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-4 SYMPTOTIC OF EXTREMES OF MOVING MINIMA
IN-ARRAYS OF INDEPENDENT RANDOM V2RI BLES

1. Introduction

Let {X,:,i=1,...,n,n=1,2,...} be an array of independent random
variables, which have identical distribution function F;, for fixed n. We define
sequence of maxima of moving minima based on array {X,;}

1 .
@) Mol = 1< B 1 R K
where 1 < m < n.

Random variables M,(,},)n have important interpretation in the reliability
theory as lifetimes consecutive-m-out-of-n systems. A consecutive-m-out-
of-n system consists of n identical and linearly ordered components. The
components are independent random variables Xy, 1, ..., Xy, » with identical
distribution function F,. The system will fail if and only if a least m consec-
utive components fail. The lifetime of system is therefore random variable
M,(lly,)n defined by (1). Consecutive-m-out-of-n systems have extensive ap-
plications. Recently they have been proposed to model telecommunication
systems and oil pipelines, vacuum in accelerators, computer ring network
and spacecraft relay station (see e.g. [1], [3], [4] and papers referred there).
Many authors have been interested in the problem of investigation of asymp-
totic lifetime of M,(df)n system (see e.g. [3], [4]). Recently, E.R. Canfield and
W.P. McCormick have studied the asymptotic of M,(ﬂ,)n in the case, where
both n and m = m,, change (see [1]).

Among other things they showed, that if

(2) I'Z—;Adzo, as n — 00

then
(3) P{M{), Sua} » e, asn—oo
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where § = 1 — exp(—}), while A > 0 and the sequence of real numbers
{tn,n =1,2,...} are defined by the equality

(4) nP" {Xp1 > un} = A

In the proof they have used the method of analyzing the singularities of
generating functions. This result we can also obtain by applying standard
methods of extremal value theory, which are used to determine extremal
index (see [2]).

In this paper we extend the presented above result (3) to the case of any
k-th order statistic, assuming the sequence m = m,, satisfies

(5) — — 0, when n— oo.

The method of the proof essentially differs from the method used by E.R.
Canfield and W.P. McCormic. It is based on the investigation of asymptotic
of row sums of arrays independent, zero-one valued random variables [5].
This method also allows to get estimations of rate of convergence.

2. Lemmas

Before we formulate and prove the main result of this paper, we will
present some lemmas which play important role in the next part of this
paper.

Let {X,:,¢=1,...,n,n=1,2,...} be an array of independent random
variables, which have identical distribution function F, for fixed n.

Denote by
(6) Vn'j:jSiIél}i-lm,, Xn,i7 j: 132"'°an_mn+17
where m,, is a sequence of positive integers. Consider an array of zero-one
valued random variables of the form {I,;,7 = 1,...,n — m, + 1}, where
I.,; = Iy, ; >u, }»Un is a sequence of real numbers, I4 denotes the indicator
function of a set A.

Set

n—my+1
Sn = L, ;.
j=1
LEMMA 1. Foralln=1,2,...andk=1,...,n — my, + 1 we have
k=1 5,
(7) lP{Sn <k}—e e E —;‘

=0 8.

(1 + T462A,.+1-b,. )(2 + 0,6%—3’—2 + 62’\‘"+1—b")
(1-T1/2 - Ty(1 4 0,623%2))

S 2 max(T1 ) T4)

)
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where
A= (n—my + 1)P{Vo1 > un},
by = (e(2my = L)P{Vpy > ua}) 7,

my,—~1

Tl = 2P2{Vn,1 > ’Unn} Z (n_ my +2 _j),
Jj=1
my—1
Ty =2 Z (n=mp+2—=7)P{Vay > tn,Va,j > tn},
j=2

me—11=11i+mgy—1
Ts=4 Y > > P{Vai>un,Vaj> tn,Vayi>ug)
i=2 j=1l=j4+m,
n—2mqa,+2 i—-1 i+my ~1
+ 2 Z Z Z P{Vn,i > urnvn,j > unaVn,l > un}a
i=T, j=t=—ma+1i=j4+m,

Ty =T, + eT3,(z)+ = max(0, z).

Proof. Note that the random variables I, ;,j = 1,...,n — m, + 1 are
(my — 1)-dependent in ever row of the array {I, ;}. Then for any given
n=12,....,.k=1,...,n—m, + 1 we have

\ k=1, k-1 Y
‘P{bn<k}—e_ "2—8"’“— = Z(P{Sn:s}—e_ "s—;’)
. s=0 5=0

P{S, =s}~- e"’\"A—” .

s!

k-1
<

s=0
It is easy to see, that random variables I, ; are identically distributed and
the following relation holds

P{Vn,il > Un,-- -,Vn,i, > un} = P{Vn,i1+p > Upy.en, Vn,i,+p > un}
for every positive integers 7, p such that
1<y <...<i, <n-m, +1

and
1<i,+p<n-—my,+1.

