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ON THE STABILITY OF THE GENERAL
EULER-LAGRANGE FUNCTIONAL EQUATION

In 1940 S.M. Ulam [3] imposed at the University of Wisconsin the prob-
lem: “Give conditions in order for a linear mapping near an approzimately
linear mapping to ezist”. In 1978 P.M. Gruber 1] imposed the general prob-
lem: “Suppose that a mathematical object satisfies a certain property approz-
imately. Is it then possible to approzimate this object by objects satisfying the
property ezactly?” In 1989 J.M. Rassias [2] solved the above Ulam problem,
or equivalently the Gruber problem for linear mappings. In this paper the
author solves an analogous stability problem for the general 2-dimensional
Euler-Lagrange functional inequality

(1) [If(a1z1 + azz2) + flazz1 — a1z2) — (a3 + af)[f(z1) + f(22)]]| < e,

for all 2-dimensional vectors (z1,z2) € X2, with a normed linear space X,
a constant ¢ (independent of z,z2) > 0, mapping f : X — Y (where Y
is a complete normed linear space), and any fixed reals a;,a; such that
0 < m = a? + a3 # 0. Besides he introduces the 2-dimensional quadratic
weighted means. According to P.M. Gruber [1] the afore-mentioned stability
problems are of particular interest in probability theory and in the case of
functional equations of different types.

DErFINITION 1. For X,Y as above a non-linear mapping Q5 : X — Y,
such that the functional equation

(1) Q5(a12z1 + a22:) + Q5 (a1 — a122) = (a} + 63)[Q5(21) + Q5 (x2)]

holds for all vectors (z;,z;) € X? and for any fixed reals a;,a; with m =
a? + a2 > 1, is called 2-dimensional quadratic.

AMS (1991) Subject Classification No.: 4TH15.



756 J. M. Rassias
Note that mapping Q% may be called quadratic, as well, because the
following Euler—Lagrange identity
(@121 + a222)% + (az21 — 122)* = (a} + a3)[2] + 23]
holds with any fixed reals a;, a;, and because the functional equation
(2) Q3(m"z) = m*"Q3(2),

holds for all z € X, all n € N and any fixed reals a;,as such that m =
a? + a4 > 1. In fact, substitution £; = z; = 0 in equation (1') yields
2(1-m)Q3(0) = 0, or

(1a)’ Q3(0)=0, m>1.

Substituting 3 = z,z2 = 0 in (1)’ and employing (1a)’ one gets Q%(a1z) +
Q3(axz) = m[Q3(z) + Q3(0)], or

(2a) Q3(a12) + Q3 (azz) = mQ@Q3(z), m>1, forallze X.

Moreover, substituting z; = a;2,23 = azz in (1') and using (1a)’, one

finds that Q§(mz) + Q4(0) = m[Q$(a12) + Q3(aze)], or

(2b) Q%(a12) + Q3(agz) = m™1Q4(mz), m > 1. forall z € X.
The functional equations (2a), (2b) yield

(2¢) Q5(mz) = m?*Q%(z), m>1, foralzeX.

Then induction on n € N with £ — m™ !z yields equation (2).

DgrinNITION 2. For X,Y as above a non-linear mapping (Q;)wg X -

Y, such that
—a _ Q3(a1z) + Q3(az2)
(3) (QZ)wz(z) = a% n a% y

holds for all z € X is called a 2-dimensional quadratic weighted mean for
m > 1.
Note that in the case of equation (1'), formula (3), by (2a), is of the form

(3a) (@3)w2(z) = Q¥z), m>1, forallzeX.

m=al+d>1,

THEOREM 1. Assume that f: X — Y with X,Y as above is a mapping
for which there exists a constant ¢ > 0, independent of x1,x4, such that the
Euler-Lagrange functional inequality (1) holds for all vectors (z1,z3) € X?
and for any fized reals ay,ay such that m = a? + a2 > 1. Then the limit

@) Q5(x) = im m~"f(ms), m > 1,
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erists for allz € X and Q% : X — Y is the unique 2-dimensional quadratic
mapping satisfying functional equation (1') such that

m? —
(%) 1£0) = Q@I < 5Ty ™ > b
and
(52) Q3(e) = m™"Q§(m"2),

hold for all x € X, all n € N, and any fized reals ay,ay such that m =
al+di>1.

