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0. Introduction

Let X be a Banach space and B;(X) be the unit ball of X. A point
x € B1(X) is called a smooth point if there exists a unique f € X*, the
dual of X, such that f(z) = ||f|| = 1.

In [4], Holub characterized the smooth points of B;(N (/%)) and
B, (K(1?)), where N(X)K (X)) denotes the nuclear (compact) operators on
X . Smooth points of By (K (IP)) and B1(L(I?))1 < p < oo were studied in
[1], where L(X) is the space of bounded linear operators on X.

The structure of the Hilbert space /%, was heavily used in the study of
smooth points of By (N (%)), in [4], So the proofs can’t be generalized to the
case of [P, p # 2. Another difference between the cases of I and I?,p # 2, is
the fact that the extreme points of By(L(I%)) are completely characterized
(in [5]), while the description of the extreme points of B;(L(I?)) is a very
difficult (and an open) problem, [6].

In Section II of this paper, we show that the result of Holub, [4], for
N(1%), is not true for N(I?),p # 2. Further we give a characterization of
smooth points in By (N(I2)), 1 < p < oo, and a large class of smooth points
for B,(N(X)) is identified, for some Banach space X. Also an alternative
proof of the Holub’s result is presented.

In Section I, we present a proof of the characteriyation of smooth points
of the unit ball of the completion of the injective tensor product of X ®Y for
Banach space X and Y. Our approach is different from the one presented in
[13] by Heinrich, who used the equivalence of differentiability of the norm at
a point and the smoothness of that point. Here we make use of the extremal
structure of the dual space.

Throughout this paper the symbols L(X ), K(X), N(X) denote the space
of all bounded linear, compact and nuclear operators on a Banach space X,
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respectively. The dual of X is denoted by X*, while S1(X) is the unit sphere
in X. The completion of the injective and the projective tensor products of

X and Y will be denoted by X é) Y and X é Y, respectively. For z € X é Y
we write ||z||,, for the injective norm of z and for z € X ®Y, the symbol ||z||,
stands for the projective norm of z. The nuclear norm of T € N(X) will be
denoted by ||T||- Finally for z € I?, we let supp(z) = {n : z(n) # 0}, and
N is the set of positive integers.

We refer the reader to [2] and [8] for the basic properties of N(X), X é) Y,

a,ndXé)Y.

1. Smooth points of X é Y
In [4], Holub characterized the smooth points of Sy (K (I%)) = Sy (I ® 12).

Smooth points of §3(K(I?)) = S;(I*" ® IP), 1 < p, 00, were characterized
in [1]. In this section we recall characterization of the smooth points of
S1(X é Y'), where X and Y are Banach spaces, and present a different way
of proof from that one given in [13].

THEOREM 1.1. Let X andY be given Banach spaces. ForT € Sl(XéY),
the following statements are equivalent:
(i) T is a smooth point;
(ii) T (as an operator: X* — Y) attains its norm uniquely, and at a
smooth point of S1(X™*).

Note: The uniqueness in (ii) is in the following sense: there is only one
element z* € 53(X*) such that |Tz*|| = ||T(-z*)|| = 1 = ||T||-

Proof. (i) — (ii). Let T € $1(X ® Y') be smooth. Set
E(T)={A€ $(X ®Y)"): A(T) = 1}.

Since T can be considered as a continuous linear functional on X é Y, then

E(T) is an extremal subset of Sy((X ® Y)*) (see [7]). Using the Hahn-
Banach Theorem, E(T) # 0. As in the proof of Theorem 1.1 in [1], E(T) is
w*-closed. By Krein-Millman Theorem, E(T')is the (w*—)closed convex hull
of its extreme points. But every extreme point of E(T') is an extreme point

of S1((X ® Y)*). Thus, by the result of Ruess and Stegall, [10], the extreme
points of E(T) are of the form A = z* ® y*, where z* and y* are extreme
points of S1(X*) and S1(Y™*), respectively. Thus, if 2* @ y* € Ezt(E(T)),
then

(2" @y )(T) = (T y") = | Te™|| = 1.
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Since T is smooth, E(T) can’t contain more than one element, z*. Further,
z* is smooth.

(ii) — (i). As in (i) — (ii), E(T) is the (w*—) closed convex hull of its
extreme points. If E(T') contains two extreme points, say 7 ®y;j and z5®y;,
then:

(Tzy,y*1%) = (Ta3,93) = 1.
Since ||z7|| = ||y}|| = 1, then
T3]l = T2zl = 1.
This contradicts with (ii). Hence E(T) is a singleton and T is smooth. This
ends the proof.

THEOREM 1.2 [1, 4]. An operator T' in S1(K(IP)) is smooth if and only
if whenever [|Tzy|| = ||Tz2l| = 1, then 1 = *zq, for z1,z2 in 5i(I7),1 <
p < 00.

