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OF OPERATOR A N D F U N C T I O N SPACES 

0. Introduction 
Let X be a Banach space and i?i(X) be the unit ball of X. A point 

x G B\(X) is called a smooth point if there exists a unique / G X*, the 
dual of X, such that f(x) = ||/|| = 1. 

In [4], Holub characterized the smooth points of Bi(N(l2)) and 
B\(K(l2)), where N(X)K(X)) denotes the nuclear (compact) operators on 
X. Smooth points of B\(K{lp)) and B\{L{lp))l < p < oo were studied in 
[1], where L(X) is the space of bounded linear operators on X. 

The structure of the Hilbert space I2, was heavily used in the study of 
smooth points of B\{N(l2)), in [4], So the proofs can't be generalized to the 
case of lp, p ^ 2. Another difference between the cases of I2 and lp,p ^ 2, is 
the fact that the extreme points of B\{L{12)) are completely characterized 
(in [5]), while the description of the extreme points of B\(L(lp)) is a very 
difficult (and an open) problem, [6]. 

In Section II of this paper, we show that the result of Holub, [4], for 
N(l2), is not true for N(lp),p / 2. Further we give a characterization of 
smooth points in Bi(N(lp)), 1 < p < oo, and a large class of smooth points 
for Bi (N(X)) is identified, for some Banach space X. Also an alternative 
proof of the Holub's result is presented. 

In Section I, we present a proof of the characteriyation of smooth points 
of the unit ball of the completion of the injective tensor product of X(g>y for 
Banach space X and Y. Our approach is different from the one presented in 
[13] by Heinrich, who used the equivalence of differentiability of the norm at 
a point and the smoothness of that point. Here we make use of the extremal 
structure of the dual space. 

Throughout this paper the symbols L(X), K(X), N(X) denote the space 
of all bounded linear, compact and nuclear operators on a Banach space X , 
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respectively. The dual of X is denoted by X*, while 5 i (X) is the unit sphere 
in X . The completion of the injective and the projective tensor products of 
X and Y will be denoted by X & Y and X 0 Y, respectively. For z G X ® Y 
we write ||z||„ for the injective norm of z and for z G X®Y, the symbol ||z||„ 
stands for the projective norm of z. The nuclear norm of T G N(X) will be 
denoted by | |T| |n . Finally for x G lp, we let supp(x) = {n : x{n) ^ 0}, and 
N is the set of positive integers. 

A 

We refer the reader to [2] and [8] for the basic properties of N(X), X (g> Y, 
and X <g> Y. 

V 

1. Smooth points of X ®Y 
v 

In [4], Holub characterized the smooth points of Si(K(l2)) = 5i(/2 ® I2). 
* V 

Smooth points of Si(K(lp)) = Si(lp (g) lp), I < p, oo, were characterized 
in [1]. In this section we recall characterization of the smooth points of 

V 

,5*1 (X ® Y), where X and Y are Banach spaces, and present a different way 
of proof from that one given in [13]. 

V 

T H E O R E M 1 .1 . LetX andY be given Banach spaces. ForT G ¿ i ( X ( g i Y ) , 

the following statements are equivalent: 
(i) T is a smooth point; 

(ii) T (as an operator: X* —• Y) attains its norm uniquely, and at a 
smooth point of S\(X*). 

N o t e : The uniqueness in (ii) is in the following sense: there is only one 
element x* G S ^ X * ) such that ||r®*|| = ||T(-®*)|| = 1 = ||T||. 

P r o o f , (i) —• (ii). Let T G Si (X ® Y) be smooth. Set 

E{T) = {A G S i ( ( X ® Y)*) : A(T) = 1 } . 

V 

Since T can be considered as a continuous linear functional on X <g) Y, then 
E(T) is an extremal subset of Si((X ® Y)*) (see [7]). Using the Hahn-
Banach Theorem, E(T) / 0. As in the proof of Theorem 1.1 in [1], E(T) is 
w*-closed. By Krein-Millman Theorem, E(T) is the (w*—)closed convex hull 
of its extreme points. But every extreme point of E(T) is an extreme point 

V 

of 5 i ( ( X ® F)*). Thus, by the result of Ruess and Stegall, [10], the extreme 
points of E(T) are of the form A — x* <8> y*, where a;* and y* are extreme 
points of Si(X*) and S^Y*), respectively. Thus, if x* ® y* G Ext(E(T)), 
then 

(x* ® y*)(T) = (Tx*,y*) = | | 2V | | = 1. 
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Since T is smooth, E(T) can't contain more than one element, x*. Further, 
x* is smooth. 

