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ON THE STABILITY OF THE GENERAL 
EULER-LAGRANGE FUNCTIONAL EQUATION 

In 1940 S.M. Ulam [3] imposed at the University of Wisconsin the prob-
lem: " Give conditions in order for a linear mapping near an approximately 
linear mapping to exist". In 1978 P.M. Gruber [1] imposed the general prob-
lem: "Suppose that a mathematical object satisfies a certain property approx-
imately. Is it then possible to approximate this object by objects satisfying the 
property exactly?" In 1989 J.M. Rassias [2] solved the above Ulam problem, 
or equivalently the Gruber problem for linear mappings. In this paper the 
author solves an analogous stability problem for the general 2-dimensional 
Euler-Lagrange functional inequality 

(1) WfiaiXí + a2x2) + f(a2xi - ai®2) - (a* + al)[f(xi) + /(®2)]|| < c, 

for all 2-dimensional vectors (®i,X2) £ X 2 , with a normed linear space X, 
a constant c (independent of £1,3:2) > 0, mapping / : X —> Y (where Y 
is a complete normed linear space), and any fixed reals 01,02 such that 
0 < m = a\ + a2 ^ 0. Besides he introduces the 2-dimensional quadratic 
weighted means. According to P.M. Gruber [1] the afore-mentioned stability 
problems are of particular interest in probability theory and in the case of 
functional equations of different types. 

D E F I N I T I O N 1. For X, Y as above a non-linear mapping Q\ : X —i• Y, 
such that the functional equation 

(1)' + a2x2) + Qi{a2xx - alX2) = (a¡ + a2
2)[Q%(x 1) + Qf(x2>] 

holds for all vectors {x\,x2) G X2 and for any fixed reals 01,02 with m = 
a2 + a2 > 1, is called 2-dimensional quadratic. 
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Note that mapping Q2 may be called quadratic, as well, because the 
following Euler-Lagrange identity 

(aiXi + a2x2)2 + (a2xi - aix2)2 = (a\ + a\)[x\ + x\] 

holds with any fixed reals a\,a2, and because the functional equation 

(2) Qa
2{mnx) = m2nQa

2(x), 

holds for all a; G X , all n £ N and any fixed reals a\,a2 such that m — 
a\ + a\ > 1. In fact, substitution x\ = x2 = 0 in equation (1') yields 
2(1 - m)QJ(O) = 0, or 

( la) ' Q5(0) = 0, m > 1. 

Substituting x\ = x,x2 = 0 in (1)' and employing (la) ' one gets Q2(a\x) + 
QSfax) = m[Q2(x) + Q2

a(0)], or 

(2a) Q2(aix) + Q2(a2x) = mQ%(x), m > 1, for all x G X. 

Moreover, substituting x\ = a\x,x2 = a2x in (1') and using (la)' , one 
finds that Q%(mx) + Qf(0) = m[Q£(aia:) + Q2(a2x)], or 

(2b) Q2(a\x) + Q2(a2x) = m^Q^mx), m > 1. for all x G X. 

The functional equations (2a), (2b) yield 

(2c) Q2{mx) = m2Q2(x), m > 1, for all x G X. 

Then induction on n G N with x mn~1x yields equation (2). 

D e f i n i t i o n 2 . For X, Y as above a non-linear mapping ( Q 2 ) „ , 2 : X —> 
Y, such that 

( 3 , = S l í S ^ i O p í S f ) , m = a\ + al>l, 
+ O2 

holds for all x G X is called a 2-dimensional quadratic weighted mean for 
m > 1. 

Note that in the case of equation (1'), formula (3), by (2a), is of the form 

( 3 a ) (Q2)w2(X) = Q2(X)i m > 1, f o r a l l x G X . 

