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-ASYMPTOTIC OF EXTREMES OF MOVING MINIMA 
IN -ARRAYS OF INDEPENDENT RANDOM VARIABLES 

1. Introduction 
Let {Xnti,i = 1 , . . . , n, n = 1,2, . . .} be an array of independent random 

variables, which have identical distribution function Fn for fixed n. We define 
sequence of maxima of moving minima based on array {Xn>i} 

(!) Mn,l = . m a * j.. . min Xn,i, 

where 1 < m < n. 
Random variables Mn,m have important interpretation in the reliability 

theory as lifetimes consecutive-m-out-of-n systems. A consecutive-m-out-
of-n system consists of n identical and linearly ordered components. The 
components are independent random variables X n > i , . . . , Xn>n with identical 
distribution function Fn. The system will fail if and only if a least m consec-
utive components fail. The lifetime of system is therefore random variable 
Mn,m defined by (1). Consecutive-m-out-of-n systems have extensive ap-
plications. Recently they have been proposed to model telecommunication 
systems and oil pipelines, vacuum in accelerators, computer ring network 
and spacecraft relay station (see e.g. [1], [3], [4] and papers referred there). 
Many authors have been interested in the problem of investigation of asymp-
totic lifetime of Mn]m system (see e.g. [3], [4]). Recently, E.R. Canfield and 
W.P. McCormick have studied the asymptotic of Mn)n in the case, where 
both n and m = mn change (see [1]). 

Among other things they showed, that if 
TfX 

(2) -—— —»•</> 0, as n —> oo 
In n 

then 

(3) P{Mi% < un} e~ex, as n ^ oo 
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where 0 = 1 — exp( -^ ) , while A > 0 and the sequence of real numbers 
{un, n = 1 ,2 , . . .} are defined by the equality 

(4) nPm" {XnA > un} = A. 

In the proof they have used the method of analyzing the singularities of 
generating functions. This result we can also obtain by applying standard 
methods of extremal value theory, which are used to determine extremal 
index (see [2]). 

In this paper we extend the presented above result (3) to the case of any 
fc-th order statistic, assuming the sequence m = m n satisfies 

(5) —• 0, when n -* oo. 
In n 

The method of the proof essentially differs from the method used by E.R. 
Canfield and W.P. McCormic. It is based on the investigation of asymptotic 
of row sums of arrays independent, zero-one valued random variables [5]. 
This method also allows to get estimations of rate of convergence. 

2. Lemmas 
Before we formulate and prove the main result of this paper, we will 

present some lemmas which play important role in the next part of this 
paper. 

Let {XUii, i = 1 , . . . , ra, n = 1 ,2 , . . .} be an array of independent random 
variables, which have identical distribution function Fn for fixed n. 

Denote by 

(6) VnJ = min XUii, j = 1 , 2 , . . . , n - mn + 1, 
3<*< J+mn 

where m n is a sequence of positive integers. Consider an array of zero-one 
valued random variables of the form {In,j,j = 1, • . . , n - mn + 1}, where 
I n j = I{Vn j>un}run is a sequence of real numbers, I a denotes the indicator 
function of a set A. 

Set 
n—mn+l 

= ^ In,j-
3=1 

LEMMA 1. For all n = 1 , 2 , . . . and k = 1 , . . .,ra — mm + 1 we have 

P{Sn <k}~ e"A» £ ^ 
(7) 

< 2max(Ti , r 4 ) 

s = 0 

(1 + r4e2 A»+ 1-b» )(2 + 0 , + e2Xn+1~bn) 
( 1 - ^ / 2 - ^ ( 1 + 0 , 6 ^ ) ) ' 
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where 

\ n = (n - m n + l )P{Vn , i > u n } , 

bn = (e(2mn - l ) P { K , i > M ) - 1 > 
mn-1 

T\ = 2P2{Vntl >un} ( n - m n + 2 - j ) , 

j=i 
m n - l 

r 2 = 2 ( n - m „ + 2 - j)P{VnA > un,VnJ > u n } , 
j=2 

m„—1 ¿—1 t+m„—1 
T 3 = 4 E E E > V n ' j > > U n } 

¿=2 j=l ¿=j-f mn 

n—2m„+2 ¿—1 i+m„—1 
+ 2 E ^ ^ P{Vn,j > Un,Vnj > Un,Vnj > Un}, 

i=mn j=i-m„ +1 i=j+m„ 

r 4 = r 2 + eT3, (ar)+ = max(0, x). 