(ii) —• (i). As in (i) —• (ii), E(T) is the (w*—) closed convex hull of its 
extreme points. If E(T) contains two extreme points, say x\®y^ and , 
then: 

(Txly*l*) = (Tx;,y;) = l. 
Since ||®J|| = ||j/*|| = 1, then 

| | r * i | | = \\TX*2\\ = 1. 

This contradicts with (ii). Hence E(T) is a singleton and T is smooth. This 
ends the proof. 

T H E O R E M 1 . 2 [1 , 4 ] . An operator T in Si(K(lp)) is smooth if and only 
if whenever ||Txi|| = UT^H = 1, then x\ = ±a;2, for xi,x2 in Si(lp), 1 < 
p < oo. 

P r o o f . It follows from Theorem 1.1 and the fact that every element of 
Si(lp) is smooth. 

T H E O R E M 1 . 3 [11] . Let I be a compact set and X be arbitrary Banach 
space. Then a function F G S\(C(I,X)) is smooth if and only if there exists 
a unique io in I and a smooth point xo in S\(X) such that F(to) = xo. 

The proof follows from Theorem 1.1 and the fact that 

Ext(M(F)) = {6x:x 6 I}. 

2. Smooth points of N(X) 
Let X be a Banach space. In this section we try to study smooth points 

ofN(X). We introduce the following definition: 

DEFINITION 2 . 1 . A set A C S i ( X ) is called smooth iff there is a unique 
/ € Bx{X*) such that f(x) = 1 for all x e A. 

It follows from the definition that a smooth point is just a smooth set 
consisting of that point. 

Now, we give some examples of smooth sets. 

LEMMA 2.2. A set A C 5 i ( / p ) , l < p < oo, is smooth if and only if 
A = {z} for some z € 5 i ( / p ) . 

P r o o f . This follows from the fact that lp is reflexive and every point of 
unit norm in lp is smooth. 

T H E O R E M 2 . 3 . Let A C 5 i ( / 1 ) . The following statements are equivalent: 
(i) A is smooth; 
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(ii) A satisfies the following conditions: 
( a) UxeA supp(z) = N 
(b) For x,y £ A,x and y have the same sign on supp(®) fl supp(y). 

P r o o f , (i) —• (ii). Let A be smooth, but (a) is not true. So there exists 
n0 £ Usex supp(ar). Take g G Si(l°°) such that g(x) = 1 = (g,x) for all 
x £ A and define / e S^l00) by 

where a ^ g(no), 0 < a < 1. Then f ^ g and (/ , x) = 1 for all x G A. This 
contradicts with (i). Hence (a) must be satisfied. 

To prove (b), assume that A is smooth, but there exist x,y in A such 
that sign(a;) ^ sign(j/) on supp(a:) fl supp(y). Take / G Si(l°°) such that 
( f , z ) = 1 for all z G A. Now: ( f , x ) = (f,y) = 1. But for 2 € S^l 1 ) 
the equality {/, z) — 1 implies that |/(ra)| = 1 for all n G supp(z). In fact 
/ (n ) = sign(2(n)). Hence if sign(x(i0)) £ sign(j/(i0)), ¿o G supp(x)nsupp(t/), 
then /(*„) = sign(a;(io)) sign(y(io)) = f(io)- This is a contradiction. 
Hence (b) is true. 

(ii) —> (i). Let A satisfy (a) and (b). Consider the function / G ^ ( i 0 0 ) 
defined by 

for n G supp(x), and x G A. Now, the condition (b) ensures that / is well 
defined, while the condition (a) means that / is unique and (/ , a;) = 1 for 
all x G A. Hence A is smooth. This ends the proof. 