T h e o r e m 1. Assume that f : X —> Y with X,Y as above is a mapping 
for which there exists a constant c > 0, independent of xi,x2, such that the 
Euler-Lagrange functional inequality (1) holds for all vectors (x\, x2) G X2 

and for any fixed reals a\, a2 such that m = a2 + a2 > I. Then the limit 

(4) Q%(x) = lim m~2n f(mnx), m > 1, 
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exists for all x G X and Q\ : X —• Y- is the unique 2-dimensional quadratic 
mapping satisfying functional equation (1') such that 

1 3m2 — 1 
(5) l l / W - q ; w i | < ; ( m _ 1 ) i ( m + m > 1, 

and 

(5a) QZ(x) = m-2nQ$(mnx), 

hold for all x G X, all n £ N, and any fixed reals a\,a2 such that m = 
a\ + al> 1. 

P r o o f of e x i s t e n c e . Substitution x\ = x2 = 0 in inequality (1) 
yields that 

w U«°)ll s v ^ r y m > 

Moreover substituting x\ = x,x2 — 0 in inequality (1) and employing (6) 
and triangle inequality one concludes functional inequality 

(7) 11/(0!®) + f(a2x) - m[f(x) + /(0)]|| < c, 

or 

¿ + 11/(0)11 + 

or 

(8) II7»»M - / M i l £ 2 r o ^ r ^ l ) c ' ra>1-

where 

(8a) 7 - M - / ( " ' , ) i g * ' X ) . m > l , 
a l > 2 

is the 2-dimensional quadratic weighted mean (for m > 1), according 
to the afore-mentioned Definition 2 of J.M. Rassias. 

In addition, replacing xi = a\x,x2 — a2x in inequality (1) and using (6) 
and triangle inequality, one gets functional inequality 

||f{mx) + /(0) - m[f(aix) + f(a2x))\\ < c, 

or 

\\fw>(x) - m-2f(mx)|| < + ¿ | | / ( 0 ) | | < + 
c 1 ,, , /„s,, _ c 1 c 

m2 TO2 m2 to2 2(m — 1)' 
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or 

(9) IL /U*) - m-2f(mx)\\ < ^ rf, ™ > 1. 

Functional inequalities (8), (9), and triangle inequality yield the basic 
inequality 

||f(x) - m~2f(mx)\\ < ||f(x) - fw,(x)\\ + \\fw2(x) - m~2f{mx)|| 

/ 3m - 2 2m - 1 \ 
- \ 2 m ( m - 1) + 2m2(m - 1 ) / C ' 

or 

(10) | | / (x) — m - 2 / (ma : ) | | < c j ( l — m - 2 ) , m > 1, 

where 

, n , 1 3m2 - 1 
( 9 a ) Ci = - - -T-T7 -rC, m > 1. v ' 2 (m — l ) 2 ( m + 1) 

For instance, if a j = 02 = 1, or m = 2, then ci = ^-c. Note that in 
this case a better constant c\ = \c may be found, if new substitution 

= X2 = x is applied into inequality (1) with a\ = 0 2 = 1. In fact, 
11/(2®) + / (0 ) - 4f(x)\\ < c with | | /(0)| | < f , or 

| | / (2z) - 4f(x)\\ < c + | | /(0)| | < ^c, 

or 

(11) | | / ( a ; ) - 2 - 2 / ( 2 x ) | | < i C ( l - 2 - 2 ) . 

Thus ci = jc (< yc)- Replacing now x with mx in (10), one concludes that 

| | / (mx) — m - 2 / ( m 2 x ) | | < Ci(l — m~2) , or 

(10b) | |m~ 2 / (mx) - m- 4 / ( r a 2 x) | | < c i (m" 2 - m " 4 ) 

holds for all x 6 X and any real m > 1. 