Proof. It follows from Theorem 1.1 and the fact that every element of
51(IP) is smooth.

THEOREM 1.3 [11]. Let I be a compact set and X be arbitrary Banach
space. Then a function F € §1(C(I, X)) is smooth if and only if there exists
a unique to in I and a smooth point z¢ in S1(X) such that F(tp) = zo.

The proof follows from Theorem 1.1 and the fact that
Ext(M(F)) = {6;:z € I}.

2. Smooth points of N(X)
Let X be a Banach space. In this section we try to study smooth points
of N(X). We introduce the following definition:

DEFINITION 2.1. A set A C S3(X) is called smooth iff there is a unique
f € B1(X*) such that f(z) =1 for all z € A.

It follows from the definition that a smooth point is just a smooth set
consisting of that point.

Now, we give some examples of smooth sets.

LEMMA 2.2. A set A C S1(I?),1 < p < o0, is smooth if and only if
A = {z} for some z € §1(IP).

Proof. This follows from the fact that [? is reflexive and every point of
unit norm in [? is smooth.

THEOREM 2.3. Let A C S1(I'). The following statements are equivalent:
(i) A is smooth;
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(ii) A satisfies the following conditions:

(a) Uyeasupp(e) = N
(b) For z,y € A,z and y have the same sign on supp(z) N supp(y).

Proof. (i) — (ii). Let A be smooth, but (a) is not true. So there exists
no & Uzecasupp(z). Take g € $1(I*°) such that g(z) = 1 = (g,z) for all
z € A and define f € 51(I*) by

_Jg(n) #mno
f(4)= { a n = ng
where a # g(np), 0 < a < 1. Then f # g and (f,z)y = 1 for all z € A. This
contradicts with (i). Hence (a) must be satisfied.

To prove (b), assume that A is smooth, but there exist z,y in A such
that sign(z) # sign(y) on supp(z) N supp(y). Take f € §1(I*) such that
(f,z) = 1 for all z € A. Now: (f,z) = (f,y) = 1. But for z € 51({})
the equality (f,2) = 1 implies that |f(n)| = 1 for all n € supp(z). In fact
f(n) = sign(z(n)). Hence if sign(z(39)) # sign(y(%)), to € supp(z)Nsupp(y),
then f(ip) = sign(z(ép)) # sign(y(i)) = f(%). This is a contradiction.
Hence (b) is true.

(ii)) — (i). Let A satisfy (a) and (b). Consider the function f € §;1(I*)
defined by

f(n) = sign(z(n))
for n € supp(z), and z € A. Now, the condition (b) ensures that f is well
defined, while the condition (a) means that f is unique and (f,z) = 1 for
all z € A. Hence A is smooth. This ends the proof.
The arguments which can be used to prove the next theorem are similar
to that in Theorem 1.3 and will be ommitted.

THEOREM 2.4. Let A C S1(cp). The following statements are equivalent:
(i) A is smooth.
(ii) There ezxists ng € N such that
(a) z(ng) =1 forallz € A
(b) z(n) < 1 for all n # ny and all z € A.
Now we shall consider more complicated examples.
Let C1(H) be the class of nuclear operators on the separable Hilbert

space H. This is just the trace class operators. Every T' € C;(H) has a
representation of the form

T= E Anén ® fm
n=1
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where (e,,), (f») are two sequences (finite or infinite) of orthonormal vectors
in H and (A\;) € I* with A, > 0. Further ||T|| = ¥ .2, An. We refer the
reader to [9] for more details on nuclear operators.

The representation of T' € C;(H ) suggests the study of sets of the form
{en ® fn}S, concerning the smoothness in §;(C1(H)).

n=1
THEOREM 2.5. Let A = {e, ® fn}32,, where (ey) and (f,) are orthonor-
mal sequences in H. Then the following statements are equivalent:
(1) A is a smooth set in S;1(C1(H)).
(ii) At least one of (e5) and (f,) is complete.

Proof. (i) — (ii). Let A be smooth, but neither (e, ) nor (f,) is complete.

Let

E; = span{ey,es,...},

E; = span{fy, f2,.- .}
Then H = E1 ® El =F, ® Eg, where E,- is the orthogonal complement of
E;.

Now, since A is smooth and C1(H)* = L(H) (see [9]), there exists a
bounded linear operator T' € S1(H)) such that T(z) =1 for all z € A. But
T(en ® fn) = (€n,Tfn), [9]- So (en, T fr) = 1 for all n. Since (e,,) and (f,)
are incomplete then we have F; # {0} and B, # {0}. Hence one can define
a bounded linear operator J : E; — Ej such that ||J|| = 1 and J # T| Ey
the restriction of T to E;. The operator ) : H — H given by

_ [Tz ifzeE
Q=) = {Ja: ifrek
is bounded and linear. Moreover ||Q] < 1, and @Q(z) = 1 = T(z) for all
x € A. This contradicts with the smoothness of A. Hence either (e,) or (f)
is complete.

