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STRICT C O N V E X I T Y IN LINEAR n-NORMED SPACES 

1. Let n be a positive integer, X be a linear space of dimension > n and 
II ' , . . . , '|| be a real-valued function on Xn satisfying the following conditions: 

(nNi) | | a i , . . . , a n | | = 0 if and only if a i , . . . , an are linearly dependent, 

(nN2) | | a i , . . . , a n | | = | | a j j , . . . , ain || for every permutation ( ¿ i , . . . , i „ ) of 
( l , . . . , n ) , 

(nN3) | | a a i , a 2 , . . . ,a„ | | = | a | | | a i , a 2 , . . . , a n | | for any real a, 

(nN4) ||ai + a i , a 2 , . . . ,a„ | | < | | a i , a 2 , . . . , a n | | + | |a '1 ,a2 , . . . ,a„| | . 

I I ' , . . - | | is called an n-norm on X and (X, | | - , . . . , -||) is called a linear n-
normed space ([3]). Since 2 | | a i , a 2 , . . . , a n | | > ||ai — cti ,a2 , . . . ,an|| = 0, the 
n-norm is not negative. 

The concept of a linear n-normed space is a generalization of the concepts 
of a normed linear space (n = 1) and of a linear 2-normed space ([2]). For 
more details on linear n-normed spaces, we refer to [1] and [3]. 

For a,b G X, let L({a, b}) denote the subspace of X generated by a,b. 
Whenever the notation L({a, 6}) is used, a and b are assumed to be linearly 
independent. 

For c 2 , . . . , c „ G X being linearly independent, let C = {c 2 , . . . , c n } . 
Let X(C) denote the subspace of X generated by C and let Xc be the 
quotient space X / X ( C ) . For every a £ X , denote the equivalent class of 
a with respect to X(C) by (a)c• Then Xc is a linear space with addi-
tion ( a ) c + (b)c = (a + b)c and scalar multiplication (aa)c = a(a)c-
For any a, 6 6 X with (a)c = (b)c , since a — b, c2, C3,..., cn are linearly 
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dependent, 

|||a,c2,...,cn|| - ||&,c2,. ..,cn||| < \\a-b,c2,...,cn\\ = 0 

and hence we have 

\\a,c2,.. .,cn\\ = ||&,c2,...,cn||. 

Therefore, the function || -||c defined on Xc by ||(a)c||c = ||a, c 2 , . . . , cn\\ 
is independent on the special representative a of (a)c• 

In this paper, we give new characterizations of strict convexity in linear 
n-normed spaces in terms of the quotient spaces mentioned above. 

2. Now, we derive some elementary ra-norm results: 

T H E O R E M 1. Let (X, ||-,...,-||) be a linear n-normed space. If ||A + 
&,c2,...,cn|| = ||a,c2,...,cn|| + ||6,c2,...,c„||, then 

||aa + (3b, c 2 , . . . , cn|| = a||a, c 2 , . . . , cn\\ + f3\\b, c 2 , . . . , cn|| 

for all a, f3 > 0. 

Proof . Note that 

||aa + (3b, c 2 , . . . , cn|| < a||a, c 2 , . . . , cn\\ + f3\\b, c 2 , . . . , cn||. 

In order to show the opposite inequality we may assume, without loss of 
generality, that 0 < a < ¡3. Then we have 

||aa + 0b,c2,..., cn || = \\(3(a + b) - (f3 - a)a, c 2 , . . . , cn\\ 

> (3\\a + b, c 2 , . . . , cn|| - (¡3 - a)||a, c 2 , . . . , cn|| 

= a||a,c2...,cn|| + f3\\b,c2,.. .,cn||. 
This completes the proof. 

T H E O R E M 2 . Let (X, ||-,..., -H) be a linear n-normed space and letc2,..., 
cn 0 L({a, b}). Then the following statements are equivalent: 

(1) If ||a + 6, c 2 , . . . , c„|| = ||a,c2,...,cn|| + ||6,c2,...,cn|| and ||a,c2,..., 
cn|| = ||6, Co,..., cn|| = 1, then a = b. 

