

Satendra Kumar Vaish

REARRANGEMENTS OF THE COEFFICIENTS
OF ENTIRE FUNCTIONS

1. Introduction

Let $\pi(n' \rightarrow n)$ denote a rearrangement of all non-negative integers by which the integer n is replaced by the integer n' . Guha in [1] proved the following:

THEOREM A. *A necessary and sufficient condition that a rearrangement $\pi(n' \rightarrow n)$ keeps unaltered the radius of convergence of any power series $\sum_{n=0}^{\infty} a_n z^n$ is that $n' = n + o(n)$.*

In this paper we use this theorem to show that the same characterization of rearrangements keeps unaltered the (p, q) -order of any entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ having an index-pair (p, q) , $(p \geq 2, q \geq 1, p \geq q)$. However, we see by an example that the characterization fails in the case of (p, q) -type.

The following notations are frequently used in the sequel:

NOTATION 1. $\exp^{[0]} x = \log^{[0]} x = x$;

$\exp^{[m]} x = \log^{[-m]} x = \exp(\exp^{[m-1]} x) = \log(\log^{[-m-1]} x)$,

$m = 0, \pm 1, \pm 2, \dots$ Throughout this paper whenever $(\log^{[m]} x)^{\alpha}$ ($0 < \alpha < \infty$) occurs, it is understood that x is such that this expression is a real number.

NOTATION 2.

$$P_t(\alpha) \equiv P_t(\alpha, p, q) = \begin{cases} \alpha & \text{if } p > q \\ t + \alpha & \text{if } p = q = 2 \\ \max(1, \alpha) & \text{if } 3 \leq p = q < \infty \\ \infty & \text{if } p = q = \infty, \end{cases}$$

where $0 \leq \alpha \leq \infty$ and $0 \leq t \leq 1$.

1980 *Mathematics Subject Classification*: 30D20.

Key Words and Phrases. Entire functions, (p, q) -order, (p, q) -type.

The main result in this paper is the following:

2. THEOREM. *A necessary and sufficient condition that a rearrangement $\pi(n' \rightarrow n)$ keeps unaltered the (p, q) -order of an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ having an index-pair (p, q) , ($p \geq 2, q \geq 1, p \geq q$) is that $n' = n + o(n)$.*

Proof. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an entire function then, by Theorem A, the rearranged series $\sum_{n=0}^{\infty} a_{n'} z^n$ also represents an entire function $f_1(z)$, say. Let $\rho(p, q)$ and $\rho_1(p, q)$ be the (p, q) -orders of $f(z)$ and $f_1(z)$, respectively. Then by [2]:

$$(2.1) \quad \rho \equiv \rho(p, q) = P_1(L(p, q)),$$

where

$$(2.2) \quad L(p, q) = \limsup_{n \rightarrow \infty} \frac{\log^{[p-1]} n}{\log^{[q-1]}(n^{-1} \log |a_n|^{-1})}$$

and

$$(2.3) \quad \rho_1 \equiv \rho_1(p, q) = P_1(L_1(p, q)),$$

where

$$(2.4) \quad L_1(p, q) = \limsup_{n \rightarrow \infty} \frac{\log^{[p-1]} n}{\log^{[q-1]}(n^{-1} \log |a_{n'}|^{-1})}.$$

Sufficiency. Let $n' = n + o(n)$. Firstly, we suppose that $0 < \rho < \infty$. Then for any $\varepsilon > 0$ and for all large n , we have

$$(2.5) \quad |a_n| < \exp\{-n \exp^{[q-2]}(\log^{[p-2]} n')^{1/(L+\varepsilon)}\}.$$

Since $n' \rightarrow \infty$ with n , and distinct values of n correspond to distinct values of n' and vice versa, we have for all large n ,

$$(2.6) \quad |a_{n'}| < \exp\{-n' \exp^{[q-2]}(\log^{[p-2]} n')^{1/(L+\varepsilon)}\}.$$

Since $n' = n + o(n)$, therefore for suitably chosen $\varepsilon > 0$ and for any given number $d > 0$, we have, for all large n ,

$$(2.7) \quad |a_{n'}| < \exp\{-n \exp^{[q-2]}(\log^{[p-2]} n)^{1/(L+d)}\}.$$

Further, since n' tends to infinity with n , it follows that for infinitely many n ,

$$(2.8) \quad |a_{n'}| > \exp\{-n' \exp^{[q-2]}(\log^{[p-2]} n')^{1/(L-\varepsilon)}\}.$$

Choosing ε suitably, we find, for infinitely many n , that

$$(2.9) \quad |a_{n'}| > \exp\{-n \exp^{[q-2]}(\log^{[p-2]} n)^{1/(L-d)}\}.$$

Notice that (2.7) and (2.9) give

$$\limsup_{n \rightarrow \infty} \frac{\log^{[p-1]} n}{\log^{[q-1]}(n^{-1} \log |a_{n'}|^{-1})} = L(p, q) \quad \text{or} \quad L_1(p, q) = L(p, q).$$

So, $\rho_1 = \rho$,

The above argument with suitable alternation solves the cases $\rho = 0$ and $\rho = \infty$.

