

Aldona Szukała

ON THE n-th ORDER ORDINARY DIFFERENTIAL  
EQUATION IN BANACH SPACES

This paper gives some Aronszajn-type theorems for n-th order ordinary differential equations in Banach spaces.

**1. Introduction**

Using the measure of noncompactness (cf.[2]) we shall give sufficient conditions for the existence of local solutions of an initial value problem for the differential equation

$$x^{(n)} = f(t, x, x', \dots, x^{(n-1)})$$

in Banach spaces. Moreover, we shall prove that the set of these solutions is a compact  $R_\delta$ , i.e. it is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts.

In the case of the equation

$$x^{(n)} = f(t, x)$$

we shall show that a similar theorem is true also for global solutions.

In our paper an essential role play some results from [1].

**2.** Assume that  $I = [t_0, t_0 + a]$  is a compact interval in  $\mathbb{R}$ ,  $E$  is a real Banach space and  $\alpha$  is the measure of noncompactness in  $E$ . Let  $B = \{y \in E^n : \|y - \eta\| \leq b\}$ , where  $\eta = (\eta_1, \dots, \eta_n)$ ,  $y = (y_1, \dots, y_n)$  and  $\|y\| = \max(\|y_1\|, \dots, \|y_n\|)$ .

Moreover, we assume that

1°  $f: I \times B \rightarrow E$  is a bounded continuous function;

2° there exists an integrable function  $h: I \rightarrow \mathbb{R}_+$  such that

$$\alpha(f(t, X_1 \times \dots \times X_n)) \leq h(t) \max(\alpha(X_1), \dots, \alpha(X_n))$$

for  $t \in I$  and for bounded subsets  $X_1, \dots, X_n$  of  $E$ .

**THEOREM 1.** *Under the above assumptions there exists an interval  $J = [t_0, t_0 + d]$  such that the set of all solutions on  $J$  of the initial value problem*

$$(1) \quad x^{(n)} = f(t, x, x', \dots, x^{(n-1)}),$$

$$(2) \quad x(t_0) = \eta_1, \dots, x^{(n-1)}(t_0) = \eta_n$$

*is a compact  $R_\delta$ .*

Obviously, the equation (1) is equivalent to the system of  $n$  first-order differential equations

$$\begin{aligned} y'_1 &= y_2 \\ y'_2 &= y_3 \\ &\vdots \\ y'_{n-1} &= y_n \\ y'_n &= f(t, y_1, y_2, \dots, y_n), \end{aligned}$$

where  $y_1(t) = x(t)$ .

Hence Theorem 1 is a simple consequence of the following

**LEMMA 1.** *Consider the Cauchy problem*

$$(3) \quad y'_i = g_i(t, y_1, \dots, y_n), \quad y_i(t_0) = \eta_i \quad (i = 1, 2, \dots, n).$$

*Assume that for each  $i = 1, 2, \dots, n$ ,  $g_i: I \times B \rightarrow E$  is a bounded continuous function and there exist integrable functions  $a_{ij}: I \rightarrow \mathbb{R}_+$  such that*

$$(4) \quad \alpha(g_i(t, A_1 \times \dots \times A_n)) \leq a_{i1}(t)\alpha(A_1) + \dots + a_{in}(t)\alpha(A_n)$$

*for  $t \in I$  and for any subsets  $A_1, \dots, A_n$  of  $E$  such that  $A_1 \times \dots \times A_n \subset B$ . Let  $M = \sup\{\|g_i(t, y)\| : t \in I, y \in B, i = 1, 2, \dots, n\}$ ,  $d = \min(a, \frac{b}{M})$  and  $J = [t_0, t_0 + d]$ . Then the set of all solutions of the problem (3) on  $J$  is a compact  $R_\delta$ .*

**P r o o f.** Let  $B_i = \{x \in E : \|x - \eta_i\| \leq b\}$ . Put

$$r_i(x) = \begin{cases} x & \text{for } x \in B_i \\ \eta_i + \frac{b(x - \eta_i)}{\|x - \eta_i\|} & \text{for } x \in E \setminus B_i. \end{cases}$$

Then  $r_i$  is a continuous function from  $E$  into  $B_i$  and  $\alpha(r_i(A)) \leq \alpha(A)$  for each bounded  $A \subset E$ .

