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STRICT CONVEXITY IN LINEAR »n-NORMED SPACES

1. Let n be a positive integer, X be a linear space of dimension > = and
], . .,:|| be areal-valued function on X" satisfying the following conditions:

(nNy) ||l@1,---,axs]| = 0if and only if a4,...,a, are linearly dependent,
(nN2) |[@1,-..,ax| = ||aiy,--.,ai,|| for every permutation (i1,...,,) of
1,...,n),
(nN3) ||ae1,aq,...,as]| = |e|||a1,aq, ..., a,|| for any real o,
(aNy) |la1 + @}, az, ..., 0] < ||@1, a2, ..., an|| + [|a], a2, . ., ax]l.
Iy -5l is called an n-norm on X and (X,||-,...,||) is called a linear n-
normed space ([3]). Since 2||ay, az,...,a,]| > ||@1 — a1,4a2,...,a,]] = 0, the

n-norm is not negative.

The concept of a linear n-normed space is a generalization of the concepts
of a normed linear space (n = 1) and of a linear 2-normed space ([2]). For
more details on linear n-normed spaces, we refer to [1] and [3].

For a,b € X, let L({a,b}) denote the subspace of X generated by a,b.
Whenever the notation L({a,b}) is used, a and b are assumed to be linearly
independent.

For ¢;,...,¢, € X being linearly independent, let C = {cz,...,¢cn}.
Let X(C) denote the subspace of X generated by C and let X be the
quotient space X/X(C). For every a € X, denote the equivalent class of
a with respect to X(C) by (a)c. Then X¢ is a linear space with addi-
tion (a)c + (b)c = (a + b)¢c and scalar multiplication (aa)c = aa)c.
For any a,b € X with (a)c = (b)c, since a — b, ¢z, c¢3,...,c, are linearly
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dependent,
|]|a,c2,...,cn|| - ||b,c2,...,cn||| <|la—byezy...,en]] =0
and hence we have
lle, ez, .. yenll = ||bye2, .-y nll-

Therefore, the function ||-||¢ defined on X¢ by ||(a)cllc = ||a, ¢z, - - -, ¢l
is independent on the special representative a of (a)c.

In this paper, we give new characterizations of strict convexity in linear
n-normed spaces in terms of the quotient spaces mentioned above.

2. Now, we derive some elementary n-norm results:

THEOREM 1. Let (X,||-,...,-||) be a linear n-normed space. If |la +
b,ca,...,¢cnll = |la,c2,. .. el +||byc2y ... cnl|, then

|laa + Bb,ca, ..., cnll = all@, 2, ..., || + Bl|b,ca, . - ., cal|
for all o, 3 > 0.
Proof. Note that
[lea + Bb,cay. .. enll < alla,ca,. .. en|| + Bllb, cay. .-y enll

In order to show the opposite inequality we may assume, without loss of
generality, that 0 < a < 4. Then we have

|lea + Bb,ca,. .. enl| = ||B(a+b) — (B — a)a,cyy-..,cnll
> Blla+b,cz,...,¢0|| — (B - a)lla, ez, ..., enll
=alla,cy...,cn|| + B|b, ey - o5 nl-
This completes the proof.

THEOREM 2. Let (X, ||+, ...,||) be a linear n-normed space and let c, . . .,
cn € L({a,b}). Then the following statements are equivalent:

(1) Iflla+b,¢a,...,¢n|l = lla,cay . osen|| +1|05€25- .., cnl| and ||a, ez, .. .,
coll = |15, ¢25. ..y n]l = 1, then a = b.

(2) If tlla+ b,ca,. .., eall = lla, ca, .., call = ||by c2y - . . Cnl|, then a = b.

(3) If |la + ab,cz,...,call = 2||a,ca,..., ¢4|, then a = ab for a =

lla, ez, ... cnll/||b;c2,- - -5 cnll-

(4) If |la+b,c2,. .., cnll = la, cay. . .y en||F |0y €25 - - -5 Call, then ||byca, . . .,
cnlla = |la, ez, - - -, €nlb.

Proof. (1)=>(2): Observe that if 1||a+b,cs,...,¢all = ||a, c2,.. ., all =
|[b,e2, .- -, enl| = 9, then vy # 0 since e2,...,cn € L({a,b}).
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Now we have

Ci
a+b,c2,...,;,...,cn

2

c
AyCy.vey—yeeeyCp

and therefore, by the condition (1), a = b.

(2)=(3): Since ||ab, cz, ..., cnl| = |la,c2,...,call = Fla+ ab,ca,. .., el
then a = ab, by the condition (2).

(3)=(4): Suppose that ||a,cz,...,cnl] < ||b,c2,. .., ¢, sO

a=|la,ca,. .. ¢q]|/]|byc2,- -5 en]| < 1.

Then we have
lle +b,c2,y...5¢n|| < |la+ ab,cay... cnll+]10,c2,-.-,enll
—|la, ez, ... el
=|la,cay. .. cnll + [[byc2,5 - -5 enll.