Necessity. Let $\rho_1 = \rho$. Then, for any given $\varepsilon > 0$

$$(2.10) \quad n \exp^{[q-2]} (\log^{[p-2]} n)^{1/(L+\varepsilon)} \leq \log |a_{n'}|^{-1}$$

for all large n so for n' , while

$$(2.11) \quad n' \exp^{[q-2]} (\log^{[p-2]} n')^{1/(L-\varepsilon)} \geq \log |a_{n'}|^{-1}$$

for an infinity of n' .

Observe that (2.10) and (2.11) give

$$(2.12) \quad \liminf_{n \rightarrow \infty} \frac{n' \exp^{[q-2]} (\log^{[p-2]} n')^{1/L}}{n \exp^{[q-2]} (\log^{[p-2]} n)^{1/L}} \geq 1.$$

Interchanging n and n' , we get

$$\liminf_{n \rightarrow \infty} \frac{n \exp^{[q-2]} (\log^{[p-2]} n)^{1/L}}{n' \exp^{[q-2]} (\log^{[p-2]} n')^{1/L}} \geq 1,$$

or

$$(2.13) \quad \limsup_{n \rightarrow \infty} \frac{n' \exp^{[q-2]} (\log^{[p-2]} n')^{1/L}}{n \exp^{[q-2]} (\log^{[p-2]} n)^{1/L}} \leq 1.$$

Combining (2.12) and (2.13), we see that

$$\frac{n' \exp^{[q-2]} (\log^{[p-2]} n')^{1/L}}{n \exp^{[q-2]} (\log^{[p-2]} n)^{1/L}} \rightarrow 1 \quad \text{as } n \rightarrow \infty.$$

Taking logarithms, we get

$$\frac{\exp^{[q-2]} (\log^{[p-2]} n')^{1/L}}{\exp^{[q-2]} (\log^{[p-2]} n)^{1/L}} \rightarrow 1 \quad \text{as } n \rightarrow \infty.$$

Hence, $\frac{n'}{n} \rightarrow 1$ as requires.

This completes the proof of our theorem.

3. If $0 < V < \infty$, then the (p, q) -type T of an entire function $f(z)$ having (p, q) -order ρ ($b < \rho < \infty$) is defined [3] as $T = MV$, where

$$b = 1 \text{ if } p = q, \quad b = 0 \text{ if } p > q;$$

$$V \equiv V(p, q) = \limsup_{n \rightarrow \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} |a_n|^{-1/n})^{\rho-A}},$$

$$A = 1 \text{ if } (p, q) = (2, 2), \quad A = 0 \text{ if } (p, q) \neq (2, 2);$$

and

$$M \equiv M(p, q) = \begin{cases} (\rho-1)^{(\rho-1)}/\rho^\rho, & \text{if } (p, q) = (2, 2) \\ 1/(e^\rho), & \text{if } (p, q) = (2, 1) \\ 1, & \text{if } p \geq 3. \end{cases}$$

Now, we present an example that the type of an entire function need not remain unaltered under the characterisation of the rearrangements $n' = n + o(n)$. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function defined as follows

$$a_n = \begin{cases} (\log^{[p-q-1]} n)^{-n} & \text{for } n \geq 2 \\ 0 & \text{for } n = 0, 1, \end{cases}$$

where $p \geq 2, q \geq 1, p \geq q$.

Then, the (p, q) -order ρ of $f(z)$ is given by

$$\rho = \begin{cases} 1 & \text{for } p > q \\ 2 & \text{for } p = q = 2 \\ 1 & \text{for } 3 \leq p = q < \infty \\ \infty & \text{for } p = q = \infty, \end{cases}$$

and for $b < \rho < \infty$, the (p, q) -type T having the value

$$T = \begin{cases} 1/4 & \text{for } (p, q) = (2, 2) \\ 1/e & \text{for } (p, q) = (2, 1) \\ 1 & \text{for } p \geq 3. \end{cases}$$

Set, $n' = t(n) = [(1 + \frac{1}{\log n})n]$ (integral part) for $n = 2, 3, 4, \dots$ and $n' = n$ for $n = 0, 1$.

It can be easily seen that $n' = n + o(n)$.

For simplicity, we consider the case $(p, q) = (2, 1)$. Then, the $(2, 1)$ -type of rearranged series

$$f_1(z) = \sum_{n=2}^{\infty} z^n / t(n)^{t(n)}$$

is equal to $1/e^2$ and thus is different from the $(2, 1)$ -type of $f(z)$.

References

- [1] U. C. Guha, *Rearrangement of the coefficients of a power series*, Math. Zeit., 75 (1961), 325.
- [2] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, *On the (p, q) -order and lower (p, q) -order of an entire function*, J. Reine Angew. Math., 282 (1976), 53-67.
- [3] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, *On the (p, q) -type and lower (p, q) -type of an entire function*, J. Reine Angew. Math., 290 (1977), 180-190.

I/43A-8, LAI BAGH,
G.B. PANT UNIVERSITY,
PANTNAGAR-263145
DISTT. NAINITAL (U.P.), INDIA

Received May 15, 1995.