Define a function  $\tilde{g}_i$  by  $\tilde{g}_i(t, y_1, \dots, y_n) = g_i(t, r_1(y_1), \dots, r_n(y_n))$  for  $t \in I$ ,  $y_1, \dots, y_n \in E$ . Then  $\tilde{g}_i$  is a continuous function from  $I \times E^n$  into  $E$  such that  $\|\tilde{g}_i(t, y)\| \leq M$  for  $t \in I$ ,  $y \in E^n$  and

$$\alpha(\tilde{g}_i(t, A_1 \times \dots \times A_n)) \leq a_{i1}(t)\alpha(A_1) + \dots + a_{in}(t)\alpha(A_n)$$

for  $t \in I$  and for bounded subsets  $A_1, \dots, A_n$  of  $E$ .

Denote by  $C = C(J, E^n)$  the space of continuous functions  $J \rightarrow E^n$  with the usual supremum norm  $\|\cdot\|_C$ .

Let us notice that (3) is equivalent to the equation  $y = F(y)$ , where  $F(y) = (F_1(y), \dots, F_n(y))$  and

$$F_i(y)(t) = \eta_i + \int_{t_0}^t \tilde{g}_i(s, y(s)) ds \quad \text{for } t \in J, \quad y \in C, \quad i = 1, \dots, n.$$

Fix an index  $i$ . For each  $y \in C$  and  $t, \tau \in J$  we have

$$\|F_i(y)(t) - F_i(y)(\tau)\| \leq \left| \int_{\tau}^t \|\tilde{g}_i(s, y(s))\| ds \right| \leq M|t - \tau|$$

and

$$\|F_i(y)(t) - \eta_i\| \leq M|t - t_0| \leq M d \leq b.$$

Hence  $F_i(C)$  is a bounded equicontinuous subset of  $C$ . Since  $J$  is compact, it follows that the set  $F_i(C)$  is equiuniformly continuous.

Assume that  $y^k, y \in C$  and

$$\lim_{k \rightarrow \infty} \|y^k - y\|_C = 0.$$

Then

$$\lim_{k \rightarrow \infty} \tilde{g}_i(s, y^k(s)) = \tilde{g}_i(s, y(s))$$

and

$$\|\tilde{g}_i(s, y^k(s)) - \tilde{g}_i(s, y(s))\| \leq 2M \quad \text{for } s \in J.$$

Now, by the Lebesgue dominated convergence theorem we get

$$\lim_{k \rightarrow \infty} \int_{t_0}^t \|\tilde{g}_i(s, y^k(s)) - \tilde{g}_i(s, y(s))\| ds = 0,$$

$$\text{i.e. } \lim_{k \rightarrow \infty} F_i(y^k)(t) = F_i(y)(t) \quad \text{for each } t \in J.$$

Because  $F_i(C)$  is equicontinuous, this implies that

$$\lim_{k \rightarrow \infty} \|F_i(y^k) - F_i(y)\|_C = 0.$$

Thus  $F_i: C \rightarrow C$  is continuous for  $i = 1, \dots, n$  and therefore  $F: C \rightarrow C$  is continuous.

We shall prove that

$$(5) \quad \text{If } u^k \in C \quad (k = 1, 2, \dots) \quad \text{and} \quad \lim_{k \rightarrow \infty} \|u^k - F(u^k)\|_C = 0, \\ \text{then } (u^k) \text{ has a convergent subsequence.}$$

Suppose that  $u^k \in C$  ( $k = 1, 2, \dots$ ) and

$$(6) \quad \lim_{k \rightarrow \infty} \|u^k - F(u^k)\|_C = 0.$$

Put  $V = \{u^k : k = 1, 2, \dots\}$ ,  $V_i = \{u_i^k : k = 1, 2, \dots\}$ ,  $V(t) = \{u^k(t) : k = 1, 2, \dots\}$  and  $V_i(t) = \{u_i^k(t) : k = 1, 2, \dots\}$  ( $i = 1, \dots, n$ ,  $t \in J$ ). By (6)

we infer that  $(I - F)(V)$  is an equiuniformly continuous subset of  $C$ . Since  $V \subset (I - F)(V) + F(V)$  and  $F(V)$  is equiuniformly continuous, the set  $V$  is also equiuniformly continuous.