Proof of existence. Substitution z; = z7 = 0 in inequality (1)
yields that

(6) ||f(0)” < m, m > 1.

Moreover substituting z; = z,z2 = 0 in inequality (1) and employing (6)
and triangle inequality one concludes functional inequality

(7 [f(a1z) + f(azz) — m[f(z) + fO)]l < ¢,

or
[

IFun(@) = S@I < 1+ OIS o+ 50—

or
®) [For(@) = (@I € gi—e, m>1,
where
- +
(82) Funle) = HE 0,

is the 2-dimensional quadratic weighted mean (for m > 1), according
to the afore-mentioned Definition 2 of J.M. Rassias.

In addition, replacing z; = a1z,22 = @27 in inequality (1) and using (6)
and triangle inequality, one gets functional inequality

| f(mz) + £(0) — m[f(a12) + f(az2)]l| < c,

or

1 c

- _ 1
Tz (@) = m=2 fma)ll < 5+ 5 MO S o5+ gy,
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or

= 2m -1
(9) [Fun(2) = m 2 f(ma)l| € gog—ses m> 1.

Functional inequalities (8), (9), and triangle inequality yield the basic
inequality

1£(z) = m=2 f(ma)l| < [1f(2) = Fur (@)l + 2 () = m™2 f(ma)|

< 3m -2 4 2m -1 .
~\2m(m-1) 2m?(m-1))"

or
(10) 1f(z) - m~2f(mz)|| < er(1 - m72), m>1,
where

2 _
(9a) c1 1 sm_—1 m > 1.

T 3m-¥(m+1)°

For instance, if a; = a; = 1, or m = 2, then ¢; = 16—10. Note that in

this case a better constant ¢; = %c may be found, if new substitution

z1 = z, = z is applied into inequality (1) with a¢; = a; = 1. In fact,
17(22) + f(0) — 4f ()| < ¢ with || f(0)|| < £, or
3
1£(22) = 4f(2)l| < e+ ILF(OIl < 5e,

or

(1) I1£() = 272 feo)ll < 51— 27).

Thus ¢; = 3¢ (< Xc). Replacing now z with mz in (10), one concludes that
| f(mz) — m~2 f(mPz)|| < e1(1 — m™2), or

(10b) Im=2 f(mz) - m~* f(m22)]| < e(m2 - m™*)

holds for all z € X and any real m > 1.
Functional inequalities (10), (10b) and triangle inequality yield

() — m™* f(m?z)|| < ||f(z) = m~? f(ma)|| + ||m ™2 f(mz) — m™* f(mPz))]|
<al(l-m™2) 4+ (m™? - m™)],

or

(10¢) 1f(2) = m™ f(mi)| < (1 - m™), m>1,

holds for all z € X.
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Similarly by induction on n € N with z — m" 1z in (10) claim that
general functional inequality

(12) I£(z) = m™?" f(m"2)]| < ex(1 = m™*"), m>1,

holds for all 2 € X and all n € N.
In fact, basic inequality (10) with 2 — m™ 1z yields inequality

[f(m" " 2) = m=2 f(m"2)|| < er(1 = m™?),

or
(12a)
||m‘2("‘1)f(m”_1:1:) _ m—2nf(mnz,)” S cl(,,,n—2(n—1) _ m—Zn), m> 1,

for all z € X. By induction hypothesis with n — n — 1 in (12), inequality
(12b)  |If(z) - mP TV f(m )| < ea(1 - mTPTY), m> 1,

holds for all z € X. Thus functional inequalities (12a), (12b) and triangle
inequality imply
[1£(z) = m™2" f(m"z)]|
<N f(2) =m0 fmC V)| 4 [m 207D f(m V) — m " f(mm )|,
or
[1£(2) = m™2" f(m2)|| < er(1 = m =27V 4 (m2 D — 2]
=c;(1-m™"), m>1,

completing the proof of the required functional inequality (12).

