

Seong Sik Kim, Yeol Je Cho

STRICT CONVEXITY IN LINEAR n -NORMED SPACES

1. Let n be a positive integer, X be a linear space of dimension $\geq n$ and $\|\cdot, \dots, \cdot\|$ be a real-valued function on X^n satisfying the following conditions:

- (nN₁) $\|a_1, \dots, a_n\| = 0$ if and only if a_1, \dots, a_n are linearly dependent,
- (nN₂) $\|a_1, \dots, a_n\| = \|a_{i_1}, \dots, a_{i_n}\|$ for every permutation (i_1, \dots, i_n) of $(1, \dots, n)$,
- (nN₃) $\|\alpha a_1, a_2, \dots, a_n\| = |\alpha| \|a_1, a_2, \dots, a_n\|$ for any real α ,
- (nN₄) $\|a_1 + a'_1, a_2, \dots, a_n\| \leq \|a_1, a_2, \dots, a_n\| + \|a'_1, a_2, \dots, a_n\|$.

$\|\cdot, \dots, \cdot\|$ is called an n -norm on X and $(X, \|\cdot, \dots, \cdot\|)$ is called a *linear n -normed space* ([3]). Since $2\|a_1, a_2, \dots, a_n\| \geq \|a_1 - a_1, a_2, \dots, a_n\| = 0$, the n -norm is not negative.

The concept of a linear n -normed space is a generalization of the concepts of a normed linear space ($n = 1$) and of a linear 2-normed space ([2]). For more details on linear n -normed spaces, we refer to [1] and [3].

For $a, b \in X$, let $L(\{a, b\})$ denote the subspace of X generated by a, b . Whenever the notation $L(\{a, b\})$ is used, a and b are assumed to be linearly independent.

For $c_2, \dots, c_n \in X$ being linearly independent, let $C = \{c_2, \dots, c_n\}$. Let $X(C)$ denote the subspace of X generated by C and let X_C be the quotient space $X/X(C)$. For every $a \in X$, denote the equivalent class of a with respect to $X(C)$ by $(a)_C$. Then X_C is a linear space with addition $(a)_C + (b)_C = (a + b)_C$ and scalar multiplication $(\alpha a)_C = \alpha(a)_C$. For any $a, b \in X$ with $(a)_C = (b)_C$, since $a - b, c_2, c_3, \dots, c_n$ are linearly

1991 *Mathematics Subject Classification*: 46A15, 51K05.

Key words and phrases: n -norm, linear n -normed space, strict convexity.

dependent,

$$|\|a, c_2, \dots, c_n\| - \|b, c_2, \dots, c_n\|| \leq \|a - b, c_2, \dots, c_n\| = 0$$

and hence we have

$$\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\|.$$

Therefore, the function $\|\cdot\|_C$ defined on X_C by $\|(a)_C\|_C = \|a, c_2, \dots, c_n\|$ is independent on the special representative a of $(a)_C$.

In this paper, we give new characterizations of strict convexity in linear n -normed spaces in terms of the quotient spaces mentioned above.

2. Now, we derive some elementary n -norm results:

THEOREM 1. *Let $(X, \|\cdot, \dots, \cdot\|)$ be a linear n -normed space. If $\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|$, then*

$$\|\alpha a + \beta b, c_2, \dots, c_n\| = \alpha \|a, c_2, \dots, c_n\| + \beta \|b, c_2, \dots, c_n\|$$

for all $\alpha, \beta \geq 0$.

P r o o f. Note that

$$\|\alpha a + \beta b, c_2, \dots, c_n\| \leq \alpha \|a, c_2, \dots, c_n\| + \beta \|b, c_2, \dots, c_n\|.$$

In order to show the opposite inequality we may assume, without loss of generality, that $0 \leq \alpha \leq \beta$. Then we have

$$\begin{aligned} \|\alpha a + \beta b, c_2, \dots, c_n\| &= \|\beta(a + b) - (\beta - \alpha)a, c_2, \dots, c_n\| \\ &\geq \beta \|a + b, c_2, \dots, c_n\| - (\beta - \alpha) \|a, c_2, \dots, c_n\| \\ &= \alpha \|a, c_2, \dots, c_n\| + \beta \|b, c_2, \dots, c_n\|. \end{aligned}$$

This completes the proof.

