

John Michael Rassias

ON THE STABILITY OF THE GENERAL
EULER-LAGRANGE FUNCTIONAL EQUATION

In 1940 S.M. Ulam [3] imposed at the University of Wisconsin the problem: "*Give conditions in order for a linear mapping near an approximately linear mapping to exist*". In 1978 P.M. Gruber [1] imposed the general problem: "*Suppose that a mathematical object satisfies a certain property approximately. Is it then possible to approximate this object by objects satisfying the property exactly?*" In 1989 J.M. Rassias [2] solved the above Ulam problem, or equivalently the Gruber problem for linear mappings. In this paper the author solves an analogous stability problem for the general 2-dimensional Euler-Lagrange functional inequality

$$(1) \quad \|f(a_1x_1 + a_2x_2) + f(a_2x_1 - a_1x_2) - (a_1^2 + a_2^2)[f(x_1) + f(x_2)]\| \leq c,$$

for all 2-dimensional vectors $(x_1, x_2) \in X^2$, with a normed linear space X , a constant c (independent of x_1, x_2) ≥ 0 , mapping $f : X \rightarrow Y$ (where Y is a complete normed linear space), and any fixed reals a_1, a_2 such that $0 < m = a_1^2 + a_2^2 \neq 0$. Besides he introduces the *2-dimensional quadratic weighted means*. According to P.M. Gruber [1] the afore-mentioned stability problems are of particular interest in probability theory and in the case of functional equations of different types.

DEFINITION 1. For X, Y as above a **non-linear mapping** $Q_2^a : X \rightarrow Y$, such that the functional equation

$$(1)' \quad Q_2^a(a_1x_1 + a_2x_2) + Q_2^a(a_2x_1 - a_1x_2) = (a_1^2 + a_2^2)[Q_2^a(x_1) + Q_2^a(x_2)]$$

holds for all vectors $(x_1, x_2) \in X^2$ and for any fixed reals a_1, a_2 with $m = a_1^2 + a_2^2 > 1$, is called **2-dimensional quadratic**.

Note that mapping Q_2^a may be called **quadratic**, as well, because the following **Euler–Lagrange identity**

$$(a_1 x_1 + a_2 x_2)^2 + (a_2 x_1 - a_1 x_2)^2 = (a_1^2 + a_2^2)[x_1^2 + x_2^2]$$

holds with any fixed reals a_1, a_2 , and because the functional equation

$$(2) \quad Q_2^a(m^n x) = m^{2n} Q_2^a(x),$$

holds for all $x \in X$, all $n \in N$ and any fixed reals a_1, a_2 such that $m = a_1^2 + a_2^2 > 1$. In fact, substitution $x_1 = x_2 = 0$ in equation (1') yields $2(1 - m)Q_2^a(0) = 0$, or

$$(1a)' \quad Q_2^a(0) = 0, \quad m > 1.$$

Substituting $x_1 = x, x_2 = 0$ in (1)' and employing (1a)' one gets $Q_2^a(a_1 x) + Q_2^a(a_2 x) = m[Q_2^a(x) + Q_2^a(0)]$, or

$$(2a) \quad Q_2^a(a_1 x) + Q_2^a(a_2 x) = m Q_2^a(x), \quad m > 1, \quad \text{for all } x \in X.$$

Moreover, substituting $x_1 = a_1 x, x_2 = a_2 x$ in (1') and using (1a)', one finds that $Q_2^a(mx) + Q_2^a(0) = m[Q_2^a(a_1 x) + Q_2^a(a_2 x)]$, or

$$(2b) \quad Q_2^a(a_1 x) + Q_2^a(a_2 x) = m^{-1} Q_2^a(mx), \quad m > 1. \quad \text{for all } x \in X.$$

The functional equations (2a), (2b) yield

$$(2c) \quad Q_2^a(mx) = m^2 Q_2^a(x), \quad m > 1, \quad \text{for all } x \in X.$$

Then induction on $n \in N$ with $x \rightarrow m^{n-1}x$ yields equation (2).