The arguments which can be used to prove the next theorem are similar 
to that in Theorem 1.3 and will be ommitted. 

T H E O R E M 2 . 4 . Let A C 5 i ( c o ) . The following statements are equivalent: 
(i) A is smooth. 

(ii) There exists no G N such that 
(a) x(no) = 1 for all x G A 
(b) x(n) < 1 for all n ^ no and all x G A. 

Now we shall consider more complicated examples. 
Let Ci(H) be the class of nuclear operators on the separable Hilbert 

space H. This is just the trace class operators. Every T G C\{H) has a 
representation of the form 

g(n) / n0 
a n = no 

f(n) = sign(x(n)) 

00 
T = ^ Xnen ® f , 

n=1 
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where (e„), ( /„) are two sequences (finite or infinite) of orthonormal vectors 
in H and (A„) € I1 with An > 0. Further ||T|| = A«- W e r e f e r t h e 

reader to [9] for more details on nuclear operators. 
The representation of T € C\(H) suggests the study of sets of the form 

{en ® fn}n=i concerning the smoothness in S\(Ci(H)). 

T H E O R E M 2 . 5 . Let A = {en(gi fn}^=1, where (en) and ( f n ) are orthonor-

mal sequences in H. Then the following statements are equivalent: 

( i ) A is a smooth set in Si(Ci(H)). 

( i i ) At least one of (en) and ( / „ ) is complete. 

P r o o f , (i) —• (ii). Let A be smooth,but neither (en) nor (/„) is complete. 
Let 

Ei = span{ei ,e 2 , . . . } , 
E2 = span{ / i , / 2 , . . . } . 

Then H = E\ © E\ = E2 © E2, where E, is the orthogonal complement of 
Ei. 

Now, since A is smooth and C\(H)* = L(H) (see [9]), there exists a 
bounded linear operator T G Si(H)) such that T(x) = 1 for all x £ A. But 
T(en ® f n ) = ( e n ,T / n ) , [9]. So ( e n , T f n } = 1 for all n. Since ( e n ) and ( f n ) 
are incomplete then we have E\ / {0} and E2 / {0}. Hence one can define 
a bounded linear operator J : E\ —• E2 such that ||J|| = 1 and J ^ T\ey, 
the restriction of T to E\. The operator Q : H —• H given by 

- { T x i f x e E i 
^ X ) ~ \ J X if x e E 

is bounded and linear. Moreover ||Q|| < 1, and Q(x) = 1 = T(x) for all 
x G A. This contradicts with the smoothness of A. Hence either (en) or ( /„) 
is complete. 

(ii) —»• (i). Let ( f n ) be complete. Define T : H —• H setting Tfn = en 

for all n. Then T is a bounded linear operator on H, with ||T|| = 1. Clearly 
T(en ® fn) = (cn, Tfn) = 1 for all n. Further if J is any other element of 
Si(L(H)) such that J(en 0 f n ) = 1 for all n, then ( e n , J f n ) = 1- Since H is 
uniformly convex, we get J f n = Tfn. The completeness of ( / n ) implies that 
J = T. Hence A is smooth. This ends the proof. 

Next result gives the characterization of smooth operators in 5i(Ci(/2)) . 
Namely, we have the following 

T H E O R E M 2 . 6 . Let T e £ i ( C i ( / 2 ) ) . Then the following statements are 

equivalent: 

( i ) T is smooth; 

( i i ) r = £ ~ = 1 A n e n ® / n , 
where ^ A n = 1 and {en <g> i is a smooth set in Si(Ci(H)). 
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P r o o f , (ii) -»• (i). Let T = Xnen<g>/„, with X)n ^n = 1 and { e n ® f n } 
is a smooth set. If T is not smooth then there exist J\, in 5i(Z(/2)) , J\ ^ 
J2 such that Ji(T) = J2{T) = 1. Hence 

^ A n ( e n , 7 i / n ) = ^ A n(e„, J 2 /„) = 1. 
n 

But = s o w e s e t ( e n , J i f n ) = 1 for i = 1,2. Since {en <g> / „ } is a 
smooth set we may assume, with no loss of generality, that ( / n ) is complete. 
The uniform convexity of I2 implies that J \ f n = J i f n for all n. Consequently 
J\ = This clearly forces T to be smooth. 