(2) If |||a + b,c2,.. .,cn|| = ||a,c2,. ..,cn|| = ||6,c2,.. .,cn||, then a = b. 

(3) If \\a + ab,c2,...,cn\\ = 2||a,c2,..., cn||, then a = ab for a = 
||a, c2,...,cn||/||6,c2,...,cn||. 

(4) If\\a + b,c2,...,cn\\ = ||a,c2,...,cn|| + ||6,c2,...,cn||, then ||6,c2,..., 
cn||a = ||a,c2,.. .,cn\\b. 

Proof . (l)=i>(2): Observe that if |||a + b, c 2 , . . .,cn|| = ||a,c2,.. .,c„|| = 
\\b,c2,.. ,,cn\\ = <y, then 7 ^ 0 since c2 , . . . , c n £ L({a,b}). 
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Now we have 
1 
2 

Ci 
a + b,c2,...,— , . . . , c r 

7 
a , c 2 , . . . , ,... ,cn 

7 

6, C2, . . . , — , . . . , c„ 
7 

= 1 

and therefore, by the condition (1), a = b. 
(2)=>(3): Since | | a6 ,c 2 , . . . ,c n \ \ = \\a,c2,.. .,cn\\ = | | | o + ab,c2,.. . ,c„| | , 

then a = aè, by the condition (2). 

(3)=»(4): Suppose that | | o , c 2 , . . . , c n | | < \\b,c2,.. .,cn\\, so 

a = | | a , c 2 , . . . , c „ | | / | | 6 , c 2 , . . . , c n | | < 1. 

Then we have 

11« + b, c 2 , . . . , cn || <|| a + otb,c2,..., c„|| + ||6, c 2 , . . . , cn | | 

- | | a , c 2 , . . . , c n | | 

= | | a , c 2 , . . . , c „ | | + | | 6 ,C 2 , . . . ,C„||. 

If the identity in the condition (4) is satisfied, then the latter means that 

\\a + ab,c2,...,cn\\ = 2 | | a , c2,..., c„| | . 

Thus, from (3), we have 

11«, C2> • • •, c„||6 = ||6, c 2 , . . . , c„||a. 
(4)=»(1): It is evident. 
This completes the proof. 

3. Finally, we give some characterizations of strict convexity in a linear 
n-normed space (X, ||-,..., -||). 

D e f i n i t i o n 1 ( [ 2 ] ) . A linear n-normed space ( X , | | - , . . . , - | | ) is said to 
be strictly convex if t h e condi t ion | |a , c2,..., c n | | = \\b,c2,... ,cn\\ = j | | a + 
6, c2,..., cn|| for c 2 , . . . , cn £ L({a,b}) implies that a = b. 

Note that , by Theorem 2, a linear n-normed space (X, . . . , - | | ) is 
strictly convex if and only if the condition 

\\a + b,c2,..., cn | | = ||a, c 2 , . . . , cn | | + ||6, c 2 , . . . , cn | | 

for c 2 , . . . , cn $ L({a, 6}) and 

| | a , c 2 , . . . , c n | | = | | 6 , c 2 , . . . , c n | | = 1 

imply that a — b. 
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T H E O R E M 3 . The following statements are equivalent: 

(1) (X, . . . , - ID is strictly convex. 

(2) For every linearly independent setC = {c2, . . . , cn} C X, ( X c , || • ||c) 
is strictly convex. 

(3) The condition ||a + &,c2 , . . . ,cn | | = | |a ,c2 , . . . ,cn | | +1|6, c 2 , . . . , c„|| for 
c 2 , . . . , cn £ L({a, b}) implies that b = aa for some a > 0. 

