A Vz ' (P (x , y + z,x, z') =>• y + z = z'))] 
A 1 9 : ( P ( x , y , x , t ) =>- y = t ) V ( P ( x , u, x, v) A P(y, u,y,v) => u = v) 

A 2 0 : 3a ; , y, t,u, v(P(x,y, x , t ) A y ^ t A P(x, u, x,v) A P(y,u, y , v ) A u ^ v] 

Figures 3 and 4 present the interpretation of axioms A14 and A18, re-
spectively, for the second model described above. 

y 

Fig. 3 Fig. 4 

Let A l = AO U {A12 , . . . , A18}, A 2 = A l U {A19}, A 3 = A l U {A20}. 
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The axiom system A2 is the axiomatics of the plane geometry. The axiom 
system A3 is the axiomatics of dimension-free geometry (of dimensions > 3). 

Now, we shall formulate the representation theorems. 

THEOREM 1. The structure (E,+,0,P) is the model of the system 
a2 — Cn(A2) if and only if it is isomorphic with the similarity space 
S ( F ) = ( t? ,+f ,0 f , -Pf ) of dimension 2. 

THEOREM 2. The structure (E,+,Q,P) is the model of the system 
a3- = Cn(A3) if and only if it is isomorphic with the similarity space 
E ( F ) = (i9,+f,0F,PF) of dimension > 3. 

The proofs of these theorems can be found in [5]. 
The axiom A19 can be also written in equivalent form 
A19: -i3a;, y, t, u, v(P(x, y,x,t)Ay ^ tAP(x, u, x, v)AP(y, u, y, v)Au ^ v). 
It is the dimension axiom, as it restructs the dimensions of the space 

to 2. It is also the negation of the condition A20. 
Let M be a model for the system Cn(Al). If the condition A19 is fulfilled 

in M (M (= A19), then M is the model for Cn(A2); thus by Theorem 1 it 
is a similarity space of dimension 2. If the condition A19 is not satisfied in 
M (-.(M |= A19) or M \= -.A19), then M is the model for Cn(A3) hence 
it is a similarity space of dimension > 3 (Theorem 2). 

We have thus 

THEOREM 3. An arbitrary model of the system Cn(Al) is isomorphic 
with certain space of similarities of dimension > 1. 

4. Some properties of the relation P and the relation collinear-
ity L 

We shall now consider the relation of similarity P and the additional 
relation of collinearity L. Let us define a relation L(0,x,y). 

DEFINITION 5. Z ( 0 , x, y) & (P(x, y,x,z) y = z)). 

Now we prove some properties of relations P and L which we shall use 
in the sequel. 

LEMMA 1. x 0 P(x,x,y,y). 

P r o o f . Let x ± 0. By A10 

3t : P(x,x,y,t). 
By A7, A8, A6: 

P(x, x,y,t)=> P(x , -x, y, -1) =>• P(x, 0 , y ,y - t) =S> t = y. m 
On the basis of these axioms it is quite simple to prove: 
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LEMMA 2. x ^ 0 P ( x , y , x , y ) . 

LEMMA 3. P ( x , y , x', y') A x' ± 0 =>• P ( x ' , y ' , a;, y ) . 

P r o o f . By A1 and Lemma 2 

P(x, y, x', y') x ^ 0 =>• P(x, y, a;, y). 

By A5 

P(x, y, x', y') A P(x, y, x, y) A x' ^ 0 => P(x ' , y', ar, y). • 

LEMMA 4. P ( x , y , x', y') A I ' ^ 0 => P ( y , x , y ' , a; '). 

P r o o f . The assumptions and the axiom A9 imply: 

3u : (P(x, x, x', u) A P(y, x, y', u)). 
We have to prove that: x' — u. By A6, A7, A8: 

P(x, x, x', u) P(x, 0, x', x' — u) x' = u. a 
By A2, Lemmas 3 and 4 we prove 

LEMMA 5. P(x,y , x', y')A ^ 0 =>• P(y ' ,x ' , y, x). 

LEMMA 6. P ( x , y , x ' , y ' ) O P ( x , - y , - x ' , y'). 

T h e p r o o f of =•. By A3 and A7 

P(x, y, x', y') P(x, - y , x', - y ' ) P(x, - y , - x ' , y'). 