Fix  $i$  and put  $Z_i(t) = \{u_i^k(t) - F_i(u^k)(t) : k = 1, 2, \dots\}$ . From (6) we deduce that  $\alpha(Z_i(t)) = 0$ . Since  $V_i(t) \subset Z_i(t) + F_i(V)(t)$  and  $F_i(V)(t) \subset V_i(t) - Z_i(t)$ , we have

$$(7) \quad v_i(t) = \alpha(V_i(t)) = \alpha(F_i(V)(t)) \quad \text{for } t \in J.$$

Let  $W_i = \{w_i^k = \tilde{g}_i(\cdot, u^k) : k \in \mathbb{N}\}$ . It is clear that  $w_i^k \in C$  and  $\|w_i^k(t)\| \leq M$  for  $k \in \mathbb{N}$ ,  $t \in J$ . Since  $W_i$  satisfies the assumptions of Heinz's Theorem [4], by (4) and (7) we get

$$\begin{aligned} \alpha(V_i(t)) &= \alpha(F_i(V)(t)) = \alpha\left(\left\{\int_{t_0}^t \tilde{g}_i(s, u^k(s)) ds : u^k \in V\right\}\right) \leq \\ &\leq 2 \int_{t_0}^t \alpha(\tilde{g}_i(s, V(s))) ds \leq 2 \int_{t_0}^t (a_{i1}(s)\alpha(V_1(s)) + \dots + a_{in}(s)\alpha(V_n(s))) ds. \end{aligned}$$

Hence

$$v_i(t) \leq 2 \int_{t_0}^t (a_{i1}(s)v_1(s) + \dots + a_{in}(s)v_n(s)) ds \quad \text{for } t \in J, \quad i = 1, \dots, n.$$

Applying now the theorem on integral inequalities, we deduce that  $v_i(t) = 0$  for each  $t \in J$ . Since  $V(t) \subset V_1(t) \times \dots \times V_n(t)$ , we obtain

$$\alpha(V(t)) \leq \max(\alpha(V_1(t)), \dots, \alpha(V_n(t))) = 0.$$

Hence the set  $V(t)$  is relatively compact in  $E^n$ . By Ascoli's theorem this proves that the set  $V$  is relatively compact in  $C$ . Hence the sequence  $(u^k)$  has a convergent subsequence.

By Theorem 5 of [5] from (5) we conclude that the set of all fixed points of  $F$  is a compact  $R_\delta$ . Obviously, this set is identical to the set of all solutions of the problem (3) on  $J$ .

### 3. Consider now a Cauchy problem

$$(8) \quad x^{(n)} = f(t, x),$$

$$(9) \quad x^{(i)}(a) = \eta_i \quad (i = 0, 1, \dots, n-1).$$

Assume that  $J = [a, b]$  and

1°  $f: J \times E \rightarrow E$  is a continuous function;

2° for each bounded subset  $Z$  of  $E$  there exists an integrable function  $h_Z: J \rightarrow \mathbb{R}_+$  such that  $\alpha(f(t, X)) \leq h_Z(t)\alpha(X)$  for  $t \in J$  and for  $X \subset Z$ ;

3° there exists a continuous nondecreasing function  $M: [0, \infty) \rightarrow (0, \infty)$  such that

$$\int_1^\infty \frac{dr}{\sqrt[n-1]{r} M(r)} = \infty \quad \text{and} \quad \|f(t, x)\| \leq M(\|x\|) \quad (x \in E, t \in J).$$

**THEOREM 2.** *Under the above assumptions all solutions of the problem (8)-(9) exist on the interval  $J$  and the set of all these solutions is a compact  $R_\delta$ .*

**P r o o f.** Performing the change of function

$$y(t) = x(t) - \sum_{j=0}^{n-1} \frac{\eta_j(t-a)^j}{j!}$$

we reduce the initial value problem (8)-(9) to a problem

$$(8') \quad y^{(n)} = \tilde{f}(t, y)$$

$$(9') \quad y^{(i)}(a) = 0 \quad i = 0, 1, \dots, n-1,$$

where the function  $\tilde{f}$  satisfies the assumptions 1° – 3°.