Claim now that the sequence {m~%"f(m™z)} converges. From the
general inequality (12), one proves that the above sequence is a Cauchy
sequence. In fact,if ¢ > 7 > 0, and m > 1, then

(13) |lm=* f(m'z) — m™* f(miz)|| = m=*||lm=2=9 f(m'c) — f(mia)],

for all z € X, and all i, € N. Setting h = m’z in (13) and employing
general inequality (12), one concludes that

=% f(miz) = m™ f(miz)| = m 5 m 36 f(mi=ih) = £(b)|
< m_2j61(1 _ m—2(i—j))’

SO

lm=% f(miz) — m™% f(miz)|| < ex(m™ = m™ %) < eym™%,
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Therefore

(13a) lim [|m~% f(m'z) — m™* f(mz)|| = 0

J—r00

completing the proof that the Cauchy sequence {m~2" f(m™z)} converges
because of the completeness property of Y.

Hence Q% = Q%(z) is a well-defined mapping via the formula (4).
This means that the limit (4) exists for all z € X.

In addition claim that mapping Q% satisfies the functional equation (1)
for all vectors (z1,72) € X2.

In fact, it is clear from functional inequality (1) and the limit (4) that
inequality

(14) m=2"| flaym™2y + azm™zs) + flagm™zy — aym™ay)
—(a + a3)[f(m"z1) + f(m"z2)]|| < m~"e,  m > 1,

holds for all z1,z2 € X, and all n € N. Therefore from inequality (14) one
gets

I nlew m™" flm™(a 2, + az22)] + nh—vnéo m'2"f[m"(a2w1 - a122)]
—(af + a3)[ lim m™*" f(m"z1) + lim m™*" f(m"z,)]|
n—oo n—oo
<clim m™™ =0, m>1,

n—oo

or
1Q5(a121 + a222) + Q5(az21 — a122) — (a} + a3)[Q5(21) + Q5 (z2)][| = 0,

or mapping Q% satisfies the functional equation (1') for all zy,2, € X, and
m > 1. Thus QF is a 2-dimensional quadratic mapping. It is clear now,
from general inequality (12), n — oo, and formula (4), that inequality (5)
holds in X, completing the ezistence proof of Theorem 1.

Proof of uniqueness. Let (Q3) : X — Y be another 2-dimen-
sional quadratic mapping satisfying functional equation (1') such that

' ay (3m? — 1)c
(6) ”f((l)) - (Q2) (:lt)” < 2(m — 1)2(m+ 1)) m>1,

forallz € X. If there exists a 2-dimensional quadratic mapping Q3 : X — Y
satisfying equation (1'), then

(15) Qz(z) =(Q3)'(z), m>1,
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for all z € X. To prove the above-mentioned uniqueness employ (5a) for
Q% and (Q%), as well, so that

(6a)' (@3)(z) =m™"(Q3)'(m"z), m>1,

holds for all z € X, and all n € N. Moreover triangle inequality and func-
tional inequalities (5), (6) yield

1Q3(m"2)—(Q32) (m"2)|| < Qz(m"z)—f(m"z)||+||f(m"2)-(Q3)' (m"=)|l,
or

a n a\/ n 3m2 -1
(16) 195(m"2) ~ (@3)(m"2)ll € Ty

for all z € X and all » € N. Then from (5a), (6a)’, and (16), one proves
that

1Q%(2) — (@3 (@)l = [Im~*"QF(m™z) — m™*"(Q3)'(m"z)|l,

(162)  103() - @)@ S e m> 1,

holds for all z € X and all n € N.
Therefore, from (16a) and n — oo, one establishes

(3m? —1)c

nango Q2 (=) — (Qg),(x)” < (m— 1)2(m +1) nlinéo m”" = 0, m>1,
1Qz(z) — (Q3)' (=)l =0,
(17) Qz(z) = (Q3)(z), m>1,

for all'z € X, completing the proof of uniqueness and thus the stability
of Theorem 1.