The proof of converse implication is analogous. • 

LEMMA 7. P ( x , y , x ' , y ' ) => P ( - x , y , - x ' , y ' ) . 

P r o o f . So, if P(x ,y ,x ' ,y ' ) , then by Al, Lemma 2 and A3 we get 
P(x, y, —x, —y), hence, by A5 it follows that 

(P(x, y, - x , - y ) A P(x, y, x', y') P ( - x , - y , x', y')). 

By Lemma 6 we get the thesis. • 

LEMMA 8. Vx [ ¿ ( 0 , x , 0) A Z ( 0 , x , x ) A 1 ( 0 , x , - x ) ] . 

P r o o f . The case x = 0 is obvious so, if x ^ 0 then by A6 we obtain 
Z(0,x,0) and by A6, A7, A8 we prove the other properties. • 

In simple way by A7 we prove 

LEMMA 9. L(0, x , y) =>• ¿ ( 0 , x , - y ) . 

By Lemma 7 and A7 we deduce 

LEMMA 10. X(0 ,x ,y ) L ( 0 , - x , - y ) . 

By A7 and A8 we get 

LEMMA 11. Z(0,x,y) =I> Z(0,x,x + y). 



Mathematical problems 773 

An interpretation of the next property is the following: if the triangles 
(0, x, y) and ( 0 , x ' , y ' ) are similar and the points 0, x, y are collinear then 
the points 0,x',y' are collinear too. 

LEMMA 12. Z ( 0 , x, y) A P(x, y, x', y') L(0,x',y'). 

P r o o f . The cases x' = 0 and y' = 0 are obvious. 
Thus we assume that: y' ^ 0. We have to prove that P(x', y', x', z) =>• 

y' = z. From the assumptions and P(x', y', x', z) by Lemma 3 and Lemma 5 
we have 

(1 ) P(y', x', y, x), (2 ) P(x', y x \ y), ( 3 ) P(x', z, x', y'). 

From (2) by A9 we get 

(4 ) 3 u : (P(y', z, y, u) A P(x', z, x, u). 

Applying A5 and from (2), (3) and (4) we obtain P(x,y,x,u). 
The assumption Z(0, x,y) and the condition P(x,y,x,u) imply y = u 

hence from (4) we have P(y',z,y,y). 
Now we can apply Lemma 11 because y' 0 hence ¡/ / 0 and we get 

By A6, A7, A8 we prove that y' = z. • 

LEMMA 13. P(x, y, z, u) A ¿ ( 0 , x, y) =>• P(x, y,x + z,y + u). 

P r o o f . From the assumption P(x,y, z,u) by A1 and A4 we get 

3v, w(P(x, y, x, v) A P(x, v, z, w) A P(x, v,x + z,v + w) 

since L(0,x,y) then from Definition 1 it follows that: y = v. The case 
2 = 0 is trivial. When z / 0 by A5 and Lemma 12 we prove that w = u 
hence P(x, y,x + z,y + u). n 

LEMMA 14. L(0,x,x') L(0,x',x). 

P r o o f . The cases x' = 0 and x = 0 are obvious, thus we assume 

(1 ) I / O A I ' / O A P ( X ' , x, x', z). 

We have to prove that x — z. By Lemma 4 and A3, (1) implies 
P(x, x', —z, —x'). 

Applying the assumption L(0,x,x') and Lemma 13 we obtain 
P(x, x', x - z, 0). Then by Lemma 4 and A2, (1) implies x = z. m 

LEMMA 15. x ^ 0 A ¿ ( 0 , x, x') A ¿ ( 0 , x, x") L(0, x', x"). 

P r o o f . Putting particular cases aside we assume that x' ^ 0 and x" ^ 0. 
We have to prove that P(x',x",x', u) x" = u. By A9 we have 

3 z (P(x', x, x', z) A P(x", x', u, z)) 
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then from the assumptions, Lemma 14, Lemma 4 and Definition 1 we obtain 
that x = z and P(x, x", x, u). On the basis of Definition 1 we get x" = u. m 

As a direct consequence of Lemma 14 and Lemma 15 we obtain: 

LEMMA 16 . y ^ 0 A ¿ ( 0 , x, y) A ¿ ( 0 , y, z) L(Q,x,z). 

LEMMA 17. ¿ ( 0 , x, y) A L(0, x, y') =>• L(0, x, y + y'). 