DEFINITION 2. For X, Y as above a non-linear mapping $(\bar{Q}_2^a)_{w^2} : X \rightarrow Y$, such that

$$(3) \quad (\bar{Q}_2^a)_{w^2}(x) = \frac{Q_2^a(a_1 x) + Q_2^a(a_2 x)}{a_1^2 + a_2^2}, \quad m = a_1^2 + a_2^2 > 1,$$

holds for all $x \in X$ is called a *2-dimensional quadratic weighted mean* for $m > 1$.

Note that in the case of equation (1'), formula (3), by (2a), is of the form

$$(3a) \quad (\bar{Q}_2^a)_{w^2}(x) = Q_2^a(x), \quad m > 1, \quad \text{for all } x \in X.$$

THEOREM 1. Assume that $f : X \rightarrow Y$ with X, Y as above is a mapping for which there exists a constant $c \geq 0$, independent of x_1, x_2 , such that the Euler–Lagrange functional inequality (1) holds for all vectors $(x_1, x_2) \in X^2$ and for any fixed reals a_1, a_2 such that $m = a_1^2 + a_2^2 > 1$. Then the limit

$$(4) \quad Q_2^a(x) = \lim_{n \rightarrow \infty} m^{-2n} f(m^n x), \quad m > 1,$$

exists for all $x \in X$ and $Q_2^a : X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying functional equation (1') such that

$$(5) \quad \|f(x) - Q_2^a(x)\| \leq \frac{1}{2} \frac{3m^2 - 1}{(m-1)^2(m+1)} c, \quad m > 1,$$

and

$$(5a) \quad Q_2^a(x) = m^{-2n} Q_2^a(m^n x),$$

hold for all $x \in X$, all $n \in N$, and any fixed reals a_1, a_2 such that $m = a_1^2 + a_2^2 > 1$.

Proof of existence. Substitution $x_1 = x_2 = 0$ in inequality (1) yields that

$$(6) \quad \|f(0)\| \leq \frac{c}{2(m-1)}, \quad m > 1.$$

Moreover substituting $x_1 = x, x_2 = 0$ in inequality (1) and employing (6) and triangle inequality one concludes functional inequality

$$(7) \quad \|f(a_1 x) + f(a_2 x) - m[f(x) + f(0)]\| \leq c,$$

or

$$\|\bar{f}_{w^2}(x) - f(x)\| \leq \frac{c}{m} + \|f(0)\| \leq \frac{c}{m} + \frac{c}{2(m-1)},$$

or

$$(8) \quad \|\bar{f}_{w^2}(x) - f(x)\| \leq \frac{3m-2}{2m(m-1)} c, \quad m > 1,$$

where

$$(8a) \quad \bar{f}_{w^2}(x) = \frac{f(a_1 x) + f(a_2 x)}{a_1^2 + a_2^2}, \quad m > 1,$$

is the **2-dimensional quadratic weighted mean** (for $m > 1$), according to the afore-mentioned Definition 2 of J.M. Rassias.

In addition, replacing $x_1 = a_1 x, x_2 = a_2 x$ in inequality (1) and using (6) and triangle inequality, one gets functional inequality

$$\|f(mx) + f(0) - m[f(a_1 x) + f(a_2 x)]\| \leq c,$$

or

$$\|\bar{f}_{w^2}(x) - m^{-2} f(mx)\| \leq \frac{c}{m^2} + \frac{1}{m^2} \|f(0)\| \leq \frac{c}{m^2} + \frac{1}{m^2} \frac{c}{2(m-1)},$$

or

$$(9) \quad \|\bar{f}_{w^2}(x) - m^{-2}f(mx)\| \leq \frac{2m-1}{2m^2(m-1)}c, \quad m > 1.$$