THEOREM 2. *Let $(X, \|\cdot, \dots, \cdot\|)$ be a linear n -normed space and let $c_2, \dots, c_n \notin L(\{a, b\})$. Then the following statements are equivalent:*

- (1) *If $\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|$ and $\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = 1$, then $a = b$.*
- (2) *If $\frac{1}{2}\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\|$, then $a = b$.*
- (3) *If $\|a + \alpha b, c_2, \dots, c_n\| = 2\|a, c_2, \dots, c_n\|$, then $a = \alpha b$ for $\alpha = \|a, c_2, \dots, c_n\|/\|b, c_2, \dots, c_n\|$.*
- (4) *If $\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|$, then $\|b, c_2, \dots, c_n\|a = \|a, c_2, \dots, c_n\|b$.*

P r o o f. (1) \Rightarrow (2): Observe that if $\frac{1}{2}\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = \gamma$, then $\gamma \neq 0$ since $c_2, \dots, c_n \notin L(\{a, b\})$.

Now we have

$$\begin{aligned}\frac{1}{2} \left\| a + b, c_2, \dots, \frac{c_i}{\gamma}, \dots, c_n \right\| &= \left\| a, c_2, \dots, \frac{c_i}{\gamma}, \dots, c_n \right\| \\ &= \left\| b, c_2, \dots, \frac{c_i}{\gamma}, \dots, c_n \right\| \\ &= 1\end{aligned}$$

and therefore, by the condition (1), $a = b$.

(2) \Rightarrow (3): Since $\| \alpha b, c_2, \dots, c_n \| = \| a, c_2, \dots, c_n \| = \frac{1}{2} \| a + \alpha b, c_2, \dots, c_n \|$, then $a = \alpha b$, by the condition (2).

(3) \Rightarrow (4): Suppose that $\| a, c_2, \dots, c_n \| \leq \| b, c_2, \dots, c_n \|$, so

$$\alpha = \| a, c_2, \dots, c_n \| / \| b, c_2, \dots, c_n \| \leq 1.$$

Then we have

$$\begin{aligned}\| a + b, c_2, \dots, c_n \| &\leq \| a + \alpha b, c_2, \dots, c_n \| + \| b, c_2, \dots, c_n \| \\ &\quad - \| a, c_2, \dots, c_n \| \\ &= \| a, c_2, \dots, c_n \| + \| b, c_2, \dots, c_n \|\end{aligned}$$

If the identity in the condition (4) is satisfied, then the latter means that

$$\| a + \alpha b, c_2, \dots, c_n \| = 2 \| a, c_2, \dots, c_n \|.$$

Thus, from (3), we have

$$\| a, c_2, \dots, c_n \| b = \| b, c_2, \dots, c_n \| a.$$

(4) \Rightarrow (1): It is evident.

This completes the proof.

3. Finally, we give some characterizations of strict convexity in a linear n -normed space $(X, \|\cdot, \dots, \cdot\|)$.

DEFINITION 1 ([2]). A linear n -normed space $(X, \|\cdot, \dots, \cdot\|)$ is said to be *strictly convex* if the condition $\| a, c_2, \dots, c_n \| = \| b, c_2, \dots, c_n \| = \frac{1}{2} \| a + b, c_2, \dots, c_n \|$ for $c_2, \dots, c_n \notin L(\{a, b\})$ implies that $a = b$.

Note that, by Theorem 2, a linear n -normed space $(X, \|\cdot, \dots, \cdot\|)$ is strictly convex if and only if the condition

$$\| a + b, c_2, \dots, c_n \| = \| a, c_2, \dots, c_n \| + \| b, c_2, \dots, c_n \|$$

for $c_2, \dots, c_n \notin L(\{a, b\})$ and

$$\| a, c_2, \dots, c_n \| = \| b, c_2, \dots, c_n \| = 1$$

imply that $a = b$.

THEOREM 3. *The following statements are equivalent:*

- (1) $(X, \|\cdot, \dots, \cdot\|)$ is strictly convex.
- (2) For every linearly independent set $C = \{c_2, \dots, c_n\} \subset X$, $(X_C, \|\cdot\|_C)$ is strictly convex.
- (3) The condition $\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|$ for $c_2, \dots, c_n \notin L(\{a, b\})$ implies that $b = \alpha a$ for some $\alpha > 0$.

Proof. (1) \Rightarrow (2): Let $(X, \|\cdot, \dots, \cdot\|)$ be strictly convex. Take arbitrary $C = \{c_2, \dots, c_n\}$, where c_2, \dots, c_n are linearly independent points in X , and assume that $\|(a)_C\|_C = \|(b)_C\|_C = \frac{1}{2}\|(a)_C + (b)_C\|_C = 1$. Then

$$\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = \frac{1}{2}\|a + b, c_2, \dots, c_n\| = 1.$$

We need to show that $(a)_C = (b)_C$.

It is obvious if $c_2, \dots, c_n \notin \alpha(\{a, b\})$.