(i) —• (ii). Let T be a smooth operator in 5i(Ci(Z2)) and T = ^n^n® 
fn be the Hilbert-Schmidt representation of T, [9]. So ^n = Ĥ H = 1 and 
(en) , ( f n ) are orthonormal sequences in I2. If {e n ® fn} is not smooth then 
this implies that there exist J\,J2 in S\(L(l2)) such that Jj(en® fn) = 1 for 
i = 1,2 and all n. Hence = 1 for i— 1,2 and all ra. This 
contradicts with the fact that T is smooth. Hence {en ® fn}^= i is a smooth 
set in Si(Ci(l2)). This ends the proof. 

COROLLARY 2.7 [Holub]. T € 5I(Ci(/2)) is a smooth operator if and only 
if either T is (1-1) or T* is (1-1). 

P r o o f . If T is smooth then, by Theorem 2.5 and Theorem 2.6, 
T = ^n^n ® fn, where either (en) or (/„) is a complete set. If (en) 
is complete then T is (1-1) and while the completeness of ( f n ) implies that 
T* is (1-1). 

For the converse: If T is (1-1) or T* is (1-1) then T has the representation 
T - J2n ^nen®fn, where either ( e n ) or ( /„) is complete. Hence {en®fn}%L 1 

is a smooth set in 5'i(C ,i(/2)). By Theorem 2.6, T is smooth. This ends the 
proof. 

The case of nuclear operators on lp, I < p ^ 2 < oo, is totally different. 
The following theorem shows that point: 

T H E O R E M 2 . 8 . Let y £ Si(lp), I < p < 2 , be such that s u p p ( Y ) = N . 
Then the operator T = 6\®y is a smooth element of Si(N(lp)), where Si is 
the first element of the natural basis o f l p . 

P r o o f . Take y* £ lp' such that ||y*|| = 1 and (y,y*) = 1. Consider the 
bounded linear operator J = ¿i ® y* in L(lp ). Clearly J(T) = (y,y*) = 1. 

Now let J be any other operator in L(lp ) such that || J\\ = 1 and J(T) = 
(J(6i),y) = 1. 

Since lp is uniformly convex we get J(6i) = y*- Further, since 
supp(i/) = N we have supp(?/*) = N. Now, if J(6k) i1 0, for some k, then it 
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follows from Lemma 2.1 of [3] that ||J|| > 1. Hence we have J(8k) = 0 for 
all k > 1. Consequently, J — J and ¿i ® y is smooth. This ends the proof. 

We have to point out that T = ¿i <g) y is not (1-1) nor T* = y ® ¿1 is 
(1-1). 

Now we present a different type of proof to Holub's result [4] which 
exposes another difference between lp ,p ^ 2 and I2. 

T H E O R E M 2.9 [Holub]. Let T € Si(N(l2)). The following statements are 
equivalent: 

(i) T is smooth in 5i(iV(/2)); 
(ii) Either T or T* is (1-1). 

P r o o f , (i) —(ii). If T is smooth then there is a unique J £ S\(L(l2)) 
such that J{T) - 1. So if T = \nen ® fn with £ K = 1 then 

( * ) J{T) = Y /
X n { e n , J ! n ) . 

n 

Since N(l2) = (L(l2))* and the inclusion map is an isometry (see [12]), we 
can consider J as the element of X(Z2), where T attains its norm at. Hence, 
by [7], J is an extreme point of B\(L(l2)). Consequently, J is an isometry 
or J* is an isometry [5]. From (*) and the fact that I2 is uniformly convex 
we get J f n = en for all n. 

Now, if T or T* is not (1-1), then neither (en) nor ( / n ) is complete. Hence 
J = Ji ® J2, where J\ = e " ® supp(J2) is orthogonal to supp(Ji) 
and 11̂ 2(̂ )11 = IMI for all 2: € supp(«/2)- But then J and J\ are two elements 
in 5i(X(/2)) such that J(T) = Ji(T) = 1. This contradicts with (i). Hence 
either T is (1-1) or T* is (1-1). 