If the identity in the condition (4) is satisfied, then the latter means that

lla + ab,cq,...,cull = 2||a,cz,...,cqall-
Thus, from (3), we have

lla, cay ... en|lb = by cay...,cnlla.

(4)=(1): It is evident.
This completes the proof.

3. Finally, we give some characterizations of strict convexity in a linear
n-normed space (X, |, ...,-|]).

DEerFINITION 1 ([2]). A linear n-normed space (X, ]||-,...,-]|) is said to
be strictly convez if the condition |la,ca,...,cn|l = ||b,ca,...,¢qll = Lla +
b,c2,...,¢p| for co,...,cn & L({a,b}) implies that a = b.

Note that, by Theorem 2, a linear n-normed space (X,|-,...,-||) is
strictly convex if and only if the condition

lla+b,co,...,¢nll = |la,ca,. .. call + 1|0, c25- - -, Cnl|
for ¢g,...,¢n & L({a,b}) and
la,cz, ... cnl| = ||byca,...ren]l =1

imply that a = b.
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THEOREM 3. The following statements are equivalent:
(1) (X, I+ ---5°ll) ts strictly conve.

(2) For every linearly independent set C = {c3,...,¢n} C X, (X, ||*llc)
is strictly convez.

(3) The condition |la+b,ca,...,cull = |layc2, ..., eal| + 1|, €2, . - ., cnl| for
c2,...,¢n & L({a,b}) implies that b = aa for some a > 0.

Proof. (1)=-(2): Let (X,||-,...,:||) be strictly convex. Take arbitrary
C = {ca,...,¢n}, where ¢y,...,c, are linearly independent points in X,
and assume that ||(a)cllc = ||(8)cllc = %H(a)c + (b)c|lc = 1. Then

1
lla, cay .. senl| = ||b,e2,. . ]| = §||a+ b,co,... ]| = 1.

We need to show that (a). = (b)e.
It is obvious if ¢3,..., ¢, € a({a,b}).
If ¢; € L({a,b}) for some ¢ € {2,3,...,n}, then ¢; = aa + Bb for some
real a, 3, and so
(0)c = a(a)c + B(b)c-
Since ||(e)clic = ||(b)cllc = 1, the latter implies that a = £4.
If o = 3, then ¢; = a(a + b), which contradicts with

0=|la+b,cs....cnll = |la,ca,...,cnll +|[B5c2,. .., cnll
= [[(@)elle + [I(®)clle
= 2.

Therefore, & = —f and hence (a)c = (b)c. Thus, (X¢,|| - |l¢) is strictly
convex.

(2)=(3): Assume that the condition (2) holds. Take arbitrary cz,...,¢,
¢ L({a,b}) such that

lle +b,¢c2,...,¢n]l = |las ey - yen|l + by c2,. - -5 el
Then we have
I(a)c + (B)cllc = ll(a)cllc + I(B)cllc-

Since (X¢, || - ||¢) is strictly convex, the latter means that (b)c = a(a)¢ for
some a > 0. Therefore, b = aa for some a > 0.

(3)=(1): See Theorem 2.
This completes the proof.
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COROLLARY 4. The following statements are equivalent:
(1) (X, ]+ ---»-||) is strictly convez.

(2) The condition ||a,cq,...,cn|| = ||byc2,...,¢nll = 1, @ # b, for given
C2y---s¢n & L({a,b}) implies that ||$(a +b),ca,...,cq| < 1.

Proof. (1)=(2): Suppose that ||a,c2,...,¢cal| = ||b,c2,...,¢n]l =1, a #
b and c3,...,cn € L({a,b}). By the condition (nNy4), we have

e+ b,c2y...,cq|l < 2.
If |la, 2y - - - Cnll = 1By 2y - - oyenll = [13(a+b),co,. .., ¢n]| = 1, then
la,ea,. . senll + 110525+ senll = la +b,¢2,. .. ¢l

Since ¢2,...,¢n € L({a,b}), by the condition (1), we have b = aa for some
a > 0. Thus ||b,cs,...,cn]| = ella,c2,...,¢n|| = 1 and therefore o = 1,
which contradicts with @ # b. So, we have

1
' §(a+ b),ca,...,¢cn| < 1.
(2)=(1): Let ||@ + b,ca,...,cnll = |l@sc2,...,¢nll + ||bsc2,...,cn]| and

a,b # 0. We need to consider only the case ¢s,...,¢, ¢ L({a,b}). If so, then

a b

+ C2,...,Cnl| 2 2.
la,cay--senll  lbyeaye-sen]l” 70"
Hence, since ||a/||a,c2,...,¢cnll,ca,. . seall = |[0/1bsc2,. .., ¢n|l;c2y-- -, cnll
= 1, by the condition (2), we have
a _ b
lla,ea,-.seanll — ||b,c25-.-5eanl|l

Therefore, b = aa for some a > 0.
This completes the proof.
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