Note that an analogous definition to Definition 1 holds for quadratic
mapping Q5 for 0 < m < 1. Moreover functional equation

(2) Q3(m™"2) = (m™")’Q3(z), 0<m< 1,

holds for all z € X and all » € N. Similarly, substitution z; = z, = 0 in
(1) yields

(1a)’ Q40)=0, 0<m<1.
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Substituting z; = Z,2, =0, in (1)’ and employing (1a)’ one finds that
[ a _(_ll a a_z_ - a -1
(2a) Qz(mz) +Q2<m$> mQz(m™ )

holds for all z € X and any fixed real ay,a; such that 0 < m = a? + a2 < 1.
In addition, substituting z; = %*z,2; = %2z, in (1)’ and employing (1a)’,
one gets that

(2b) 03( %) +03(20) = m10500)

holds for all z € X and any fixed real a;,a; such that 0 < m = a? +a} < 1.
Functional equations (2a)’, (2b)’ yield

(2¢) Qi(m™lz) = m™2Q%(z), 0<m< 1.

Then induction on n with £ — m~(*~Dz yields

(24) Qi(m™"z) = m™Qi(z), 0<m<1,

completing the proof for equation (2)'.

DEFINITION 3. Let X be a normed linear space and Y a real complete
normed linear space. Then a non-linear mapping (Q;),2 : X — Y, such
that

_ fa fa
o el ()
holds for all z € X and any fixed real ajap such that 0 < m = a? + a3 < 1,

is called a 2-dimensional quadratic weighted mean for 0 < m < 1.

THEOREM 2. Let X be a normed linear space and Y a real complete
normed linear space. Assume in addition that f : X — Y is a mapping for
which there exists a constant ¢ > 0 such that the Fuler-Lagrange functional
inequality

(4 |f(a121 + a223) + fazz1 — a122) — (a} + a3)[f(21) + fle2)]| < ¢

holds for all 2-dimensional vectors (z1,22) € X2, constant ¢ > 0 indepen-
dent of 21,z and any fized reals a;,a; such that 0 < m = a? + a < 1.
Then the limat

(8) Q3(z) = lim m™f(m™"z), 0<m<1,

exists for allz € X and Q3 : X — Y is the unique 2-dimensional
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quadratic mapping satisfying equation (1), such that

6 @) - Qe < gromm s, 0<m<t,
and
(62) Q4(z) = m*"Q3(m™"a),

hold for all z € X, all n € N and any fized reals ay,as such that 0 < m =
a? +adi < 1.
1T a3

Proof. To prove Theorem 2 it is enough to establish the general func-
tional inequality

(12) 1f(z) = m*" f(m™"2)|| < e2(1 = m®"), 0<m<1,

forall z € X, and all n € N, where ¢; = m—(_%%,o < m < 1. In fact,
substitution z; = o = 0 in inequality (4)’ yields that

(7 FCO)|| < m, 0<m<l1.

Moreover substituting z; = £, z2 = 0 in inequality (4)' and employing (7)’
and triangle inequality, one gets functional inequality

£ (Ze)+5 (Te) - m s (Z) + 70| <

[Fun(2) = m* f(m~ 2)|| < me + m* || £(0)]],

or

or

c 2m — m?

Q-m) 21-m)"

(8) ||Tw2(:v) —m? f(m™1z)|| < me 4+ m? 5

where
(8a)' 7w2(w):m[f (%m) +f(%z)] , 0<m«<1,

is the 2-dimensional quadratic weighted mean for 0 < m < 1, ac-
cording to the afore-mentioned Definition 3 of J.M. Rassias. In addition,
replacing 2, = $x,2; = 22z in inequality (4), and by triangle inequality,
one concludes functional inequality ||f(z) + f(0) — f2(2)|| < ¢, or

1/@) = Tur @Il < e+ SOl S e+ 575
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or
—= 3-2
(9)’ ”f("l?) - fwz(il:)“ < 2(1—_2)6, O<m«<l.
Functional inequalities (8)', (9)', and triangle inequality yield the basic
inequality

1£(2) = m* f(m™ )| < [1£(2) = Fup (@) + [ fus(2) = m* f(m™ )|

3-2m  2m-—m? 3 —m?