P r o o f . The case x = 0 is obvious. So we assume x ^ 0. From the 
assumptions by Lemma 9, Lemma 11, Lemma 15 we get 

L(0, x, x + y) A ¿(0, x , x - y') => L{0, x + y, x - y') => L{0, x + y,y + y'). 

When y — x by Lemma 16 we get the thesis. If y = — x then from assump-
tion L(0,x,y') by Lemma 9, Lemma 10 and Lemma 11 we obtain 

L(0,x,y+y'). m 

LEMMA 18. P(x, y, x', y') A P(y, z, y z ' ) A L(0, y, z) ^ P(x, z, x1, z'). 

P r o o f . A1 and P(y, z, y'z') imply y ^ 0 thus by A9 we get: 

(1) 3u (P(x, z, x', u) A P(y, z, y', u). 

If y' = 0 from (1) and the assumption P(y,z,y',z') by A2 it follows that 
u = z'. If y' / 0 from (1) and P(y,z,y',z') by A5 it follows that 
P(y',z',y',u), by Lemma 12 we get L(0,y',z'). We get z' = u by virtue 
of Definition 1 and this completes the proof. • 

The fig. 5 presents the interpretation of Lemma 18 for the 
model II. 

x 

LEMMA 19. x + x = 0 x - 0 . 
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P r o o f . Suppose x / 0. By Lemma 1 we get P(x,x,x,x) since x = — x 
hence P(x,x,x, -x). So x ^ 0 then by A12 we have 

(1) 3y £ x : P(x,y,y,-x) 
thus by A13 P(x,x,y,x). 

By A6, A7, A8 we prove that P(x, x, y, x) =>• P(x, 0 , y , y - x) => y = x 
what contradicts (1). • 

5. The axiom sys tem of the complete theory 
In this section we show the solution of a problem of an extension of the 

introduced in section 3 systems of axioms to complete theories. 
We shall construct the theory for which models will be the similarity 

spaces over the real-closed fields. 
We add the axiom AE to the axiom system A l : 

AE V®, y [x ± 0 3z (P(x, z, z, y) V P(x, -z, z, y)). 

Now, we verify the condition AE in an algebraic model. 
Let T,(F) be a similarity space over Euclidean field F. We prove that the 

condition AE is satisfied in this space. To this aim the following lemma will 
be used: 

LEMMA 20 . Let x, y G V. The vectors x, y are linearly independent if and 
only if 

w{x, y)-{x o x)(y o y) - (x o y)2 ± 0. 

P r o o f . If y = ax and a G F, then w(x, y) — 0. We assume 
(1) ax + f3y = 0 a = /? = 0, 

and suppose 
(2) w(x,y) = 0, 

then the system of equations 

a(x o x) + (3(x o y) = 0, a(y 02:) + ¡3{y o y) •= 0 

has a solution different from zero. 
There exists ¡3 ^ 0 such that the pair (~P(yox)/(xox), (3) is the solution 

of this system of equations. 
If t = ~P(y o x)/(x o x)x + ¡3y then t o t = 0, hence by Definition 1 

(1.1) t = 0. There exists a pair (a, (3) ± (0,0) such that ax -f f3y - 0 what 
contradicts the condition (1). • 

THEOREM 4. x ^ 0 3z (PF(x,z,z,y) V PF(x,-z,z,y)), where PF is 
the algebraic equivalent of relation P (see Definition 3). 
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Proof . We have to prove that there exist A,fi,z such that 
y o y = A(z o z) A z o z = A(x o x) A y o 2 = A(x o ,z)v 

(*) 
y oy = fi(z 0 z) A z o z = fi(x 0 x) A y o z = — /z(x o z). 

Let us notice that A and fi satisfy the condition 
A2 = fi2 = y 0 y/x 0 a;. We consider two possibilities: 

(i) x,y are linearly independent. 
Let us notice that [A(x o 1) + (1 0 y)][A(x o x) — (x o t/)] = w(x,y) thus 

by Lemma 20 we have A(x o i ) + ( i o y ) / 0 . 
L e t 5 = 2(A(gol)V°3/))- 3« : a2 = s or a2 = -a because F is the 

Euclidean field. Let z = a(x + l/Ay). If we take fi = A when a2 = s and 
fi — —A when a2 = —s it is easy to check that the conditions (*) are satisfied. 

