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INVERSE THEOREM FOR SZASZ-BETA OPERATORS

In the present paper, we prove an inverse theorem for the recently introduced Szdsz—
Beta operators, using the technique of Peetre’s K-functional.

1. Introduction

Durrmeyer [3] introduced the integral modification of Bernstein poly-
nomials to approximate Lebesgue integrable functions on [0,1]. Several re-
sarches introduced and studied Durrmeyer type summation-integral opera-
tors (see e.g. [1], [7], [8], [9] and [10] etc.). Recently Gupta et al. [5] defined a
new sequence B,(f,z) of linear positive operators by combining Szdsz and
Beta operators by setting

[o o] oo
(1.1) Bu(f,2) =Y pi(@) [ bar(®)f(t)dt,z € RY,
k=0 0
k
where P, i(z) = e ":!) and b, k(t) = B(k41-1,n) (1+t)t:+m with

B(k 4+ 1,n) = k!l(n — 1)!/(n + k)! the usual Beta function.

They use them to approximate Lebesgue integrable functions f on Rt =
[0, 00) and sharpened the previous direct theorems on simultaneous approx-
imation. The paper [5] motivated us to state and prove an inverse theorem
for the operators (1.1). The main tool in our considerations plays Peetre’s
K -functional.

We denote by Cj[0,00),(8 > 0) the class of continuous function on R*
satisfying |f(¢)] < Mt°, M > 0. Note that for f € Cg[0,00) the operators
(1.1) are well-defined for n > 3, only.

Further by Cp we mean the set of continuous function on (0, co) having
a compact support and by C§* — the subset of Cy of m-times continuously
differentiable functions.
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For given 0 < a < &' < b < +o00 we define Peetre’s K-functional by
K(&, f) = inf{||f — gllcas + Ell9"lIclay) : 9 € G},
where 0 < £ <1 and
G ={g € C3, suppg C [¢, 4]}
The modulus of smoothness of f is defined by
wi(f, k,a,b) = sup{|A%f(z)| : |t| < h,z + kt € [a,b]},

where

' k
Aff(e) =) (D)) f(z + 4t).

2. Auxiliary results
In this section, we first mention some results which are necessary to prove

the main theorem.
LEMMA 2.1. Let

oo k m
Un,m(z) = ;Pn,k(w)(;—w) , m=0,1,2,....
Then Upo(z) =1, Uni(z) = 0 and Uy, 2(z) = £ and the recurrence relation

nUnm1(2) = 2[USh (2) + mUn,m-1(z)]
holds.
Consequently
(i) Un,m(z) is a polynomial in = of degree < m;
(ii) Up,m(2z) = 0y(n~lm+1)/2)),
where [@] stands for the integer part of a.

LEMMA 2.2 [5]. Let

Vam(®) =Y puk(z) [ bui(t)(t—z)™dt.
k=0 0

Then
14z

n—1

Vao(z) =1,V 1(2) =
and we have the following recurrence relation
(0= m = DVma1(2) = 2VIh(2) + [(m+ 1)1+ 22) - 2]V m(c)

+ mz(2+ &)V m-1(z), n>m-—1.

Consequently, for allz € Rt
Vo (T) = 0g(n~[(m1/2])
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LEMMA 2.3. Let

Pnm(z) = ank z) f by k(t)t™dt.

k=0

Then each of @nm(z) is a polynomial (in ) of degree m and a rational
function in n. Moreover for each € R, ¢ m(z) = 04(1).

Proof. Using Lemma 2.2 we have

eno(z) =1
and
Pni(z) = ank z) fbn k)t — z)dt + z
k=0
= 1-*_w+a:: 1+n:1:’ n> 1.
n-1 n—1
Since

2p(2) = (k = n2)pap(z) and (1 +£)S%(E) = [k — (n + D)t]bn i(t),

then we obtain

s () = Y (k= ne)pni(z) [ bnk(t)t™dt
k=0 0

f: Puk(2) f [{k — (n+ 1)t} + (n + 1)t — nalbn x(¢)t™dt
= 0

> pui(z) [ 11+ OB dE + (1 + 1)pnm1(2) — n3@nm(2)
= 0

and therefore for n > m + 1 we have

(n=m=1)pnm1(2) = w%l%n(fv) +(nz + m + 1)en,m().

From the latter recurrence relation one can easily prove the required result.