Functional inequalities (10), (10b) and triangle inequality yield 

| | / (x) - m - 4 / ( m 2 x ) | | < | | / (x) - m " 2 / ( m x ) | | + ||m~2 f{mx) - m " 4 / ( m 2 x ) | | 

< ci[(l - m - 2 ) + ( m - 2 - m - 4 ) ] , 

or 

(10c) | | / (x) - m - 4 / ( m 2 x ) | | < c i ( l - m - 4 ) , m > 1, 

holds for all x G X. 
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Similarly by induction on n G N with x —> mn~1x in (10) claim that 
general functional inequality 

( 1 2 ) \ \ f ( x ) - m - 2 n f ( m n x ) \ \ < c 1 ( l - m - 2 n ) , m > 1, 

holds for all x € X and all n G N. 
In fact, basic inequality (10) with x —• mn~1x yields inequality 

| | / (mn - 1a:) - m'2 f{mnx)\\ < cx{ 1 - m"2) , 

or 
(12a) 
| | m -2(»- i ) / ( m »- ia : ) _ m~2nf(mnx)\\ < ^(m'2^-^ - m~2n), m > 1, 

for all a; G X. By induction hypothesis with n —>• n — 1 in (12), inequality 

(12b) | | / ( ® ) - m - 2 ( n - 1 ) / ( m n - 1 ® ) | | < c i ( l - m - 2 ( n - 1 ) ) , m > 1, 

holds for all x G X. Thus functional inequalities (12a), (12b) and triangle 
inequality imply 

| | / ( x ) — m~2n f(mn x)\\ 

< || f { x ) - m
- 2 ( n - 1 ) y ( m ( n _ : l ) a ; ) | | + ||m-Hn-\)f(m{n-X)x} _ m ^ n j ^ n ^ 

or 

\ \ f ( x ) - m~2n f(mnx)\\ < ci[(l - 7 n
- 2 ( n - 1 ) ) + (m"^"- 1 ) - m - 2 " ) ] 

= ci(l - m~2n), m > 1, 

completing the proof of the required functional inequality (12). 
Claim now that the sequence (m _ 2 n / (m n a; )} converges. From the 

general inequality (12), one proves that the above sequence is a Cauchy 
sequence. In fact, if i > j > 0, and m > 1, then 

( 1 3 ) \\m~2if(mix) - m - 2 j f ( m j x ) \ \ = m^Wm'2^» f ^ x ) - f(mjx)\\, 

for all x G X, and all i,j G N. Setting h = m^x in (13) and employing 
general inequality (12), one concludes that 

\\m~2i/(m'x) - m - 2 j f ( m j x ) \ \ = m - 2 i \ \ m - 2 ^ / ( m ^ h ) - f(h)\\ 

< m-2j
Cl( 1 - m-^-ri), 

so 
\\m~2i f(mi x) - m - 2 j f ( m j x ) | | < c^m'2' - m~2i) < Clm"2j'. 
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Therefore 

(13a) lim \\m~2ifijrfx) - rn~2j f(mjx)\\ = 0 
j-*oo 

completing the proof that the Cauchy sequence {m~2n f(mnx)} converges 
because of the completeness property of Y. 

Hence Q2 = Q2(x) a well-defined mapping via the formula (4). 
This means that the limit (4) exists for all x € X. 

In addition claim that mapping Q2 satisfies the functional equation (1') 
for all vectors ( x \ , x 2 ) G X2. 

In fact, it is clear from functional inequality (1) and the limit (4) that 
inequality 

(14) m~2n\\f(a\mnx\ + a2mnx2) + f(a2mnx 1 - aimnx2) 

-(a2 + a2)[f(mnx1) + /(mna:2)]| | < m~2nc, m > 1, 

holds for all and all n G N. Therefore from inequality (14) one 
gets 

|| lim m~2nf[mn(aixi + a2x2)] + lim m~2n f[mn(a2x1 - a1x2)] 
n—foo n—*oo 

—(a^ + a2)[ lim m~2nf(mnx1) + lim m~2n f(mnx2)}\\ n—• 00 n—•00 

< c lim m~2n = 0, m> 1, 71—»OO 
or 

||Q%(alXl + a2x2) + Q2(a2xi - axx2) - (a\ + a2)[Q%(x 1) + Qa
2{x2)}\\ = 0, 

or mapping Q2 satisfies the functional equation (1') for all x\,x2 & X, and 
m > 1. Thus Q2 is a 2-dimensional quadratic mapping. It is clear now, 
from general inequality (12), n —> 00, and formula (4), that inequality (5) 
holds in X, completing the existence proof of Theorem 1. 