(ii) y = /3s. 
There exist 7 such that 72 = /3 or 72 = —¡3 because F is the Euclidean 

field. If we take z — 7X and /x = A = /3 when 72 = /? or 2 = 73; and 
fi = X = —/3 when 72 = — ¡3 we can easily check that the conditions (*) are 
satisfied. • 

We have proved that AE is satisfied in the similarity space over Euclidean 
field. 

Let S(-F) be a similarity space for Cn(Al U {AE}). 
Now we prove that F is an Euclidean field. 
T H E O R E M 5 . V a e F 3/3 e F (/32 = a V /32 = - a ) . 

Proof . Let x = 1 and y = a. By AE and Def. 1 (1.6) 3A , f i ,z satisfying 
the conditions (z2 = A A a2 = Az2 A az = Az) V (z2 = fi A a2 = fiz2 A az = 
—fiz). If a = 0 then it suffices to take ¡3 = 0, if a 0, then 2 ^ 0. So we get 
a = z2 or a — —z2. m 

Let us define an ordering in F as: 

x > 0 O 3 r e F : x = r2. 
From the condition AE is results that 

Vx (x > 0 V x < 0). 
The monotony of multiplication is obvious. The monotony of addition 

results from the fact that F is a Pitagorean field because 

x>0Ay>0=>x = r2Ay = s2=>x + y = r2 + s2=t2=>x + y>0. 
Thus an addition of the condition AE ensures that S ( F ) is a similarity space 
over the orderly field. 

Let us define Tarski's relation B in Cn(A2 U {AE}) system (cf. [4]). 
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D E F I N I T I O N 6 . 

B{ 0, x, y) o [3u / 0 Vf (P(u, i, t, tt) P(x, i, t, y))Vx = 0), 
B(x, y, z) O- 5 ( 0 , y - x , z - x ) . 

Now we verify the correctness of this definition. 
Let T,(F) be a similarity space over a Euclidean field. 

L E M M A 2 1 . [PF(X, y , x , z ) =>• y = z] & 3a E F y = a x . 

P r o o f In agreement with Def. 3 we assume that z o z — y o y and 
x o z = x o y. We prove that (z — ax) o (z — ax) = 0 using the conditions 
(1.1), (1.2), (1.3) from Definition 1. Hence z — ax thus z — y. 

P r o o f We define the function II : V X V F: 

(cf. [1]). We assume that: Pp(x,y,x,z) y = z then by Definition 3 the 
conditions z o z = y o y and x o z = y o z are satisfied. Let us notice that 
u = 2II(x, y)x — y satisfies these conditions too hence u = y i.e. y = II(x, y)x. 

m 

Let us define ¿?f(0, x,y) o 3k ^ 0 y = k2x. 
T H E O R E M 6 . 

i / OA Bf( 0, x, y) [3ti ^ 0 Vi ( P F ( u , i , i , u ) P F ( x , t , i , y))]. 

P r o o f We assume that 3u ^ 0 Vi ( P p ( u , t , t , u ) Pp(x,t,t,y)), in 
particular we have Pp(u,u,u,u) =>• Pp(x,u,u,y) hence x / 0. By A14 we 
have 3X'(PF(U,X',X',U) A ZF(0,x,x ')) , but by the assumption 

By Definition 3, Definition 5 and Lemma 21 we get 
yoy= A ( x ' o x') A x' o x' = A(x ox) Ax' oy = A (x ' ox) Ay = / f a ' A x ' = 7X 

so /?(x' o x') = A7(X O X), what implies fl(x' o x') = j(x' o x'), since x' ^ 0 
then f} = 7. 

Finally we get y = 72x and 7 / 0. 
P r o o f If x ^ 0 and Bp(0,x,y), that is y = k2x, then it is easy to 

check that u = 1/fcy satisfies the required conditions. 
Let us add the primary schema to axioms of the system Cn(A2U {AE}) 

in the form: 

when x ^ 0 

when x = 0 

PF(U, x', x', u) PF(X, x', x', j/). 
By Lemma 12 we get 

PF(X, X', X ' , y) A Lf(0, x, x') =>• XF(0, x', Y ) . 
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AC: All sentences in the form: 

3a\/x, y(<p A ip =>• [3u £ 0 Vi (P(u, t, t, u) =>• P(x - a,t,t,y - a)) V x - a]) 
=> 3cV:r, y((pAip =>• [3w ^ 0 Vv (P(w, v, v, w) =$> P(c-x, v, v, y-x))Vx = c]), 

where <p, ip are expressions in which variables a, c, y and a,c,x, respectively, 
cannot be free. 