Functional inequalities (8), (9), and triangle inequality yield **the basic inequality**

$$\begin{aligned} \|f(x) - m^{-2}f(mx)\| &\leq \|f(x) - \bar{f}_{w^2}(x)\| + \|\bar{f}_{w^2}(x) - m^{-2}f(mx)\| \\ &\leq \left(\frac{3m-2}{2m(m-1)} + \frac{2m-1}{2m^2(m-1)} \right) c, \end{aligned}$$

or

$$(10) \quad \|f(x) - m^{-2}f(mx)\| \leq c_1(1 - m^{-2}), \quad m > 1,$$

where

$$(9a) \quad c_1 = \frac{1}{2} \frac{3m^2 - 1}{(m-1)^2(m+1)} c, \quad m > 1.$$

For instance, if $a_1 = a_2 = 1$, or $m = 2$, then $c_1 = \frac{11}{6}c$. Note that in this case a better constant $c_1 = \frac{1}{2}c$ may be found, if new substitution $x_1 = x_2 = x$ is applied into inequality (1) with $a_1 = a_2 = 1$. In fact, $\|f(2x) + f(0) - 4f(x)\| \leq c$ with $\|f(0)\| \leq \frac{c}{2}$, or

$$\|f(2x) - 4f(x)\| \leq c + \|f(0)\| \leq \frac{3}{2}c,$$

or

$$(11) \quad \|f(x) - 2^{-2}f(2x)\| \leq \frac{1}{2}c(1 - 2^{-2}).$$

Thus $c_1 = \frac{1}{2}c (< \frac{11}{6}c)$. Replacing now x with mx in (10), one concludes that

$$\|f(mx) - m^{-2}f(m^2x)\| \leq c_1(1 - m^{-2}), \text{ or}$$

$$(10b) \quad \|m^{-2}f(mx) - m^{-4}f(m^2x)\| \leq c_1(m^{-2} - m^{-4})$$

holds for all $x \in X$ and any real $m > 1$.

Functional inequalities (10), (10b) and triangle inequality yield

$$\begin{aligned} \|f(x) - m^{-4}f(m^2x)\| &\leq \|f(x) - m^{-2}f(mx)\| + \|m^{-2}f(mx) - m^{-4}f(m^2x)\| \\ &\leq c_1[(1 - m^{-2}) + (m^{-2} - m^{-4})], \end{aligned}$$

or

$$(10c) \quad \|f(x) - m^{-4}f(m^2x)\| \leq c_1(1 - m^{-4}), \quad m > 1,$$

holds for all $x \in X$.

Similarly by induction on $n \in N$ with $x \rightarrow m^{n-1}x$ in (10) claim that **general functional inequality**

$$(12) \quad \|f(x) - m^{-2n}f(m^n x)\| \leq c_1(1 - m^{-2n}), \quad m > 1,$$

holds for all $x \in X$ and all $n \in N$.

In fact, basic inequality (10) with $x \rightarrow m^{n-1}x$ yields inequality

$$\|f(m^{n-1}x) - m^{-2}f(m^n x)\| \leq c_1(1 - m^{-2}),$$

or

$$(12a) \quad \|m^{-2(n-1)}f(m^{n-1}x) - m^{-2n}f(m^n x)\| \leq c_1(m^{-2(n-1)} - m^{-2n}), \quad m > 1,$$

for all $x \in X$. By induction hypothesis with $n \rightarrow n-1$ in (12), inequality

$$(12b) \quad \|f(x) - m^{-2(n-1)}f(m^{n-1}x)\| \leq c_1(1 - m^{-2(n-1)}), \quad m > 1,$$

holds for all $x \in X$. Thus functional inequalities (12a), (12b) and triangle inequality imply

$$\begin{aligned} & \|f(x) - m^{-2n}f(m^n x)\| \\ & \leq \|f(x) - m^{-2(n-1)}f(m^{n-1}x)\| + \|m^{-2(n-1)}f(m^{n-1}x) - m^{-2n}f(m^n x)\|, \end{aligned}$$

or

$$\begin{aligned} \|f(x) - m^{-2n}f(m^n x)\| & \leq c_1[(1 - m^{-2(n-1)}) + (m^{-2(n-1)} - m^{-2n})] \\ & = c_1(1 - m^{-2n}), \quad m > 1, \end{aligned}$$

completing the proof of the required functional inequality (12).

