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ON THE n-th ORDER ORDINARY DIFFERENTIAL
EQUATION IN BANACH SPACES

This paper gives some Aronszajn-type theorems for n-th order ordinary
differential equations in Banach spaces.

1. Introduction

Using the measure of noncompactness (cf.[2]) we shall give sufficient con-
ditions for the existence of local solutions of an initial value problem for the
differential equation

™ = f(t,z,2,...,c"Y)

in Banach spaces. Moreover, we shall prove that the set of these solutions
is a compact Ry, i.e. it is homeomorphic to the intersection of a decreasing
sequence of compact absolute retracts.

In the case of the equation

(M = f(t,z)

we shall show that a similar theorem is true also for global solutions.
In our paper an essential role play some results from [1].

2. Assume that I = [tg,%o + a] is a compact interval in R, E is a real
Banach space and a is the measure of noncompactness in E. Let B = {y €
E™ ||y—77” < b}7 where 7 = (nla'-'7nn)7 Yy = (3/1,--~,?/n) and
lyll = max(liga]l, - - l1gal))

Moreover, we assume that

1° f:I x B — FE is a bounded continuous function;

2° there exists an integrable function h: I — R such that

a(f(t, X1 X --- X Xn)) < h(t) max(e(X1),...,a(Xn))
for t € I and for bounded subsets Xj,..., X, of E.
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THEOREM 1. Under the above assumptions there erists an interval J =
[to, o + d] such that the set of all solutions on J of the initial value problem

(1) 2™ = f(t,e, 2. .., 2("D),
(2) z(to) = M,..., 2" D(to) = 0
is a compact Rgs.

Obviously, the equation (1) is equivalent to the system of n first-order
differential equations

=4
Ys = U3

!
yn—l =Yn

y;, = f(t’ V1,925 yn))
where y; (1) = z(¢).
Hence Theorem 1 is a simple consequence of the following
LEMMA 1. Consider the Cauchy problem

(3) y: :gi(t,yl,"',yn), yz(tO) =1 (1'= 1,2,...,7’1).
Assume that for eachi = 1,2,...,n, ¢;:IxB — E is a bounded continuous
function and there exist integrable functions a;;: I — Ry such that

(4) a(g,-(t,Al X - X An)) <ap(t)a(A1)+ -+ ain(t)a(Ay)

fort € I and for any subsets Ay,..., A, of E such that A; X ---X A, C B.
Let M = sup{||gi(t,y)|| : t €I,y € B,i=1,2,...,n}, d = min(a, %) and
J = [to,t0 + d]. Then the set of all solutions of the problem (3) on J is a
compact Rg.

Proof. Let B; = {z € E:||z — ]| < b}. Put

‘ z b ) for z € B;

ri(z) = { A Cnl/ 7} .
7 + Tz =il forz € E\ B;.

Then r; is a continuous function from FE into B; and a(r;(4)) < «(4) for

each bounded A C F.

Define a function g; by gi(t,y1,...,9n) = gi(t,rl(yl),...,rn(yn)) for
tel,y1,...,yn € E. Then g; is a continuous function from I x E™ into F
such that ||gi(¢t,y)|| < M fort € I, y € E™ and

a(gv,-(t, Ay X oo X An)) <an(t)e(Ar1) + -+ ain(t)a(Ar)
for ¢ € I and for bounded subsets A;,..., A, of E.

Denote by C = C(J, E™) the space of continuous functions J — E™ with

the usual supremum norm || - ||¢.
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Let us notice that (3) is equivalent to the equation y = F(y), where
F(y) = (Fl(y), .. .,Fn(y)) and

t
F(y)®)=m+ [ §i(s,y(s))ds for t€J, yeC, i=1,...,n.

to
Fix an index i. For each y € C and ¢t,7 € J we have

¢
IF@)®) - BN | [ 1§ (s 9()||ds| < Mt -7}
T
and
|F:()(t) — ]| < M|t —to] < Md < b.
Hence F;(C) is a bounded equicontinuous subset of C. Since J is compact,

it follows that the set F;(C) is equiuniformly continuous.
Assume that y*,y € C and

Jim ly* —yllo = 0.
Then o k ~
Jim gi(s,5"(s)) = Gi(s,9(5))

and
Hg~, (s,yk(s)) — @(s,y(s))” <2M for selJ.
Now, by the Lebesgue dominated convergence theorem we get

i, 55 - e o=

ie. k]jm Fi(y*)(t) = Fi(y)(t) for each telJ.

Because F;(C) is equicontinuous, this implies that
Jim [|Fi(y*) - Fiw)llc = 0.
—00

Thus F;: C — C is continuous for ¢ = 1,...,n and therefore F:C — C is
continuous.
We shall prove that
%) If v*'eC (k=1,2,...) and klim lu* — F(u*))|c = 0,
then (u*) has a convergent subsequence.
Suppose that u* € C (k=1,2...) and

(6) limlu* ~ F(u¥)lle = 0.