T H E O R E M 7. A theory a2 = Cn(A2 U {AE}) is the complete theory 
and each of its models is a two-dimensional similarity space T,(F) over a 
real-closed field F. 

COROLLARY. Any model of the theory a2 is primary elementary equiva-
lent to a two-dimensional similarity space E(-ff) over the real field. 

Replacing an elementary schema by a nonprimary elementary axiom 
of continuity in the form 3a B(a,X,Y) 3c B(X,c,Y), we shall get a 
categorical theory a 2 . 

(B(a, X, Y) is a short notation of: 
B{a,X,Y)& 
Vz, y(x e XAy eY=>[3u^QVt (P(u, t, t, u) =>• P(x-a, t, t, y-a))Vx = a]) 
and by analogy for B(X, c, Y).) 

T H E O R E M 8 . Any model of the a2 theory is isomorphic with two-dimen-
sional similarity space S(-R) over the real field. 

The dimension free geometries cannot be complete, because when we 
add the axiom of actual dimension we get the consistent theory as before. 

T H E O R E M 9. The unique models of Cn(Al U {AE,AC}) system are the 
similarity space £(F) over the real-closed fields of dimension > 1. 

If we add the axiom of dimension, we obtain the completeness of this 
theory. 

Thus we have given rather simple procedure of extension of n-dimen-
sional central geometry of similarities to the complete theory. 

6. The problem of independency of axioms 
Now, we discuss the problem of independency of axioms. 
We introduce independence models for some axioms of axiom system A l . 
The independence model for A12: 
We assume F = R in the model III. The relation PR does not satisfy 

A12 because for x / 0 and y ^ x -i(—x = yx~ly). 
The remaining axioms from A l are satisfied. 
The independence model for A13: 
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We assume F = C in the model III and x = 1, y = i, x' = —i, y' = 1. We 
get - 1 = i-l-i hence Pc(x,y,y,-x) and i = l - ^ - l hence Pc(x',y',y',-x') 
but —i ± i • 1 • 1 then -iP(x,y,y',x'). 

The remaining axioms from A 1 are satisfied. 
The independence model for A14: 
Let F = Q(i), H— the addition in this field and 

The remaining axioms from A 1 are satisfied. 
As the axioms A19 and A20 are the dimension axioms, they are inde-

pendent. 
Now we shall prove that the axiom A17 depends on the others. 

T H E O R E M 1 0 . F(x, y, y, x) A y ^ — x =>• P(x + y,x — y,x + y,y — x). 

P r o o f . If y = x then by Lemma 2 and Lemma 19 we get the thesis. So 
we assume 

By A7, A8, Lemma 4 and (i) we get 

P(x,y,y,x) P(x,-y,y,-x) =>• P(x,x-y,y,y-x) P(x-y,x,y-x,y). 

By Al , Lemma 1 and A8 we prove that P(x, x + x,y,y + y). By Lemma 8, 
Lemma 11 and Lemma 18 we get P(x — y, x + x, y — x, y + y) hence by A7 
and A8 it follows that P(x — y,—y — x,y — x,—x — y). 

By A7 and Lemma 4 obtain the thesis. • 

The axiom A15 follows from the condition of simple form: 

WA 15: P(x, y, y, x) A P(x, z, x) =>• P(y, z, z, y). 
Therefore A15 can be replaced by WA15. The fig. 6 presents the inter-

pretation of WA15 in the model II. 

PQ(X, y,z,u) [X 0 A (XU = yz V xu = yz)] 

where if z = a + bi then z = a — bi. 
We assume x = 1, y = 1 + i. 
In order to satisfy the axiom A14 there must exist 

z = \/2or z = y/^2 but \/±2 £ Q(i). OT Z = 

(i) y ± x. 

X 

0 
y 

z 

Fig. 6 
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T H E O R E M 1 1 . 