(ii) (i). Let T = ^nen®fn, where (en) is complete and An = 1. 
Then if J\,J2 G 5 i ( i ( / 2 ) ) are such that 

J i ( T ) = J2(T) = 1 

we get (en, J \ f n ) = ( e n , J 2 f n ) or ( J t e n , f n ) = (J2*en,/n)- Hence J f e n = 

J$en. Consequently J* = J2* and so J\ = J2. This ends the proof. 
We have to emphasize now two facts: 
(i) The extreme points of B\(L{12)) are completely characterized in [5], 

while this is not the case for Bi(L(lp)),p ^ 2 (see [6]). 
(ii) Every element in N(l2) has a unique representation 

T = Z n u n ® 0n, ||T||n = E „ K I | | | e n | | . This is not true in N(P) for 
p / 2 . 

Hence the following definition is invitable: 
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D E F I N I T I O N 2.11. Let X be a Banach space. An operator T G N(X) is 
called exact if and only if it admits a representation 

n 
such that | | r | |„ = E J K I I M -

In the case X when is finite dimensional it is known that every T G 
N(X) has a representation E™=i un ® 6n,m < 2/c, where k = dim(X), and 
||T||n = E n IKIIIIM- Hence every T G N{X) is exact. 

For X = I2, it is well-known (see [9]) that every T G N(l2) is exact. 
However, it is not known (to the author) for N(lp), I < p 2 < oo wheather 
every T G N(lp) is exact or not. 

Now, concerning smooth points of Si(L(lp)), I < p < oo, we can state 
the following: 

T H E O R E M 2 . 1 2 . Let T G Si(N(lp)), I < p < oo, be an exact operator. 
Then the following are equivalent: 

(i) T is a smooth element of S\{N(lp))\ 
(ii) T = E n ® #n> E n ^n = 1 and {u* <g> 6n} is a smooth set in 

P" <g> lp. 

P r o o f , (i) —> (ii). Let T be an exact smooth operator. Then 

r = E e n ® / » . E l l e " H W = llrll = 1-n n 
Let An = K| | | | /n | | , t tn = p ^ A = Then T = E „ A n < ® 9n. If 
{u* <g> 0n}n is not smooth then there are J\,J2 G S\(L{lp )) such that 

(0„, Jiu*n) = {6n,J2u*n) = 1 for aH n. 
Thus we have 

JX{T) = J2(T) = 1 
which contradicts with the smoothness of T. 

(ii) (i). Let T = E „ An<®re n with ||T||n = E n
 A =! a n d K ® M » 

being a smooth set in lp* ® lp. If J\,J2 G S\{L{lp")) be such that 
J i ( T ) = J2(T) = 1 

we get (0n,JiUn) = 1 for all n and i = 1,2. This contradicts with the 
smoothness of {«* ® 0„}„. Hence T is smooth. This ends the proof. 

R e m a r k : Theorem 2.12 is true for any Banach space X for which 

N(X) = X* ® X . 
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Now, using the same idea as in the proof of Theorem 2.8, one can prove: 

THEOREM 2.13. Let T e Si(N(lp)), I < p < 2, be such that 

(i) T = Ei Ajij ® In, ||j/i|| = 1 and \\T\\n = £ An = 1; 

(ii) supp(yi) n supp(ifc) = <p if i^ j\ 

(iii) UisuPP(y») = N -

Then T is a smooth element of S\(N(lp)). 

Now, for finite dimensional spaces we have: 

THEOREM 2.14. Let X be a finite dimensional Banach space. Then the 
following statements are equivalent: 

(i) T is a smooth operator in S\(N(X))] 

(ii) T is a convex combination of the elements of some smooth set of 

SxiX* ® X). 
P r o o f . It follows from the fact that every T G S\(N(X)) is exact and 

the use of the same argument as in the proof of Theorem 2.12. 

We end this section with the following two questions: 
Q l : Is it true that if T € 5i(iV(/p)), I <p< oo, then T is exact? 
Q2: What kind of conditions on («*) and 0n make {u* ® 8 n } n a smooth 

set in iV(/f)? 
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