The equation (8') is equivalent to the system

$$(10) \quad \begin{aligned} z'_1 &= z_2 \\ z'_2 &= z_3 \\ &\vdots \\ z'_{n-1} &= z_n \\ z'_n &= \tilde{f}(t, z_1) \end{aligned}$$

i.e.  $Z' = G(t, Z)$ , where  $z_1(t) = x(t)$ ,  $Z = (z_1, \dots, z_n)$ , and the mapping  $G: J \times E^n \rightarrow E^n$  is defined as  $G(t, Z) = (z_2, \dots, z_n, \tilde{f}_n(t, z_1))$ .

It is obvious that  $G$  satisfies the assumptions of Lemma 1. Hence the Cauchy problem

$$(11) \quad Z' = G(t, Z), \quad Z(a) = 0,$$

has a local solution. Let  $Z(t)$  be any solution of (11) defined on some interval  $J' = [a, c]$ ,  $c < b$ . By Lemma 10 of [1] from 3° it follows that the function  $z_n(t) = x^{(n-1)}(t)$  is bounded on  $J'$ . Consequently, the function  $Z(t)$  is bounded on  $J'$ . Therefore there exists the limit

$$\lim_{t \rightarrow c} Z(t) = p.$$

According to Lemma 1, the system (10) with the initial condition  $Z(c) = p$  has a solution  $Z(t)$  on an interval  $[c, c + \epsilon]$ . From this we conclude that all solutions of the problem (11) can be continued to the whole interval  $J$ .

From  $3^\circ$  it is clear that the function  $G$  is bounded on every bounded subset of  $J \times E^n$ .

For given  $\Delta = [a, \delta] \subset J$ ,  $k \in \mathbb{N}$  and for any bounded closed subset  $V$  of  $J \times E^n$ , denote by  $S_k(\Delta, V)$  the set of all continuously differentiable functions  $u: \Delta \rightarrow E^n$  such that  $u(a) = 0$ ,  $(t, u(t)) \in V$  and  $\|u'(t) - G(t, u(t))\| \leq \frac{1}{k}$  for  $t \in \Delta$ .

In view of Theorem 3 of [6], in order to prove that the set of all solutions of (11) on  $J$  is a compact  $R_\delta$ , it is sufficient to show that for any  $\Delta$  and  $V$  the following condition holds :  $(D_2)$  Every sequence  $(u^k)$ ,  $u^k \in S_k(\Delta, V)$  for  $k = 1, 2, \dots$ , has a limit point.

Let  $(u^k)$  be a sequence such that  $u^k \in S_k(\Delta, V)$  for  $k = 1, 2, \dots$ . Then

$$\lim_{k \rightarrow \infty} \|u^k - H(u^k)\|_C = 0,$$

where

$$H(u^k)(t) = \int_a^t G(s, u^k(s)) ds.$$

By repeating the argument from the proof of Lemma 1, we can prove that the sequence  $(u^k)$  has a convergent subsequence. This completes our proof.

### References

- [1] V. A. Alexandrov, N. S. Dairbekov, *Remarks on the theorem of M. and S. Rădulescu about an initial value problem for the differential equation  $x^{(n)} = f(t, x)$* , Rev. Roumaine Math. Pures Appl. 37 (1992), 95–102.
- [2] J. Banas, K. Goebel, *Measures of noncompactness in Banach spaces*. Marcel Dekker. New York and Basel, 1980.
- [3] K. Deimling, *Ordinary differential equations in Banach spaces*. Lect. Notes 595, Springer, 1977.
- [4] H. P. Heinz, *On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions*, Nonlinear Analysis 7 (1983), 1351–1371.
- [5] S. Szufla, *Solutions sets of non-linear equations*, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 971–976.
- [6] S. Szufla, *On the structure of solutions sets of differential and integral equations in Banach spaces*, Ann. Polon. Math., 34 (1977), 165–177.
- [7] G. Vidossich, *On the structure of solutions sets of non-linear equations*, J. Math. Anal. Appl. 34 (1971) 602–617.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

A. MICKIEWICZ UNIVERSITY

J. Matejki 48/49

60-769 POZNAŃ, POLAND

Received May 5, 1995.