SlsaTm 2w T A meaE T ),
or
(10) If(z) = m?f(m™tz)|| < ea(1—m?), 0<m<1,
where
(10a)’ e (3= me 0<m<1,

T 21-mE(l+m)

By induction on n € N with z — m~(»~Dz in (10)’, claim that above
general inequality (12)' holds for all z € X and all n € N, for 0 < m < 1.
In fact, (10), (10a)’ with z — m~(*~Dz yield inequality

If(m=*Dg) - m? f(m"a)| < ea(1 — m?),
or
(128.)’ ”m2(n—1) f(m—(n—l)x) _ man(m—nz)” < 02(m2(n—1) _ m2n)’

for all z € X and any fixed real m such that 0 < m < 1.
By induction hypothesis with n — n — 1 in (12)’ inequality

(12b) I1£(z) = m*@7 f(m~ " Da)|| < ep(1 - mP7Y),

holds for all z € X, and any fixed real m such that 0 < m < 1. Thus
functional inequalities (12a)’, (12b)’ and triangle inequality imply

I1f(z) = m** f(m~"2)|| < || f(z) = m**~V f(m~""Va)||+
||m2(n_1)f(m_(n_1):I:)—m2nf(’m_":l:)“ < 62[(1_m2(n—1))+(m2(n—1)_m2n)]
=c(1-m?"), 0<m<]1,

completing the proof of the required functional inequality (12)'.
The rest of the proof of Theorem 2 is omitted as similar to the corre-
sponding proof of Theorem 1.
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EXAMPLE. Take f : R — R being a real function f(z) = z? + k, with
constant k such that |k| < om0 <m< L.
Moreover, let a unique quadratic mapping @4 : R — R exist, such that

Q%(z) = lim m™[(m"z)? +k]=2% O0<m<l.

Therefore inequality (6)" holds, since
c

1£() = Q3(e = & +8) = 221l = M < s

and
1 < 3-—m?
1-m ~(1-m)}(14+m)’

Note that if m > 1, then take any real constant k such that |k| < m

O<m<1.

THEOREM 3. Let X be a normed linear space and Y a real complete
normed linear space. Assume in addition that f : X — Y is a mapping for
which there exist constants c,c' > 0 such that the Fuler-Lagrange functional
inequality

(4)" [ f(a(e1 + 22)) + fla(z1 — 22)) = [f(z1) + fz)I| < ¢

holds for all 2-dimensional vectors (z1,z5) € X2, || f(0)]] < ¢’, nonnegative

c.on.sjtants ¢, ¢’ independent of z1,7, and a = % (or: = _\/LE) Then the
limit
(5)" Qa(z) = lim 27"f((2¢)"z), m=2d*=1,

. n—oo

exists forallz € X and Q) : X — Y is the unique 2-dimensional quadratic
mapping satisfying functional equation

(1)"  Qz(a(z1 + 72)) + Qa2(a(z1 — 22)) = Qa(z1) + Q2(z2), m=1,
and Q2(0) = 0, such that

(6)" f(2) = Qa(z)]| e+, m=1,
and
(6a)" Q2(z) =27"Q2((2a)"z), m=1,

hold for allz € X and alln € N.
Note that a; = a2 = a in Theorem 3, and thus m = a? + a2 = 2¢% =
2(x \/-)2 = 1. Thus Theorem 3 is a singular case of Theorems 1, 2.
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Proof. Substitution zy = 23 = z in inequality (4)"” yields that basic
inequality ||f(2az) + f(0) — 2f(2)|| < ¢ or from condition: ||f(0)| < ¢

(18) I1f(2) =27 f(202)| < (c + )1 -271),

holds for all z € X. By induction on n with z — (2a)" 'z in basic inequality
(18), one concludes the general inequality

(18a) 1f(z) = 27" f((2a)"2)]| < (e + )1 - 277),
forallzGX,allneNanda::t\%-.

Note that substitution z; = z, = « in equation (1)” yields @2(2az) +
Q2(0) = 2Q2(z), or from @2(0) =0

(18b) Q2(z) = 271Q4(2az).
Then, by induction on n € N with z — (2a)" "1z in (18b), one establishes
(6a)".

The rest of the proof of Theorem 3 is omitted as similar to the proof of
Theorem 1.
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