(ii) — (i). Let (fn) be complete. Define T : H — H setting T'f, = e,
for all n. Then T is a bounded linear operator on H, with ||T|| = 1. Clearly
T(en ® fn) = (en,Tfn) = 1 for all n. Further if J is any other element of
S1(L(H)) such that J(e, ® fn) = 1 for all n, then (e,,Jf,) = 1. Since H is
uniformly convex, we get J f, = T f,,. The completeness of ( f,) implies that
J = T. Hence A is smooth. This ends the proof.

Next result gives the characterization of smooth operators in S;(C;(1?)).
Namely, we have the following

THEOREM 2.6. Let T € S1(C1(1?)). Then the following statements are
equivalent:

(i) T is smooth;

(ii) T= Z:,(—)_-] Anén @ fn,
where Y, A, = 1 and {e, ® frn}32, is a smooth set in S1(C1(H)).
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Proof. (ii) = (). Let T = Y, Anen® fn, with 3, Ay = 1 and {e,® fn}
is a smooth set. If T' is not smooth then there exist Jy, J; in S1(L(1?)), J1 #
J2 such that J1(T) = Jo(T) = 1. Hence

D Anlens Jifa) =) Anlen, ofa) = 1.

But Y, A, = 1, so we get (e, J;fr) = 1for ¢ = 1,2. Since {e, @ fn} is a
smooth set we may assume, with no loss of generality, that ( f,,) is complete.
The uniform convexity of I? implies that J; f, = J; f, for all n. Consequently
J1 = J2. This clearly forces T to be smooth.

(i) — (ii). Let T be a smooth operator in 3 (C1(1?))and T = Y Anen®
fn be the Hilbert-Schmidt representation of T', [9]. So Y~ A, = ||T|| = 1 and
(en), (fr) are orthonormal sequences in /2. If {e,, ® f,} is not smooth then
this implies that there exist J;, J; in §1(L(I%)) such that Ji(e,® f) = 1 for
¢ =1,2 and all n. Hence Y, An(en,Ji, fm) = 1 for ¢ = 1,2 and all n. This
contradicts with the fact that T' is smooth. Hence {e, ® f,}5%, is a smooth
set in $y(C1({?)). This ends the proof.

CoROLLARY 2.7 [Holub). T € §;(C1(I?)) is a smooth operator if and only
if either T is (1-1) or T* is (1-1).

Proof. If T is smooth then, by Theorem 2.5 and Theorem 2.6,
T = 3, Anen ® fn, where either (e,) or (f) is a complete set. If (e,)
is complete then 7 is (1-1) and while the completeness of ( f,,) implies that
T* is (1-1).

For the converse: If T' is (1-1) or T™ is (1-1) then T has the representation
T =3, Anen® frn, where either (e,) or (f) is complete. Hence {e,® f,}52,
is a smooth set in §1(C1(I?)). By Theorem 2.6, T is smooth. This ends the
proof.

The case of nuclear operators on [P, < p # 2 < 00, is totally different.
The following theorem shows that point:

THEOREM 2.8. Let y € S1(IP), | < p < 2, be such that supp(y) = N.
Then the operator T = 8, @ y is a smooth element of S1(N(I?)), where 6, is
the first element of the natural basis of IP.

Proof. Take y* € I*" such that ||y*|| = 1 and (y,y*) = 1. Consider the
bounded linear operator J = 6; ® y* in L(I*"). Clearly J(T) = (y,v*) = 1.

Now let J be any other operator in L(IP") such that ||f|| =1 and f(T) =
(‘](61)’ y) =L

Since P is uniformly convex we get J(8;) = y*. Further, since
supp(y) = N we have supp(y*) = N. Now, if J(6k) # 0, for some k, then it
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follows from Lemma 2.1 of [3] that ||J|| > 1. Hence we have J(6) = 0 for
all £ > 1. Consequently, J = J and é; ® y is smooth. This ends the proof.
We have to point out that 7' = §; ® y is not (1-1) nor T* = y ® 6, is
(1-1).
Now we present a different type of proof to Holub’s result [4] which
exposes another difference between [P, p # 2 and 2.

THEOREM 2.9 [Holub). Let T € $;(N(1%)). The following statements are
equivalent:
(i) T is smooth in S1(N(I%));
(ii) Either T or T* is (1-1).