COROLLARY 2.4. Let 3 and § be two positive numbers. Then for any
m > 20, there ezists a constant K,, such that

“ an k(x)l £)bn k(t)tﬁdt”C[ g S (™™,
where I;(8) = (0,00) \ [z — 8,z + §].
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Proof. Using Lemma 2.2 we have the estimations

-2 2m
an k(m) f bn k(t)tﬁdt < an k(z) f bn k(t ) tﬁdt
k=0 Jt— z|>6 k=0 |t—z|>6

< 62'" (an k() f by k(t)(t — a:)‘“"dt)
|t—z|>6
ot 1/2
x (Z pui(z) [ bn,k(t)twdt)
k=0 |t-z]>6
< -m( () [ b (t)twdt)
= 627"' an k 113) n,k
[t—x|>6
Since (in view of Lemma 2.3) for m > 2 we have
Epn,k(w) f bn,k(t)tzﬁdt
k=0 Jt—=z|>6
=Y pnk(@) [ bap®)PPdt+d pap(z) [ bux(0)PPd
k=0 t<z—6 k=0 t>z+6
[e o] tm
2ﬁ —_—
;pnk(x) f b (t)( ~ 6)*Pdt + l;)pn k(z) f buk(!) gz

:($—6)2ﬁ+%SK2 fOTaH:EE[a,b]

and then the required inequality holds.

3. Main theorem
In this section we shall prove the following inverse theorem:

THEOREM 3.1. Let 0 < ay < a3 < by < by < 00, 0 < & < 2 and suppose
that for f € Cp[0,00) we have

(1) ”Bn(f, ) - f(')“C[al.bll = O(n—a/2).
Then

(11) f € Lip*(a7c[a21b2])3
where Lip*(e, Cla,b]) denotes the Zygmund class of functions for which
wa(f,h,a,b) < Mhe.

There are two essential steps to prove the above theorem.

(I) We first reduce the above problem to the following lemmas as a special
case when f has a compact support inside some interior interval [a', '] of

(al,bl)-
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LEMMA 3.2. Let f € Co with suppf C [a",0"], 0<a<d <d' <b" <
b’ < b < 00, and suppose that

I1Ba(f5.) = f(MIcta s = o(n™"?).
Then
(3.1) K(¢, f) < Ko[n™*/* + ngK (n71, f)].
Consequently K (¢, f) < K1£%/% for some constant K;.

Proof. Since supp f C [a”, "] then following May [6] there exists h € G
such that for ¢ = 0 and 2 we have

1B () = BO(f, Miciap < Kan™!
Therefore,
K (& f) < 2Kon™ +[|f(.) = Ba(f, llctay + EIBL (£, llctan

Hence, it 1s sufficient to show that there exists a constant K3 such that for
each g € G we have

(32) ||B$12)(f7 ')”C[a’,b’] S I(Sn{”f - g”C[a’,b’] + n—ll'g(z)“(}[a’,b’]}‘
In fact
(3.3)  1IBD (£, Mcway < IBLS = g, Mloarsn + 1B (9, lear o1

Since
— [an (@ba (8] = = DIk = 1) ~ Klpna(@)bns(t),
k=0
then by using Lemma 2.1, we have
f 57 (ank(z)bn k(t))’ t < prnk(z‘) f b (1)t < 2_9”.

Therefore we obtain

(3.4) IBE(f - ¢, ety < %Tn”f = 9llciap) = Kanllf — gllc(a,y-
Next, using Lemma 2.2, we see that for any m > ¢
(3.5) Of [(%—m( ; pn,k(z)bn,k(t))] (t - z)idt = 0.

Also, by Taylor’s Expansion Theorem, there exists £, between ¢ and z, such
that

(3.6) 9(t) = g(2) + gV (2)(t - 2) + ¢ (&)t - x)*.
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Using (3.5) and (3.6) we obtain
Bg)(g, :1;) = f [8:1:2 (an k(.’l:)bn k(t))]g(t)dt

(oo}

= [ .. Jg(2)+ gV (@)t - ) + ¢ ()t — 2)*)dt

= f [.. @ (€)(t — z)%dt.

Making use of Lemma 2.1, Lemma 2,2 and Schwarz inequality, we get
(3.7) 1B (g, Metan

oo (92 oo
[ [ (S pms@busto)| (6o
o0

<19l cta, b]”(Z[(k —nz)? + klpni(z ) J bak()(t - :1:)2dt”

0

< 19|ty

Cla,b]

Cla,b)

< Ksllg® llcta,b
Hence (3.2) follows, by combining (3.3), (3.4) and (3.7). This completes the
proof of the lemma.

LEMMA 3.3. Relation (3.1) implies
f € Lip*(a, C[a, b]).
Proof. Proceeding along the lines of the proof from [2], we have
(3.8) K(&, f) < Ke£%/?, for some constant Kg > 0.
Now, let 0 < |6] < h. Then for any g € G we have
182 £(2)] < IA3(£(2) — g(2))] + |A20(2)] < 4If = llogess + 619 opes-
Therefore, using (3,8), we get
wo(f,h,a,b) < 4K (A2, f) < 4Ksh®
ie. f € Lip*(e,Cla,b]).

(II) In this step we shall show that, using Lemma 3.2 and Lemma 3.3,
the required result follows.

Let us choose a’,a”,b',b" in such a way that a; < @’ < a" < @y and
by < b" < b < by. Take any g € C§° such that suppg C [a”,d"] and
g(z) = 1 on [ag, bs].