P(x, y - z, x, y - z) A P(y, z - x,y,x - z) A z jt 0 =ï P(z, x - y,z,y- x) 

P r o o f . We denote the conditions from the antecedent of the implication 
by (1), (2), (3) respectively. 

Let us suppose that z = x + y. From (1) by A7, A8, A6 we get x + x = 0 
which by Lemma 19 and A1 leads to contradiction, hence 

(4) 2 / x + y. 

From (1) and (2) by A3 and A8 we get 

P(x, z - y + x, -x, z-y - x) and P(y, z - x + y,-y,z - x - y). 

Applying to these formulae and (4) by Lemma 5 and Lemma 6 we obtain 

P(z - y - x,x,y - x - z,x) and P(z - x - y,y,x - y - z,y). 

By Lemma 1 and A l l we have 

then by WA15 we have P(y — x - z,x — y — z,x — y — z,y — x — z) hence by 
Theorem 10 it follows that P(—z, —z, —x — x + y + y, z + z,y — y — x — x). 
Then by Lemma 18, Lemma 7 and Lemma 6 we obtain the thesis. • 

It is possible to prove that if we add the axiom A19 to the axiom system 
A 1 then the axioms A16 and A18 become dependent on the others. 

At first we prove the additional property of relations P and L, which we 
get using the axiom A19. 

As a direct consequence of A19 we obtain 

T H E O R E M 1 2 . P ( x , x ' , x , x") A P ( y , x ' , y, x " ) A s ; ' / x" ^ L( 0 , x , y ) . 

Fig. 7 presents the interpretation of this theorem in the model II. 

Fig. 7 

T H E O R E M 1 3 . P ( x , x ' , x , x " ) A x' / x" => 1 ( 0 , x , x' + x " ) . 

P r o o f . By Lemma 8 the case x" = — x' is obvious so we assume: 

P(z — y — x,y — x — z,y — x — z,z — x — y) and 
P(z - y - x,x - y - z,x - y - z,z - x - y) 
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(1) x" —x'. Then by A6, Lemma 1, Lemma 4 and A l l we prove that 
P(x', x", x", x') hence by A8 we get P{x', x' + x", x", x' + x") which by (1) 
and Lemma 4 gives P(x' + x", x', x' + x", x"). 

Then the thesis follows from Theorem 12. • 

Now, we present the proof of the dependence for A16. 

T H E O R E M 1 4 . P ( x , y, - x , y) A P ( x , z , - x , z ) =>• P{x, y + z , - x , y + z ) . 

P r o o f . The cases y = 0 and z = 0 are obvious. Let us assume y ^ 0 and 
z ^ 0. Applying the properties of Lemma 4, Lemma 19 and Theorem 12 we 
obtain ¿(0, y, z), thus the thesis follows from the assumption P(x, y, —x, y) 
and the properties of Lemma 17 and Lemma 18. • 

Now we present the proof of the dependence for A18, which by Def. 8 is 
equivalent to: 

T H E O R E M 15. x ^ 0 =>- 3z P(x, y, x, z) A L(0,x,y+ z). 

P r o o f . By A10 and A12 we prove that: 3zP(x, y,x,z) Ay ^ z then the 
Theorem 13 yields L(0,x,y+ z). m 

Taking into consideration these results we notice that it is possible to 
obtain the axiom system of plane by adding to AO the four independent 
axioms A12, A13, A14, A19 and the condition WA15. 

7. Final remarks 
The paper contains the axiom system A1 of dimension-free geometry 

and the representation Theorems 1, 2 and 3). 
In the paper we have presented the construction of the axiom system 

A1U{AE, AC} of the complete theory and the representation theorem (The-
orem 9). 

The problem of independence of axioms has been also considered. The 
paper contains the models of independence for the axioms A12, A13, A14 
and the proof od dependence of the axiom A17. 

In the paper we have discussed the problem of dependence of the axioms 
A16 and A18. 

It is also interesting that the system of primitive notions considered 
here can lead to the axiomatics of one dimensional geometry and universal 
axiomatics that does not neglect any case of axiomatics of dimension-free 
geometry. Some problems will be discussed in a separate paper. 

Let us notice that from 4-ary relation P we can pass to some 5-ary 
relation of similarity concerning the pair of similar triangles with common 
vertex (not necessarily fixed). Thus the obtained results can be used for 
axiomatization of the non-central Euclidean geometry. 
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