P r o o f of u n i q u e n e s s . Let (Q2)' : X —> Y be another 2-dimen-
sional quadratic mapping satisfying functional equation (1') such that 

(6)' I i / w - w m x i i i a ^ - ^ ^ , m > l , 

for all x £ X. If there exists a 2-dimensional quadratic mapping Q2 : X —> Y 
satisfying equation (1'), then 

(15) Qftx) = (Q2
a)'(*), TO > 1,' 
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for all x £ X. To prove the above-mentioned uniqueness employ (5a) for 
Q\ and (Q2) ' , as well, so that 

(6a)' (Q2°)'(x) = m~2n(Q$y(mnx), m > 1, 

holds for all x £ X, and all n £ N. Moreover triangle inequality and func-
tional inequalities (5), (6)' yield 

||Q2
a(m"z)-(Q2

a)'(mnz)|| < \m(rnnx)-f(mnx)\\+\\f(rnnx)-(Qa
2)'(mnx)\\, 

or 

( 1 6 ) \\Ql{mnx) - m \ m n x ) \ \ < 

for all x € X and all n 6 N. Then from (5a), (6a)', and (16), one proves 
that 

I I^OO " (<?2)'(*)ll = I I m - 2 n Q l ( m n x ) - m-2n(Qa
2)'(mnx)\\, 

or 

(16a) IIQlix) - ( g jyoo i l < ( m _ 3 7 )
2

2 ( ' m
1

+ 1 ) ^ m > 1, 

holds for all x € X and all n 6 N. 
Therefore, from (16a) and n —• oo, one establishes 

l i m \\Q%(x) - m ' { x ) | | < 1 - ^ l i m m~2n = 0 , m > 1, 
n—+oo (m — l ) z (m + 1) n-+oo 

or 

WQZi1) - (QZYWW = 0, 
or 

( 1 7 ) Qa
2(x) = (Q2)'(x), m > 1, 

for all x € X , completing the proof of uniqueness and thus the stability 
of Theorem 1. 

Note that an analogous definition to Definition 1 holds for quadratic 
mapping Q2 for 0 < m < 1. Moreover functional equation 

( 2 ) ' Ql(m~nx) = (m~n)2Q${x), 0 < m < 1, 

holds for all x £ X and all n € N. Similarly, substitution xi = x2 = 0 in 
(1)' yields 

( la) ' 0) = 0, 0 < m < 1. 
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Substituting x\ — — 0) in (1)' a n d employing ( la) ' one finds that 

(2a)' Ql ^ ¡ t ) + Qa2 (^X) = mQa2(m-1x) 

holds for all x 6 X and any fixed real a\, a2 such that 0 < m = a2 + a2 < 1. 
In addition, substituting xi = ^x, x2 = ^x, in (1)' and employing ( la) ' , 
one gets that 

(2b)' Cfi + Ql ( ^ z ) = m~lQa2{x) 

holds for all x € X and any fixed real , a2 such that 0 < m = a2 + a2 < 1. 
Functional equations (2a)', (2b)' yield 

(2c)' Q^m^x) = m~2Q^(x), 0 < m < 1. 

Then induction on n with yields 

(2d)' Q%(m~nx) = m~2nQ2(x), 0 < m < 1, 

completing the proof for equation (2)'. 

DEFINITION 3 . Let X be a normed linear space and Y a real complete 
normed linear space. Then a non-linear mapping (Q 2 ) w 2 X —>• Y, such 
that 

(3)' ( Q 2 M * ) = m 

holds for all x £ X and any fixed real aia 2 such that 0 < m = a2 + a2 < 1, 
is called a 2-dimensional quadratic weighted mean for 0 < m < 1. 