Put V={uF:k=12.}Vi={uf:k=12.}V0E)={0): k=
1,2,..} and V;(t) = {uf(t) : k = 1,2,..} (i = 1,...,n,t € J). By (6)
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we infer that (I — F)(V) is an equiuniformly continuous subset of C. Since
Vc({-F)V)+ F(V)and F(V) is equiuniformly continuous, the set V
is also equiuniformly continuous.

Fix i and put Z;(t) = {uf(t) — F;(v*)(t) : k¥ = 1,2,...}. From (6) we
deduce that a(Z;(t)) = 0. Since Vi(t) C Zi(t) + F;(V)(t) and Fy(V)(t) C
Vi(t) — Zi(t), we have
(7) vi(t) = a(Vi(?)) = a(Fi(V)(2)) for tel.

Let W; = {wF = gi(-,v*) : k € N}. It is clear that wf € C and ||wk(t)|| < M
for k£ € N, t € J. Since W; satisfies the assumptions of Heinz’s Theorem [4],
by (4) and (7) we get

t

a(Vit) = a(B(V)(®) = a{ [ Gi(s,u*(s))ds : u* € V}) <

to

<2 f (g1 s, V(s) )ds <2 f (a,l(s)a(Vl(s)) -+ain(s)a(Vn(s))>ds

to

Hence

t
v;(t) £2 f (a,-l(s)'vl(s) + 4 ain(s)vn(s))ds for teJ, i=1,...,n
to
Applying now the theorem on integral inequalities, we deduce that v;(t) = 0
for each t € J. Since V() C V1(t) X - - - X Vy,(t), we obtain

a(V(t) < max(a(Vl(t),...,a(Vn(t))) =

Hence the set V(t) is relatively compact in E™. By Ascoli’s theorem this
proves that the set V is relatively compact in C. Hence the sequence (u*)
has a convergent subsequence.

By Theorem 5 of [5] from (5) we conclude that the set of all fixed points
of F is a compact Rs. Obviously, this set is identical to the set of all solutions
of the problem (3) on J.

3. Consider now a Cauchy problem

(8) 2™ = f(t,z),
(9) 2(a) = n; (i=0,1,...,n—1).
Assume that J = [a, b] and

1° f:J X E — E is a continuous function;

2° for each bounded subset Z of E there exists an integrable function
hz:J — Ry such that a(f(¢, X)) < hz(t)a(X) for t € J and for X C Z;
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3° there exists a continuous nondecreasing function M:[0,00) — (0, 0)
such that

¢ dr
lf }/r=TM(r)
THEOREM 2. Under the above assumptions all solutions of the problem
(8)-(9) ezist on the interval J and the set of all these solutions is a compact

Rs.

Proof. Performing the change of function
n-1 ;
7’. t - a)]
v =o() - Y B2
= T

we reduce the initial value problem (8)—(9) to a problem

(8" ¥ = f(t,y)
(9" y@)=0 i=0,1,...,n—1,

=oo and ||f(t,2)]| < M(||z]l) (=€ E,teJ).

where the function fsatisﬁes the assumptions 1° — 3°.
The equation (8') is equivalent to the system

Z1 =22
Z; = 2z3
(10)
Zn_1 = Zn
’

Zn = f(tv Z])
ie. Z' = G(t,Z), where z(t) = z(t), Z = (»1,...,2,), and the mapping
G:J x E™ — E™ is defined as G(t,Z) = (22, .. .,zn,fn(t,zl)).

It is obvious that G satisfies the assumptions of Lemma 1. Hence the
Cauchy problem

(11) 7' =G(t,2), Z(a) =0,

has a local solution. Let Z(¢) be any solution of (11) defined on some interval
J' = [a,¢), ¢ < b. By Lemma 10 of [1] from 3° it follows that the func-
tion z,(t) = 2{("~1)(¢) is bounded on J'. Consequently, the function Z(t) is
bounded on J'. Therefore there exists the limit

lim Z(t) = p.

t—c
According to Lemma 1, the system (10) with the initial condition Z(¢) = p
has a solution Z(t) on an interval [c, ¢ + €]. From this we conclude that all
solutions of the problem (11) can be continued to the whole interval J.
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From 3° it is clear that the function G is bounded on every bounded
subset of J x E™.

For given A = [a,6] C J, k € N and for any bounded closed subset V of
Jx E™, denote by Sk(A, V) the set of all continuously differentiable functions
u: A — E™ such that u(a) = 0, (t,u(t)) € V and ||u'(t) - G(t,u(?))| < £
for t € A.

In view of Theorem 3 of [6], in order to prove that the set of all solutions
of (11) on J is a compact Rs, it is sufficient to show that for any A and V
the following condition holds : (D,) Every sequence (u*), u* € Sx(A, V) for
k=1,2,..., has a limit point.

Let (u*) be a sequence such that u* € Sx(A,V) for k= 1,2,.... Then

lim [|u* — B ("o = 0,

where ¢
H(u*)(t)= [ G(s,u¥(s))ds.

By repeating the argument from the proof of Lemma 1, we can prove that
the sequence (u*) has a convergent subsequence. This completes our proof.
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