Claim now that the sequence $\{m^{-2n}f(m^n x)\}$ **converges**. From the general inequality (12), one proves that the above sequence is a **Cauchy sequence**. In fact, if $i > j > 0$, and $m > 1$, then

$$(13) \quad \|m^{-2i}f(m^i x) - m^{-2j}f(m^j x)\| = m^{-2j}\|m^{-2(i-j)}f(m^i x) - f(m^j x)\|,$$

for all $x \in X$, and all $i, j \in N$. Setting $h = m^j x$ in (13) and employing general inequality (12), one concludes that

$$\begin{aligned} \|m^{-2i}f(m^i x) - m^{-2j}f(m^j x)\| & = m^{-2j}\|m^{-2(i-j)}f(m^{i-j}h) - f(h)\| \\ & \leq m^{-2j}c_1(1 - m^{-2(i-j)}), \end{aligned}$$

so

$$\|m^{-2i}f(m^i x) - m^{-2j}f(m^j x)\| \leq c_1(m^{-2j} - m^{-2i}) < c_1m^{-2j}.$$

Therefore

$$(13a) \quad \lim_{j \rightarrow \infty} \|m^{-2i} f(m^i x) - m^{-2j} f(m^j x)\| = 0$$

completing the proof that the Cauchy sequence $\{m^{-2n} f(m^n x)\}$ converges because of the completeness property of Y .

Hence $Q_2^a = Q_2^a(x)$ is a **well-defined mapping** via the formula (4). This means that the limit (4) exists for all $x \in X$.

In addition **claim** that mapping Q_2^a satisfies the functional equation (1') for all vectors $(x_1, x_2) \in X^2$.

In fact, it is clear from functional inequality (1) and the limit (4) that inequality

$$(14) \quad m^{-2n} \|f(a_1 m^n x_1 + a_2 m^n x_2) + f(a_2 m^n x_1 - a_1 m^n x_2) - (a_1^2 + a_2^2)[f(m^n x_1) + f(m^n x_2)]\| \leq m^{-2n} c, \quad m > 1,$$

holds for all $x_1, x_2 \in X$, and all $n \in N$. Therefore from inequality (14) one gets

$$\begin{aligned} & \left\| \lim_{n \rightarrow \infty} m^{-2n} f[m^n(a_1 x_1 + a_2 x_2)] + \lim_{n \rightarrow \infty} m^{-2n} f[m^n(a_2 x_1 - a_1 x_2)] \right. \\ & \quad \left. - (a_1^2 + a_2^2) \left[\lim_{n \rightarrow \infty} m^{-2n} f(m^n x_1) + \lim_{n \rightarrow \infty} m^{-2n} f(m^n x_2) \right] \right\| \\ & \leq c \lim_{n \rightarrow \infty} m^{-2n} = 0, \quad m > 1, \end{aligned}$$

or

$$\|Q_2^a(a_1 x_1 + a_2 x_2) + Q_2^a(a_2 x_1 - a_1 x_2) - (a_1^2 + a_2^2)[Q_2^a(x_1) + Q_2^a(x_2)]\| = 0,$$

or mapping Q_2^a satisfies the functional equation (1') for all $x_1, x_2 \in X$, and $m > 1$. Thus Q_2^a is a **2-dimensional quadratic mapping**. It is clear now, from general inequality (12), $n \rightarrow \infty$, and formula (4), that inequality (5) holds in X , completing the *existence* proof of Theorem 1.