P r o o f . Note that the random variables I n , j , j = 1 — mn + 1 are 
(mn — l)-dependent in ever row of the array { / n j } . Then for any given 
n = 1 , 2 , . . . , / : = 1 , . . . , n — mn + 1 we have 

k-1 

s=0 

P { 5 „ < fc} - e - A " Y , = E [ P { S n = s } - e - ^ 
k-1 

s—0 
k—\ 

Af 

^ E 
$=0 si 

It is easy to see, that random variables In<j are identically distributed and 
the following relation holds 

P{Vn,h > un, • • •, Vn,t-r > un} - P{Vniil+p > u n , . . . , F„)ir+P > un} 

for every positive integers r, p such that 

1 < ¿i < . . . < ir < n — mn + 1 

and 
1 < ir + p < n — mn + 1. 

Using Theorem 2 [5] we have the inequality (7) which ends the proof. 
Denote by 

( 8 ) m i n (Vn>j,j = 1,..., n - mn + 1) = < . . . < M<g,B 

= m a x ( V n J , j = 1,..., n - mn + 1) 

order statistics of the sequence F n > i , . . . , V n < n - m n +i . 
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L e m m a 2. L e t An = { n - m n + 1)(1 - F n ( u n ) ) m ° , w h e r e { u n } i s a 

sequence of real n u m b e r s , { m n } i s a sequence of p o s i t i v e i n t e g e r s . T h e n f o r 

each n — 1 , 2 , . . . and k = 1 , . . . , n — m n + 1 we h a v e 

fc-i 

( 9 ) P { M i % n < u n } - e " * - 2 - f 

3=0 

< 2 a n 

(1 + a n e 2 A n + 1 - b " ) ( 2 + 0 , 6 ^ + e 2 A » + 1 - 6 » ) 

( l - c n / 2 - a n ( l + 0 , 6 ^ ± 2 ) ) + ' 

w h e r e 

b n = ( c ( 2 m n - 1 ) (1 - F n ( u n ) ) m » ) - \ 

c n = ( 2 n - 3 m n + 4 ) ( m n - 1 ) ( 1 - F n { u n ) f m » , 

an = ( 2n - 3 m n + 3 ) ( m n - 2 ) (1 - F n ( « n ) ) m " + 1 

+ 2 e ( n - m n + 1 ) ( m n - 1 ) ( 1 - F n ( u n ) ) 2 m ° 

• ( ( m n - l ) ( l - F n ( u n ) ) + l ) . 

P r o o f . Not ice t h a t P { M i % n < u n } = P { S n < k } . Because t h e r a n d o m 
var iables { X n t i , i = 1 , . . . , n , n = 1 , 2 , . . . } a re identically d i s t r i bu t ed a n d 
i n d e p e n d e n t , t h e n for A n , T\, T2, T4 f r o m L e m m a 1 we have 

A n = ( n - m n + 1 ) ( 1 - F n ( u n ) ) m * , 

T \ = ( 2 n - 3 m n + 4 ) ( m n - 1 ) ( 1 - F n ( u n ) ) 2 m - , 

T 2 < ( 2 » - 3 m n + 3 ) ( m n - 2 ) ( 1 - F n ( u n ) ) m " + \ 

T 3 < 2 ( n - m n + l ) ( m n - 1 ) ( 1 - F n ( u n ) ) 2 m * ( ( m n - 1 ) ( 1 - F n ( u n ) ) + 1 ) . 