T H E O R E M 2 . Let X be a normed linear space and Y a real complete 
normed linear space. Assume in addition that f : X —> Y is a mapping for 
which there exists a constant c > 0 such that the Euler-Lagrange functional 
inequality 

(4)' ||/(aia;i + 02^2) + f(a2Xi - 0,-1X2) ~ (a\ + a\)[f(x 1) + /(«2)]|| < c 

holds for all 2-dimensional vectors (x\, x2) G X2, constant c > 0 indepen-
dent of xi,x2 and any fixed reals ai,a2 such that 0 < m = a2 + a2 < 1. 
Then the limit 

(5)' Q2(x) = lim m2nf(m~nx), 0 < m < 1, 
71—+OO 

exists for all x 6 X and Q2 : X Y is the unique 2-dimensional 
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quadratic mapping satisfying equation (1)', such that 

C\ _ m2\r 
(6)" l l / M - QSMII m j > ( i + m ) ' ® < ™ o . 

and, 

(6a) Q${x) = m2nQl(m-nx), 

hold for all x € X, all n € N and any fixed reals ai,a2 such that 0 < m = 
aj+aj < 1. 

P r o o f . To prove Theorem 2 it is enough to establish the general func-
tional inequality 

(12)' | | / (x) - minf(m-nx)|| < c2( 1 - min), 0 < m < 1, 

for all x e X, and all n G N, where c^ = 2(i-m)™(i+m) > 0 < m < 1. In fact, 
substitution x\ — X2 = 0 in inequality (4)' yields that 

(7)' ll/(0)|| < 2(1 - m) ' 
0 < m < 1. 

Moreover substituting x\ = = 0 in inequality (4)' and employing (7)' 
and triangle inequality, one gets functional inequality 

or 

or 

IL/U*) - mVim"1*)!! <mc + m2 | | /(0)| | , 

< c, 

(8)' 

where 

(8a)' 

\\f^(x) - m2/(w»_1a:)|| < mc + m2 2m - m2 

2(1 - m ) 2(1 - m ) ' 

0 < m < 1, 

is the 2-dimensional quadratic weighted mean for 0 < m < 1, ac-
cording to the afore-mentioned Definition 3 of J.M. Rassias. In addition, 
replacing x\ = ^x, a;2 = in inequality (4)', and by triangle inequality, 
one concludes functional inequality ||/(a:) + / (0) — fw2(x)\\ < c, or 

l l /O) - 7w*(x)\\ < c + 11/(0)11 < c + 2(1 - m) 
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or 

(9)' 11/0) - /«,»(*)!! < 0 < m < L 

Functional inequalities (8)', (9)', and triangle inequality yield the basic 
inequality 

||f(x) - m'fim-'x^ < ||f(x) - 7«,a(®)|| + W f M - m V i m - ^ J H 

3 — to2 _ 2> < 3 - 2 to 2m — to21 
+ c = 

2 ( l - m ) 2 ( l + m) 
or 

(10)' 

where 

(10a)' 

2(1 - t o ) 2(1 - m). 

||/(®) - m2 / (m_ 1a;) | | < c2( 1 - to2), 0 < m < 1, 

(3 - m2)c 

c(l — TO2), 

C2 = 2(1 — m) 2 ( l + TO) ' 
0 < to < 1. 

By induction on n E N with x in (10)', claim that above 
general inequality (12)' holds for all x € X and all n £ N, for 0 < to < 1. 
In fact, (10)', (10a)' with x —> yield inequality 

|| fim-^-^x) - m2f{m-nx)\\ < c2( 1 - to2), 

or 

(12a)' Uto2^"1) f(m~in-Vx) - m2nf{m~nx)|| < C2(ro2(n_1) - m2 n), 

for all a; € X and any fixed real m such that 0 < to < 1. 
By induction hypothesis with n —• n — 1 in (12)' inequality 