Proof of uniqueness. Let $(Q_2^a)' : X \rightarrow Y$ be **another 2-dimensional quadratic mapping** satisfying functional equation (1') such that

$$(6)' \quad \|f(x) - (Q_2^a)'(x)\| \leq \frac{(3m^2 - 1)c}{2(m-1)^2(m+1)}, \quad m > 1,$$

for all $x \in X$. If there exists a 2-dimensional quadratic mapping $Q_2^a : X \rightarrow Y$ satisfying equation (1'), then

$$(15) \quad Q_2^a(x) = (Q_2^a)'(x), \quad m > 1,$$

for all $x \in X$. To prove the above-mentioned **uniqueness** employ (5a) for Q_2^a and $(Q_2^a)'$, as well, so that

$$(6a)' \quad (Q_2^a)'(x) = m^{-2n}(Q_2^a)'(m^n x), \quad m > 1,$$

holds for all $x \in X$, and all $n \in N$. Moreover triangle inequality and functional inequalities (5), (6)' yield

$$\|Q_2^a(m^n x) - (Q_2^a)'(m^n x)\| \leq \|Q_2^a(m^n x) - f(m^n x)\| + \|f(m^n x) - (Q_2^a)'(m^n x)\|,$$

or

$$(16) \quad \|Q_2^a(m^n x) - (Q_2^a)'(m^n x)\| \leq \frac{3m^2 - 1}{(m-1)^2(m+1)} c,$$

for all $x \in X$ and all $n \in N$. Then from (5a), (6a)', and (16), one proves that

$$\|Q_2^a(x) - (Q_2^a)'(x)\| = \|m^{-2n}Q_2^a(m^n x) - m^{-2n}(Q_2^a)'(m^n x)\|,$$

or

$$(16a) \quad \|Q_2^a(x) - (Q_2^a)'(x)\| \leq \frac{3m^2 - 1}{(m-1)^2(m+1)} m^{-2n} c, \quad m > 1,$$

holds for all $x \in X$ and all $n \in N$.

Therefore, from (16a) and $n \rightarrow \infty$, one establishes

$$\lim_{n \rightarrow \infty} \|Q_2^a(x) - (Q_2^a)'(x)\| \leq \frac{(3m^2 - 1)c}{(m-1)^2(m+1)} \lim_{n \rightarrow \infty} m^{-2n} = 0, \quad m > 1,$$

or

$$\|Q_2^a(x) - (Q_2^a)'(x)\| = 0,$$

or

$$(17) \quad Q_2^a(x) = (Q_2^a)'(x), \quad m > 1,$$

for all $x \in X$, completing the proof of **uniqueness** and thus the **stability** of Theorem 1.

Note that an **analogous definition** to Definition 1 holds for quadratic mapping Q_2^a for $0 < m < 1$. Moreover functional equation

$$(2)' \quad Q_2^a(m^{-n}x) = (m^{-n})^2 Q_2^a(x), \quad 0 < m < 1,$$

holds for all $x \in X$ and all $n \in N$. Similarly, substitution $x_1 = x_2 = 0$ in (1)' yields

$$(1a)' \quad Q_2^a(0) = 0, \quad 0 < m < 1.$$

Substituting $x_1 = \frac{x}{m}, x_2 = 0$, in (1)' and employing (1a)' one finds that

$$(2a)' \quad Q_2^a\left(\frac{a_1}{m}x\right) + Q_2^a\left(\frac{a_2}{m}x\right) = mQ_2^a(m^{-1}x)$$

holds for all $x \in X$ and any fixed real a_1, a_2 such that $0 < m = a_1^2 + a_2^2 < 1$. In addition, substituting $x_1 = \frac{a_1}{m}x, x_2 = \frac{a_2}{m}x$, in (1)' and employing (1a)', one gets that

$$(2b)' \quad Q_2^a\left(\frac{a_1}{m}x\right) + Q_2^a\left(\frac{a_2}{m}x\right) = m^{-1}Q_2^a(x)$$

holds for all $x \in X$ and any fixed real a_1, a_2 such that $0 < m = a_1^2 + a_2^2 < 1$.

Functional equations (2a)', (2b)' yield

$$(2c)' \quad Q_2^a(m^{-1}x) = m^{-2}Q_2^a(x), \quad 0 < m < 1.$$

Then induction on n with $x \rightarrow m^{-(n-1)}x$ yields

$$(2d)' \quad Q_2^a(m^{-n}x) = m^{-2n}Q_2^a(x), \quad 0 < m < 1,$$

completing the proof for equation (2)'.