Using Theorem 2 [5] we have the inequality (7) which ends the proof.
Denote by

=max(Vpj,7=1,...,n —m, + 1)

order statistics of the sequence Vi, 1,..., Vo nem, 1.
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LEMMA 2. Let A, = (n — mp + 1)(1 — Fp(un))™", where {u,} is a
sequence of real numbers, {my} is a sequence of positive integers. Then for

eachn=1,2,...andk=1,...,n—m, + 1 we have

k=14,

(k) — _An _n

(‘9) P{Mnymn S un} € ZO s!
pos

(]_ + aneZA..+1—b.. )(2 + 0’6%%2 + eZA,.+1—b,,)

< 2a
" (1= cn/2 - an(140,62332)),

’

where
bn = (e(2mn — 1)(1 = Fy(un))™) 7",

en = (2n —3my, +4)(my, - 1)(1 - Fn(un))zm",

an = (20 — 3my + 3)(my — 2)(1 = Fo(u,))™ !
+ 2e(n — mp, 4 1)(my — 1)(1 = Fo(u,))?™e
(M = 1)(1 = Fo(un)) +1)-

Proof. Notice that P{M,(,k)n” < u,} = P{S, < k}. Because the random
variables {X,;,7 = 1,...,n,n = 1,2,...} are identically distributed and
independent, then for A,,Ty,Ts, T3, T4 from Lemma 1 we have

An = (n = m, + 1)(1 = Fp(un))™",
Ty = (2n — 3m, + 4)(m, — 1)(1 = Fu(u,))*™",
Ty < (2n — 3my + 3)(mp — 2)(1 = Fp(ug))™ 17,
T3 <2(n—my,+ 1)(m, —1)(1 - Fn(un))zm"((mn - 1)(1 - Fa(ug)) +1).
Thus
max(Ty, Ty) < max((2n — 3m, + 4)(m, — )(1 — Fo(u,))*™",
(2n — 3my + 3)(my — 2)(1 — Fy(uy))™ 1
+ 2e(n — my, + 1)(mp — 1)(1 = Fo(uy))*™
((mn — 1)(1 = Fp(un)) + 1))
= (2n — 3mp + 3)(my — 2)(1 = Fo(uy))™*!
+ 2e(n — my 4 1)(my, — 1)(1 = Fo(uy))*™»-
“((mn = 1)(1 = Fo(un)) + 1) = an
By Lemma 1 and an obvious inequality

1 1

T—i<1-7 for0<d, f<1,d<f,

we get (9).
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3. The main result

Let {X,:¢=1,...,n,n = 1,2,...} be an array of random variables,
which are defined before and {V,, ;,j =1,...,n—m, +1,n=1,2,...} be
an array of random variables given by (6). Consider order statistics M,(L’fr)nn
defined by (8) for k = 1,...,n — m, + 1. We will present the main theo-
rem and prove the convergence of the distributions of the random variables
M,(,’f,)n,, to the limits which are represented in terms of a Poisson distribution.
There will also appear an estimation of the rate of convergence.

THEOREM 1. Let m,, be a sequence of positive integers satisfying

(10) my, = o(lnn).
Assume that u,, is a sequence of real numbers such that
(11) nlirr;on(l—Fn) T = A A>0
and there exists a constant K > 0 such that
(12) Inn(l — Fp(un)) < K for almost all n.
Then for each k = 1,2,...

~ k=14,
(13) P{M{),, Sun} =T ey S

s=0

Proof. Notice that for m,, = o(n) and ay,, by, ¢, from Lemma 2 we have

2n - 3m, +3m, — 2 e,
= - o Inn(1l — Fp(un))n(l — Fp(uyn))

an

+oen=Tnd = e L2 (1= Fo(un))2me

. ((L”i‘_l)ln n(1 — Fo(un)) + 1),

Inn

n — (2n - 3mn + 4) mnn— 1n2(1 _ Fn(un))zm”’

n
bo = (222 n(1 — Fy(u))™) "
We also have
k=1,
(14)  |[PAMED, <und-er D S
oy
k-1 L k=l y
(k) -— _An L _A —_— _An
<lP{Mn7 Lup}l-—e Z "1+| E ¢ Zs—"‘
s=0 s= 8=0
k=13,
= ‘P{M,(l’fr)nn <up}- e An Z 3—"‘ + o(1)
s=0
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The last equality follows from the fact that
An = (n—my + 1)(1 — Fp(un))™
N O RN Y
n

The assumption (10)-(12) imply that both sequences a, and ¢, converge
to zero and b, converges to infinity (as n — 00). But this means, that the
right-hand side of the inequality (9) also converges to zero. Hence and from
(14) we have the relation (13).

Remark 1. The inequalities (14) and (9) give the estimation of the
rate of convergence of the distributions the k-th order statistics for the
array {V, ;}.

Finally, we will give some examples of sequences {m,} and distribution
functions F),, which satisfy assumptions of Theorem 1.

ExXAMPLE. Let m,, be one of the form

(15) m, = Vinn,

(16) m, = arctgn,
(17 my, = In(In n),
(18) Inn

™ = Tn(in n)’
Define a sequence of distribution functions by
(0, r<u,—1

N R

a S
(i> u(z—un)+1—(%) " oup<T<ut+1

n
L1, T2u,+1

where {u,} is an arbitrary sequence of real numbers. It is easy to see that
my, = o(lnn) and F, satisfies (11). Therefore we have the relation

(19)  Fu(z) = 4

Inn InA
In(Inn(1 — Fr(u,))) =In(lnn) — P + —
Because I;L— tends to zero as n — oo and

. Inn\ [ —oco, for m, given by (15)-(17)
A (In(ln n) - m_) B {0, for my,, given by (18)

n

we also have (12).
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