T h u s 

m a x ( T x , T 4 ) < m a x ( ( 2 n - 3 m n + 4 ) ( t o „ — 1)(1 — F n ( u n ) ) 2 m » , 

(2n - 3 m n + 3 ) ( m „ - 2 ) (1 - J F n ( w „ ) ) m » + 1 

+ 2c (n - m n + l ) ( m „ - 1)(1 - F n ( w n ) ) 2 m » 

• ( ( m n - l ) ( l - f » ( « n ) ) + l ) ) 

= ( 2 n - 3 m n + 3 ) ( m n - 2 ) ( 1 - F n ( u n ) ) m " + 1 

+ 2e (n - m „ + l ) ( m „ - 1)(1 - F „ K ) ) 2 m n • 

• ( ( m n - l ) ( l - f B ( t i n ) ) + l ) = a n 

B y L e m m a 1 a n d an obvious inequal i ty 

1 - d 
< 

f 

for 0 < d j < l , d < / , 

we get (9) . 
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3. The main result 
Let {Xn>i,i = 1 , . . . , « , » = 1 ,2 , . . . } be an array of random variables, 

which are defined before and {Vn>j,j = 1 , . . . , n — mn + 1, n = 1 , 2 , . . . } be 
an array of random variables given by (6). Consider order statistics Mi%n 

defined by (8) for k = 1 , . . . , « — mn + 1. We will present the main theo-
rem and prove the convergence of the distributions of the random variables 
Mn%„ to the limits which are represented in terms of a Poisson distribution. 
There will also appear an estimation of the rate of convergence. 

THEOREM 1. Let mn be a sequence of positive integers satisfying 

(10) mn = o(lnra). 
Assume that un is a sequence of real numbers such that 
(11) lim n(l — Fn))mn = A, A > 0 n—too 
and there exists a constant K > 0 such that 
(12) lnra(l — Fn(un)) < K for almost all n. 
Then for each k = 1 , 2 , . . . 

k-1 
(13) 

s=0 
P r o o f . Notice that for mn = o(n) and an,bn,cn from Lemma 2 we have 

2n — 3mn + 3 mn — 2 an = 

s=0 S-

(n) and an,bn,cn fro: 

In ra(l — Fn(un))n(l — Fn(un))T 

+ 2e 

n In n 
n — mn + 1 mn — 1 2 

n 

• ( ^ ^ I n n a - ^ K ^ + l ) , 

cn = ^ - 3 m n + 4 ) m n - l n 2 ( 1 _ F n { < f f m 

n n 
bn = (e2mn~1n( 1 - Fn(un))mn)~l. 

n 
n (1 — Fn(un)) " 

n 
We also have 

(14) 
fc-i 

s=0 

< 
fe-1 

P{Mi%n < un} - e~Xn ¿2 i f 
s=0 
ife-1 

+ 
fc-1 

, —A 
fc-1 

3=0 

P{Mi%n < un} - 2 ^ 
s=0 

+ 0(1). 
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The last equality follows from the fact that 

A n = (n-mn + l)(l-Fn(un))m* 
n ~ TO" + !.„(i _ Fn(un)r" A. 

n 
The assumption (10)-(12) imply that both sequences an and cn converge 
to zero and bn converges to infinity (as n —> oo). But this means, that the 
right-hand side of the inequality (9) also converges to zero. Hence and from 
(14) we have the relation (13). 

R e m a r k 1. The inequalities (14) and (9) give the estimation of the 
rate of convergence of the distributions the fc-th order statistics for the 
array {K,j}-

Finally, we will give some examples of sequences {mn} and distribution 
functions Fn, which satisfy assumptions of Theorem 1. 

E X A M P L E . Let m n be one of the form 

(15) m n n, 
(16) mn = arctgra, 
(17) m„ = ln(lnn), 
. . . . Inn 
( 1 8 ) mn = r~r, 7-m(m n) 
Define a sequence of distribution functions by 

(19) Fn(x) = 

f 0 , 

1 - 1 ^ n 
(x + 1 - un), 

x < un - 1 

un — 1 < X < UT 

/ A \ m« , . „ / A \ m» 
1 - 1 ( x - M n ) + 1 - 1 - 1 , U n < X < U n + 1 

,1, X > un + 1 
where {u n} is an arbitrary sequence of real numbers. It is easy to see that 
mn = o(lnn) and Fn satisfies (11). Therefore we have the relation 

i / i ^ / , /, N In n In A 
ln( lnn( l - Fn(un))) = ln(lnn) + . 

m„ mn 

Because ^ ^ tends to zero as n —»• oo and m„ 

Um (ln( ln n) - — ^ = { f ° r m n g W * n b y ( 1 5 H 1 7 0 
n-+oo ^ ' mn J \ 0, for mn given by (18) 

we also have (12). 
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