DEFINITION 3. Let X be a normed linear space and Y a real complete normed linear space. Then a **non-linear mapping** $(\bar{Q}_2)_{w^2} : X \rightarrow Y$, such that

$$(3)' \quad (\bar{Q}_2)_{w^2}(x) = m \left[Q_2^a\left(\frac{a_1}{m}x\right) + Q_2^a\left(\frac{a_2}{m}x\right) \right]$$

holds for all $x \in X$ and any fixed real a_1, a_2 such that $0 < m = a_1^2 + a_2^2 < 1$, is called a *2-dimensional quadratic weighted mean* for $0 < m < 1$.

THEOREM 2. Let X be a normed linear space and Y a real complete normed linear space. Assume in addition that $f : X \rightarrow Y$ is a mapping for which there exists a constant $c \geq 0$ such that the Euler-Lagrange functional inequality

$$(4)' \quad \|f(a_1x_1 + a_2x_2) + f(a_2x_1 - a_1x_2) - (a_1^2 + a_2^2)[f(x_1) + f(x_2)]\| \leq c$$

holds for all 2-dimensional vectors $(x_1, x_2) \in X^2$, constant $c \geq 0$ independent of x_1, x_2 and any fixed reals a_1, a_2 such that $0 < m = a_1^2 + a_2^2 < 1$. Then the **limit**

$$(5)' \quad Q_2^a(x) = \lim_{n \rightarrow \infty} m^{2n}f(m^{-n}x), \quad 0 < m < 1,$$

exists for all $x \in X$ and $Q_2^a : X \rightarrow Y$ is the **unique** 2-dimensional

quadratic mapping satisfying equation (1)', such that

$$(6)'' \quad \|f(x) - Q_2^a(x)\| \leq \frac{(3 - m^2)c}{2(1 - m)^2(1 + m)}, \quad 0 < m < 1,$$

and

$$(6a) \quad Q_2^a(x) = m^{2n}Q_2^a(m^{-n}x),$$

hold for all $x \in X$, all $n \in N$ and any fixed reals a_1, a_2 such that $0 < m = a_1^2 + a_2^2 < 1$.

Proof. To prove Theorem 2 it is enough to establish the general functional inequality

$$(12)' \quad \|f(x) - m^{2n}f(m^{-n}x)\| \leq c_2(1 - m^{2n}), \quad 0 < m < 1,$$

for all $x \in X$, and all $n \in N$, where $c_2 = \frac{(3 - m^2)c}{2(1 - m)^2(1 + m)}$, $0 < m < 1$. In fact, substitution $x_1 = x_2 = 0$ in inequality (4)' yields that

$$(7)' \quad \|f(0)\| \leq \frac{c}{2(1 - m)}, \quad 0 < m < 1.$$

Moreover substituting $x_1 = \frac{x}{m}, x_2 = 0$ in inequality (4)' and employing (7)' and triangle inequality, one gets functional inequality

$$\left\| f\left(\frac{a_1}{m}x\right) + f\left(\frac{a_2}{m}x\right) - m \left[f\left(\frac{x}{m}\right) + f(0) \right] \right\| \leq c,$$

or

$$\|\bar{f}_{w^2}(x) - m^2 f(m^{-1}x)\| \leq mc + m^2 \|f(0)\|,$$

or

$$(8)' \quad \|\bar{f}_{w^2}(x) - m^2 f(m^{-1}x)\| \leq mc + m^2 \frac{c}{2(1 - m)} = \frac{2m - m^2}{2(1 - m)}c,$$

where

$$(8a)' \quad \bar{f}_{w^2}(x) = m \left[f\left(\frac{a_1}{m}x\right) + f\left(\frac{a_2}{m}x\right) \right], \quad 0 < m < 1,$$