P r o o f . (1)=^(2): Let (X, | |- , . . . ,- | |) be strictly convex. Take arbitrary 
C — {c 2 , . . . , c n }, where c 2 , . . . , c n are linearly independent points in X, 
and assume that | | (a) c | |c = ||(&)c||c = | l l ( a )c + (b)c\\c = 1- Then 

| |a ,c2 , . . . ,cn | | = ||Z>,c2,.. ,,c„|| = ^||a + &,c2,.. .,c„|| = 1. 

We need to show that (a)c = (b)c. 
It is obvious if c 2 , . . . , cn £ a({a, &}). 
If Cj £ L({a,b}) for some i £ {2,3,. . . ,n}, then c,- = aa + f3b for some 

real a, ¡3, and so 

(0 )c = a(a)c + fS(b)c-
Since | |(a)c| |c = ||(^)c||c = the latter implies that a = ±(3. 

If a = ¡3, then Cj = a(a + b), which contradicts with 

0 = ||a + 6 ,c 2 , . . . ,c„ | | = | |a ,c2 , . . . ,c„ | | + | |6 ,c2 , . . . ,cn | | 
= | |(a)c||c + ||(6)c||c 
= 2. 

Therefore, a = —¡3 and hence (a)c = (b)c• Thus, (Xc, || • ||c) is strictly 
convex. 

(2)=^(3): Assume that the condition (2) holds. Take arbitrary c 2 , . . . , cn 
$ L({a, 6}) such that 

||a + b, c 2 , . . . , cn|| = ||a, c 2 , . . . , cn | | + ||&, c 2 , . . . , cn | |. 

Then we have 

ll(fl)c + (6)c||c = | |(a)c||c + | | (6)c| |c 

Since (Xc, || • ||c) is strictly convex, the latter means that (b)c = &(a)c f° r 

some a > 0. Therefore, b = aa for some a > 0. 
(3)=>(1): See Theorem 2. 
This completes the proof. 
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COROLLARY 4. The following statements are equivalent: 

(1) ( X , ||-,..., -||) is strictly convex. 

(2) The condition | | a ,c 2 , . . . ,cn | | = ||6, c 2 , . . c n | | = 1, a ^ b, for given 
C2, • • ->cn £ 6}) implies that |||(a + b),c2,.. .,c„|| < 1. 

P r o o f . (1)=^(2): Suppose that ||a, c 2 , . . . , cn | | = ||£>, c 2 , . . . ,cn | | = 1, a / 
6 and c 2 , . . . , cn ^ ¿({a, 6}). By the condition (nN^, we have 

||a + &,c2 , . . . ,cn | | < 2. 

If | | a ,c 2 , . . . , c n | | = | |&,c2 , . . . ,cn | | = | | | ( a + 6) ,c 2 , . . . , c n | | = 1, then 

| | a ,c 2 , . . . , c n | | + | |6 ,c2 , . . . ,cn | | = ||a + &,c2,.. . ,cn | | . 

Since c 2 , . . . , cn L({a, b}), by the condition (1), we have b = aa for some 
a > 0. Thus | |6,c2 , . . . ,cn | | = a | | a ,c 2 , . . . ,cn | | = 1 and therefore a = 1, 
which contradicts with a ^ b. So, we have 

'-(a + b),C2,...,cn < 1. 

(2)=^(1): Let ||a + b,c2,.. . ,cn | | = | |a ,c2 , . . . ,cn | | + | |6,c2,.. . ,cn | | and 
a, i> ^ 0. We need to consider only the case c 2 , . . . , cn ^ L({a, 6}). If so, then 

+ r, C2, . . . , Cn > 2. 
| a ,c 2 , . . .,cn\\ \\b,C2,...,cri 

Hence, since | | a / | | a ,c 2 , . . . , c n | | , c 2 , . . . ,cn | | = | |6/| |6,c2,.. . , c n | | , c 2 , . . . , c„ 
= 1, by the condition (2), we have 

a b 

\\a,c2,.. .,cn\\ | |6 ,c 2 , . . . ,c n | | ' 
Therefore, b = aa for some a > 0. 

This completes the proof. 
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