If $c_i \in L(\{a, b\})$ for some $i \in \{2, 3, \dots, n\}$, then $c_i = \alpha a + \beta b$ for some real α, β , and so

$$(0)_C = \alpha(a)_C + \beta(b)_C.$$

Since $\|(a)_C\|_C = \|(b)_C\|_C = 1$, the latter implies that $\alpha = \pm\beta$.

If $\alpha = \beta$, then $c_i = \alpha(a + b)$, which contradicts with

$$\begin{aligned} 0 &= \|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\| \\ &= \|(a)_C\|_C + \|(b)_C\|_C \\ &= 2. \end{aligned}$$

Therefore, $\alpha = -\beta$ and hence $(a)_C = (b)_C$. Thus, $(X_C, \|\cdot\|_C)$ is strictly convex.

(2) \Rightarrow (3): Assume that the condition (2) holds. Take arbitrary $c_2, \dots, c_n \notin L(\{a, b\})$ such that

$$\|a + b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|.$$

Then we have

$$\|(a)_C + (b)_C\|_C = \|(a)_C\|_C + \|(b)_C\|_C.$$

Since $(X_C, \|\cdot\|_C)$ is strictly convex, the latter means that $(b)_C = \alpha(a)_C$ for some $\alpha > 0$. Therefore, $b = \alpha a$ for some $\alpha > 0$.

(3) \Rightarrow (1): See Theorem 2.

This completes the proof.

COROLLARY 4. *The following statements are equivalent:*

- (1) $(X, \|\cdot, \dots, \cdot\|)$ is strictly convex.
- (2) The condition $\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = 1$, $a \neq b$, for given $c_2, \dots, c_n \notin L(\{a, b\})$ implies that $\|\frac{1}{2}(a+b), c_2, \dots, c_n\| < 1$.

P r o o f. (1) \Rightarrow (2): Suppose that $\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = 1$, $a \neq b$ and $c_2, \dots, c_n \notin L(\{a, b\})$. By the condition (nN₄), we have

$$\|a+b, c_2, \dots, c_n\| \leq 2.$$

If $\|a, c_2, \dots, c_n\| = \|b, c_2, \dots, c_n\| = \|\frac{1}{2}(a+b), c_2, \dots, c_n\| = 1$, then

$$\|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\| = \|a+b, c_2, \dots, c_n\|.$$

Since $c_2, \dots, c_n \notin L(\{a, b\})$, by the condition (1), we have $b = \alpha a$ for some $\alpha > 0$. Thus $\|b, c_2, \dots, c_n\| = \alpha \|a, c_2, \dots, c_n\| = 1$ and therefore $\alpha = 1$, which contradicts with $a \neq b$. So, we have

$$\left\| \frac{1}{2}(a+b), c_2, \dots, c_n \right\| < 1.$$

(2) \Rightarrow (1): Let $\|a+b, c_2, \dots, c_n\| = \|a, c_2, \dots, c_n\| + \|b, c_2, \dots, c_n\|$ and $a, b \neq 0$. We need to consider only the case $c_2, \dots, c_n \notin L(\{a, b\})$. If so, then

$$\left\| \frac{a}{\|a, c_2, \dots, c_n\|} + \frac{b}{\|b, c_2, \dots, c_n\|}, c_2, \dots, c_n \right\| \geq 2.$$

Hence, since $\|a/\|a, c_2, \dots, c_n\|, c_2, \dots, c_n\| = \|b/\|b, c_2, \dots, c_n\|, c_2, \dots, c_n\| = 1$, by the condition (2), we have

$$\frac{a}{\|a, c_2, \dots, c_n\|} = \frac{b}{\|b, c_2, \dots, c_n\|}.$$

Therefore, $b = \alpha a$ for some $\alpha > 0$.

This completes the proof.

Acknowledgements. The authors wish to express their deepest appreciation to Dr. A. White, Dr. A. Misiak and the referee for their helpful comments on this paper.

References

- [1] Y. J. Cho, C. S. Lin, S. S. Kim and A. Misiak, *Theory of 2-Inner Product Spaces*, unpublished.
- [2] S. Gähler, *Lineare 2-normierte Räume*, Math. Nachr. **28** (1965), 1–43.

[3] A. Misiak, *Contributions to the theory of n -metric spaces*, Doctoral Dissertation, Technical Univ., Warsaw, 1985.

Seong Sik Kim
DEPARTMENT OF MATHEMATICS
DONGEUI UNIVERSITY
PUSAN 607-714, KOREA;

Yeol Je Cho
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
CHINJU 660-701, KOREA

Received May 9, 1995.