is the 2-dimensional quadratic weighted mean for $0 < m < 1$, according to the afore-mentioned Definition 3 of J.M. Rassias. In addition, replacing $x_1 = \frac{a_1}{m}x, x_2 = \frac{a_2}{m}x$ in inequality (4)', and by triangle inequality, one concludes functional inequality $\|f(x) + f(0) - \bar{f}_{w^2}(x)\| \leq c$, or

$$\|f(x) - \bar{f}_{w^2}(x)\| \leq c + \|f(0)\| \leq c + \frac{c}{2(1 - m)}$$

or

$$(9)' \quad \|f(x) - \bar{f}_{w^2}(x)\| \leq \frac{3-2m}{2(1-m)}c, \quad 0 < m < 1.$$

Functional inequalities (8)', (9)', and triangle inequality yield the **basic inequality**

$$\begin{aligned} \|f(x) - m^2 f(m^{-1}x)\| &\leq \|f(x) - \bar{f}_{w^2}(x)\| + \|\bar{f}_{w^2}(x) - m^2 f(m^{-1}x)\| \\ &\leq \left[\frac{3-2m}{2(1-m)} + \frac{2m-m^2}{2(1-m)} \right] c = \frac{3-m^2}{2(1-m)^2(1+m)} c(1-m^2), \end{aligned}$$

or

$$(10)' \quad \|f(x) - m^2 f(m^{-1}x)\| \leq c_2(1-m^2), \quad 0 < m < 1,$$

where

$$(10a)' \quad c_2 = \frac{(3-m^2)c}{2(1-m)^2(1+m)}, \quad 0 < m < 1.$$

By induction on $n \in N$ with $x \rightarrow m^{-(n-1)}x$ in (10)', claim that above general inequality (12)' holds for all $x \in X$ and all $n \in N$, for $0 < m < 1$. In fact, (10)', (10a)' with $x \rightarrow m^{-(n-1)}x$ yield inequality

$$\|f(m^{-(n-1)}x) - m^2 f(m^{-n}x)\| \leq c_2(1-m^2),$$

or

$$(12a)' \quad \|m^{2(n-1)} f(m^{-(n-1)}x) - m^{2n} f(m^{-n}x)\| \leq c_2(m^{2(n-1)} - m^{2n}),$$

for all $x \in X$ and any fixed real m such that $0 < m < 1$.

By induction hypothesis with $n \rightarrow n-1$ in (12)' inequality

$$(12b)' \quad \|f(x) - m^{2(n-1)} f(m^{-(n-1)}x)\| \leq c_2(1-m^{2(n-1)}),$$

holds for all $x \in X$, and any fixed real m such that $0 < m < 1$. Thus functional inequalities (12a)', (12b)' and triangle inequality imply

$$\begin{aligned} \|f(x) - m^{2n} f(m^{-n}x)\| &\leq \|f(x) - m^{2(n-1)} f(m^{-(n-1)}x)\| + \\ \|m^{2(n-1)} f(m^{-(n-1)}x) - m^{2n} f(m^{-n}x)\| &\leq c_2[(1-m^{2(n-1)}) + (m^{2(n-1)} - m^{2n})] \\ &= c_2(1-m^{2n}), \quad 0 < m < 1, \end{aligned}$$

completing the proof of the required functional inequality (12)'.

The rest of the proof of Theorem 2 is omitted as similar to the corresponding proof of Theorem 1.

EXAMPLE. Take $f : R \rightarrow R$ being a real function $f(x) = x^2 + k$, with constant k such that $|k| \leq \frac{c}{2(1-m)}$, $0 < m < 1$.

Moreover, let a unique quadratic mapping $Q_2^a : R \rightarrow R$ exist, such that

$$Q_2^a(x) = \lim_{n \rightarrow \infty} m^{2n} [(m^{-n}x)^2 + k] = x^2, \quad 0 < m < 1.$$

Therefore inequality (6)" holds, since

$$\|f(x) - Q_2^a(x)\| = \|(x^2 + k) - x^2\| = |k| \leq \frac{c}{2(1-m)}$$

and

$$\frac{1}{1-m} < \frac{3-m^2}{(1-m)^2(1+m)}, \quad 0 < m < 1.$$

Note that if $m > 1$, then take any real constant k such that $|k| \leq \frac{c}{2(m-1)}$.