Proof. (i) — (ii). If T is smooth then there is a unique J € S1(L(I?))
such that J(T)=1. Soif T =Y, Anen ® frn with Y A, =1 then

(*) J(T) = Anlen, I fn)-

Since N(1?) = (L(I?))* and the inclusion map is an isometry (see [12]), we
can consider J as the element of L(/%), where T attains its norm at. Hence,
by [7], J is an extreme point of B;(L(I%)). Consequently, J is an isometry
or J* is an isometry [5]. From (*) and the fact that {2 is uniformly convex
we get J f, = e, for all n.

Now, if T or T* is not (1-1), then neither (e, ) nor (f,) is complete. Hence
J = J1 ® Ja, where J; = Y, €, ® fn, supp(J;) is orthogonal to supp(Jy)
and ||J2(z)|| = ||z|| for all z € supp(Jz). But then J and J; are two elements
in §1(L(1?)) such that J(T) = J1(T') = 1. This contradicts with (i). Hence
either T is (1-1) or T* is (1-1).

(i) = (i). Let T =}, Anen® fn, where (e,,) is complete and ) A, = 1.
Then if Jy, J2 € S1(L(1?)) are such that

Ji(T) = J2(T) =1

we get (en, J1fn) = (en,J2fn) or (Jien, frn) = (J5en, fr). Hence Jfe, =
Jye,. Consequently Ji = J3 and so J; = J;. This ends the proof.

We have to emphasize now two facts:
(i) The extreme points of By (L(I%)) are completely characterized in [5),
while this is not the case for By (L(I?)),p # 2 (see [6]).
(i) Every element in N(/?) has a unique representation
T = 3, un ® by, ||Tlln = X2, llun|l||fx]]. This is not true in N(I?) for
p#2
Hence the following definition is invitable:
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DEFINITION 2.11. Let X be a Banach space. An operator T € N(X) is
called exact if and only if it admits a representation

T:Zu;wn,u;ex*,onex

such that [|T]ln = 32, [lua[|{|6xll

In the case X when is finite dimensional it is known that every T €
N(X) has a representation y ., u% ® 0,,m < 2k, where k = dim(X), and
1T = X, llunlll|fx]]- Hence every T € N(X) is exact.

For X = [?, it is well-known (see [9]) that every T € N(I?) is exact.
However, it is not known (to the author) for N(IP), ] < p # 2 < 0o wheather
every T € N(I?) is exact or not.

Now, concerning smooth points of S1(L(I?)),l < p < 00, we can state
the following:

THEOREM 2.12. Let T € S1(N(IP)), I < p < o0, be an exact operator.
Then the following are equivalent:

(i) T is a smooth element of S1(N(IP));
(i) T =Y,y ®60,,2, A =1 and {u;, ® 0,} is a smooth set in
7@
Proof. (i) — (ii). Let T be an exact smooth operator. Then

T=Y €1 ® fnr 3 lleslllfall = IT]| = 1.

Let An = [lexllllfalltn = 270 = pf2y. Then T = ¥, Apuj ® 6. If
{u* ® 0, }, is not smooth then there are J1,J, € S1(L(I?")) such that
(On, hur) = (On,Jour) =1 for all n.
Thus we have
J(T)=L(T)=1
which contradicts with the smoothness of T'.
(i) = (). Let T =}, Aquy ®Ten with ||Tfln = 3, A=l and {u} @6, }n
being a smooth set in [?" ® IP. I Ji,J2 € §1(L(IP")) be such that
JL(T)=J(T)=1

we get (0,,J;uy) = 1 for all n and ¢ = 1,2. This contradicts with the
smoothness of {u} ® 0,},. Hence T is smooth. This ends the proof.

Remark: Theorem 2.12 is true for any Banach space X for which

NX)=X"®X.
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Now, using the same idea as in the proof of Theorem 2.8, one can prove:
THEOREM 2.13. Let T € S1(N(IP)), I < p < 2, be such that
()T =226 Qui,llvll =1 and |T||n = X An = 1;
(ii) supp(y:) N supp(y:) = ¢ if i # J;
(iii) U, supp(y:) = N.
Then T is a smooth element of S1(N(I7)).
Now, for finite dimensional spaces we have:

THEOREM 2.14. Let X be a finite dimensional Banach space. Then the
following statements are equivalent:

(i) T is a smooth operator in S1(N(X));
(ii) T is a convex combination of the elements of some smooth set of
S51(X*® X).

Proof. It follows from the fact that every T € S3(N(X)) is exact and
the use of the same argument as in the proof of Theorem 2.12.

We end this section with the following two questions:

Q1: Is it true that if T € 51(N(IP)), I < p < 00, then T is exact?

Q2: What kind of conditions on (u}) and 6, make {u} ®6,}, a smooth
set in N(IP)?
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