(12b)' | | / ( s ) - ro2<n-1>/(m-(B-1>:r)|| < c2( 1 - TO2^"1*), 

holds for all a: € -X", and any fixed real m such that 0 < to < 1. Thus 
functional inequalities (12a)', (12b)' and triangle inequality imply 

||/(a;) - to2"/(to-"x)|| < ||/(a;) - m2(n-1)/(m-<n-1)®)| | + 

||TO2(n-1)/(TO-(n-1)a;)-TO2n/(TO-na;)|| < c 2 [ ( l -m 2 ( n - 1 ) )+(m 2 ( ' l ~ 1 ) -ro 2 n ) ] 

= C2( l-TO2 n) , 0 < T O < 1 , 

completing the proof of the required functional inequality (12)'. 
The rest of the proof of Theorem 2 is omitted as similar to the corre-

sponding proof of Theorem 1. 
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E X A M P L E . Take f : R R being a real function f(x) = x2 + k, with 
constant k such that |A;| < 2(i-m) < "i < 1-

Moreover, let a unique quadratic mapping Q2 • R —• R exist, such that 

Qi(x) = lim m [(m~nx) + k] = x2, 0 < m < 1. n—+oo 

Therefore inequality (6)" holds, since 

ll/(*) - Qa2(*)\\ = IK*2 + *) - *2II = 1*1 < 

and 
1 3 - m2 

< m vTTi \> 0 < m < 1. 1 -m (l-m)2(l + m)' 

Note that if m > 1, then take any real constant k such that \k\ < 2(m~i) • 

T H E O R E M 3. Let X be a normed linear space and Y a real complete 
normed linear space. Assume in addition that f : X —> Y is a mapping for 
which there exist constants c, c' > 0 such that the Euler-Lagrange functional 
inequality 

(4)" ||/(a(®! + x2)) + f{a{x\ - x2)) - [ f ( X l ) + f(x2)}\\ < c 

holds for all 2-dimensional vectors (X\,X2) G X2, | |/(0)|| < c', nonnegative 
constants c,c' independent of xi,x2 and a = (or: — — Then the 
limit 

(5)" Q2(X) = lim 2~nf((2a)nx), M = 2a2 = 1, 

exists for all x £ X and Q2 : X Y is the unique 2-dimensional quadratic 
mapping satisfying functional equation 

(1)" Q2{a(x1 + x2)) + Q2(a(x1-x2)) = Q2(x1) + Q2(x2), m = 1, 

and $2(0) = 0, such that 

(6)"' HA®)-QaiaOII < c + c', m = 1, 

and 

(6a)" Q2(x) = 2-nQ2((2a)nx), m = 1, 

hold for all x G X and all n 6 N. 
Note that a\ = a2 = a in Theorem 3, and thus TO = a2 + a\ = 2a2 — 

2(±^=) 2 = 1. Thus Theorem 3 is a singular case of Theorems 1, 2. 
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P r o o f . Substitution x\ = x2 = x in inequality (4)" yields that basic 
inequality ||/(2ox) + /(0) - 2f{x)\\ < c or from condition: ||/(0)|| < c' 

( 1 8 ) || f ( x ) - 2~1f(2ax)\\ < ( c + c ' ) ( l - 2 " 1 ) , 

holds for all x G X. By induction on n with x —> (2a)n _ 1x in basic inequality 
(18), one concludes the general inequality 

(18a) ||/(z) - 2-n/((2o)"®)|| < (c + c')(l - 2~n), 

for all x G X , all n £ N and a = 

Note that substitution x\ = X2 = x in equation (1)" yields Q2(2ax) + 
Q2(0) = 2 Q 2 ( X ) , or from Q2(0) = 0 

( 1 8 b ) Q2(x) = 2-1Q2(2ax). 

Then, by induction on n € N with x —> (2a)n_1a; in (18b), one establishes 
(6a)". 

The rest of the proof of Theorem 3 is omitted as similar to the proof of 
Theorem 1. 
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