THEOREM 3. Let X be a normed linear space and Y a real complete normed linear space. Assume in addition that $f : X \rightarrow Y$ is a mapping for which there exist constants $c, c' \geq 0$ such that the Euler-Lagrange functional inequality

$$(4)" \quad \|f(a(x_1 + x_2)) + f(a(x_1 - x_2)) - [f(x_1) + f(x_2)]\| \leq c$$

holds for all 2-dimensional vectors $(x_1, x_2) \in X^2$, $\|f(0)\| \leq c'$, nonnegative constants c, c' independent of x_1, x_2 and $a = \frac{1}{\sqrt{2}}$ (or: $= -\frac{1}{\sqrt{2}}$). Then the limit

$$(5)" \quad Q_2(x) = \lim_{n \rightarrow \infty} 2^{-n} f((2a)^n x), \quad m = 2a^2 = 1,$$

exists for all $x \in X$ and $Q_2 : X \rightarrow Y$ is the **unique** 2-dimensional quadratic mapping satisfying functional equation

$$(1)" \quad Q_2(a(x_1 + x_2)) + Q_2(a(x_1 - x_2)) = Q_2(x_1) + Q_2(x_2), \quad m = 1,$$

and $Q_2(0) = 0$, such that

$$(6)''' \quad \|f(x) - Q_2(x)\| \leq c + c', \quad m = 1,$$

and

$$(6a)'' \quad Q_2(x) = 2^{-n} Q_2((2a)^n x), \quad m = 1,$$

hold for all $x \in X$ and all $n \in N$.

Note that $a_1 = a_2 = a$ in Theorem 3, and thus $m = a_1^2 + a_2^2 = 2a^2 = 2(\pm\frac{1}{\sqrt{2}})^2 = 1$. Thus Theorem 3 is a **singular case** of Theorems 1, 2.

Proof. Substitution $x_1 = x_2 = x$ in inequality (4)" yields that **basic inequality** $\|f(2ax) + f(0) - 2f(x)\| \leq c$ or from condition: $\|f(0)\| \leq c'$

$$(18) \quad \|f(x) - 2^{-1}f(2ax)\| \leq (c + c')(1 - 2^{-1}),$$

holds for all $x \in X$. By induction on n with $x \rightarrow (2a)^{n-1}x$ in basic inequality (18), one concludes the **general inequality**

$$(18a) \quad \|f(x) - 2^{-n}f((2a)^n x)\| \leq (c + c')(1 - 2^{-n}),$$

for all $x \in X$, all $n \in N$ and $a = \pm \frac{1}{\sqrt{2}}$.

Note that substitution $x_1 = x_2 = x$ in equation (1)" yields $Q_2(2ax) + Q_2(0) = 2Q_2(x)$, or from $Q_2(0) = 0$

$$(18b) \quad Q_2(x) = 2^{-1}Q_2(2ax).$$

Then, by induction on $n \in N$ with $x \rightarrow (2a)^{n-1}x$ in (18b), one establishes (6a)".

The rest of the proof of Theorem 3 is omitted as similar to the proof of Theorem 1.

References

- [1] P. M. Gruber, *Stability of Isometries*, Trans. Amer. Math. Soc., U.S.A., 245 (1978), 263–277.
- [2] J. M. Rassias, *Solution of a problem of Ulam*, J. Approx. Th., 57, (1989), 268–273.
- [3] S. M. Ulam, *A collection of mathematical problems*, Interscience Publishers, Inc., New York, 1960.

NATIONAL AND CAPODISTRIAN UNIVERSITY OF ATHENS
 PEDAGOGICAL DEPARTMENT E. E.
 SECTION OF MATHEMATICS AND INFORMATICS
 4, Agamemnonos Str.
 AGHIA PARASKEVI
 ATTIKIS 15342, GREECE

Received May 30, 1995.