First assume that 0 < @ < 1. For z € [d/, }'], we have

Bu(f9,%) - f(2)g(2) = (=) Bu(f, ) — f(2)
by [ee]
£ [ (X Pus@bas(®) FOlg®) — g(@)ldt +o(n™") = I + I + o(n™")

ay k=0
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say, where o(n~1) term is, by Corollary 2.4, uniform for z € [a’,d'].

Next, making use of the assumption ||B.(f,.) — f()llcfar b = 0o(n™2/2),
we get
(3.10) 1l 51 < Ngllooll Ba(f, ) = F()llopar by < Krn™/2,

where ||g||co = inf{M : |f(z)] < M a.e. on [¢',']}, M is a constant.
Also, by Mean Value Theorem, we get

f‘(Ezpndm%nk@DfOMgUKﬁxt—znm

a1

Hence, by Lemma 2.2 and Cauchy-Schwarz inequality, we see that

(3.11) I2llctar ) = o(r71/%) < o(n=2/?).

Combining the estimates in (3.9), (3.10) and (3.11) we obtain
1Bn(f9,.) = fa(Mlctar ) = o(n™/?).

Therefore, by Lemma 3.2 and Lemma 3.3, we have fg € Lip*(e, C[d/, ¥']).
Since g(z) = 1 on [ag, by] it follows that f € Lip*(e, C[az, bs]). This proves
the implication (i)=(ii), when 0 < a < 1.

Now assume that 1 < a < 2. We also choose two points aj and b}
satisfying a; < af < a’ and ¥ < b} < b;. It is sufficient to prove our
assertion for 1 < @ < 2 — §, where § € (0,1) is arbitrary.

We may notice, from the previous result, that the condition

1Ba(f,-) = fO)llctas bs) = o(n™*/?) implies f € Lip(1 ~ §,C[af, b3]).
Now, for z € [a,b'], we have

Bulf0,2) = 1(2)g() = 9(&)Bnf,) = @] + F@OIBnl,2) - g(2)]
" f (zpn K@) k(1)) (1) - S(2)]lg()

~g(@)dt + o(n~) = Jy + Jo + J3 + o(n™?),

where o(n~!) term holds uniformly for z € [a’,4'] (by Corollary 2.4).

In fact, the relation ||J1||cfer,p] = 0(n~*/2) follows from the assumption,
while ||J3l|crar 6] = 0(n71) < o(n=%/2), from Lemma 2.2.

Also, since |f(t) — f(z)| < K(t — z|*~° and g(¢) — g(z) = ¢V (€)(t - z),
then, using Jensen’s inequality and Lemma 2.2, we obtain

sl n = o(w~=) < o(u=212,
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Combining the above estimates of J,, J; and J3, we get

IBn(£95-) = F9(Mctar,p) = o(n™/%).
Now the result follows, as in the first case, from Lemma 3.2 and Lemma 3.3.
This completes the proof of inverse theorem.
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References

[1] P.N.Agrawaland Vijay Gupta, Simultaneous approzimation by linear comnina-
tion of modified Bernstein polynomials, Bull. Greek Math, Soc. 30 (1989), 21-29.

[2) H.Berensand G. G. Lorentz, Inverse theorem for Bernstein polynomials, Indian
Univ. Math. J. 21 (1972), 693-708.

[3] J.L.Durrmeyer, Une Formule d’inversion de a Transforme de Laplace: Applica-
tion a la Theory des Moments, The’se de 3e cycle, Faculte’ des Sciences de Univer-
site’ de Paris 1967.

[4] Vijau Gupta and P. N. Agrawal, An estimate of the rate of convergence for
Modified Szdsz-Mirakyan operators of functions of bounded variation, Publ. Inst.
Math. (Beograd) 49 (63) (1991), 97-103.

[5] Vijay Gupta, G. S. Srivastava and A. Sahai, On simultaneous approzimation
by Szdsz-Beta operators, Soochow J. Math. 21 (1995). 1-11.

[6] C. P. May, Saturation and inverse theorems for combinations of a class of ezpo-
nential type operators, Canad. J, Math. 6, 28 (1976), 1224-1250.

[7] S.M.Mazharand V. Totik, Approrimation by modified Szdsz operator, Acta Sci.
Math. (Szeged), 49 (1985), 257-269.

[8] A.Sahaiand G. Prasad, On approzimation by modified Lupas operators, J. Ap-
prox. Theory 45 (1985), 122-128.

[9] S. P.Singh, On approzimation by modified Szdsz operators, Mathematical Chron-
icle 15 (1986), 39-48.

[10] B.Wood, Uniform approzimation by linear combination of modified Bernstein poly-
nominals, J. Approx. Theory 41 (1984), 51-55.

Minakshi Gaur, S.K. Sharma

DEPARTMENT OF MATHEMATICS

N.A.S. P.G. COLLEGE (MEERUT UNIVERSITY)
MEERUT 250-002 (U.P.) INDIA

G. Prasad

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ROORKEE
ROORKEE - 247 667 (U.P.) INDIA

Received March 30, 1995.



