

Minakshi Gaur, S. K. Sharma, G. Prasad

INVERSE THEOREM FOR SZÁSZ-BETA OPERATORS

In the present paper, we prove an inverse theorem for the recently introduced Szász-Beta operators, using the technique of Peetre's K -functional.

1. Introduction

Durrmeyer [3] introduced the integral modification of Bernstein polynomials to approximate Lebesgue integrable functions on $[0,1]$. Several researches introduced and studied Durrmeyer type summation-integral operators (see e.g. [1], [7], [8], [9] and [10] etc.). Recently Gupta et al. [5] defined a new sequence $B_n(f, x)$ of linear positive operators by combining Szász and Beta operators by setting

$$(1.1) \quad B_n(f, x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) f(t) dt, \quad x \in R^+,$$

where $P_{n,k}(x) = e^{-nx} \frac{(nx)^k}{k!}$ and $b_{n,k}(t) = \frac{1}{B(k+1, n)} \frac{t^k}{(1+t)^{n+k+1}}$ with $B(k+1, n) = k!(n-1)!/(n+k)!$ the usual Beta function.

They use them to approximate Lebesgue integrable functions f on $R^+ = [0, \infty)$ and sharpened the previous direct theorems on simultaneous approximation. The paper [5] motivated us to state and prove an inverse theorem for the operators (1.1). The main tool in our considerations plays Peetre's K -functional.

We denote by $C_{\beta}[0, \infty)$, $(\beta > 0)$ the class of continuous function on R^+ satisfying $|f(t)| \leq Mt^{\beta}$, $M > 0$. Note that for $f \in C_{\beta}[0, \infty)$ the operators (1.1) are well-defined for $n > \beta$, only.

Further by C_0 we mean the set of continuous function on $(0, \infty)$ having a compact support and by C_0^m — the subset of C_0 of m -times continuously differentiable functions.

For given $0 < a < a' < b < +\infty$ we define Peetre's K -functional by

$$K(\xi, f) = \inf \{ \|f - g\|_{C[a,b]} + \xi \|g''\|_{C[a,b]} : g \in G\},$$

where $0 < \xi \leq 1$ and

$$G = \{g \in C_0^2, \text{ supp } g \subset [a', b']\}.$$

The modulus of smoothness of f is defined by

$$\omega_k(f, h, a, b) = \sup \{ |\Delta_t^k f(x)| : |t| \leq h, x + kt \in [a, b] \},$$

where

$$\Delta_t^k f(x) = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} f(x + jt).$$

2. Auxiliary results

In this section, we first mention some results which are necessary to prove the main theorem.

LEMMA 2.1. *Let*

$$U_{n,m}(x) = \sum_{k=0}^{\infty} p_{n,k}(x) \left(\frac{k}{n} - x \right)^m, \quad m = 0, 1, 2, \dots$$

Then $U_{n,0}(x) = 1$, $U_{n,1}(x) = 0$ and $U_{n,2}(x) = \frac{x}{n}$ and the recurrence relation

$$nU_{n,m+1}(x) = x[U_{n,m}^{(1)}(x) + mU_{n,m-1}(x)]$$

holds.

Consequently

- (i) $U_{n,m}(x)$ is a polynomial in x of degree $\leq m$;
- (ii) $U_{n,m}(x) = o_x(n^{-[(m+1)/2]})$,

where $[\alpha]$ stands for the integer part of α .

LEMMA 2.2 [5]. *Let*

$$V_{n,m}(x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t)(t - x)^m dt.$$

Then

$$V_{n,0}(x) = 1, V_{n,1}(x) = \frac{1+x}{n-1}$$

and we have the following recurrence relation

$$(n - m - 1)V_{n,m+1}(x) = xV_{n,m}^{(1)}(x) + [(m + 1)(1 + 2x) - x]V_{n,m}(x) + mx(2 + x)V_{n,m-1}(x), \quad n > m - 1.$$

Consequently, for all $x \in R^+$

$$V_{n,m}(x) = o_x(n^{-[(m+1)/2]}).$$

LEMMA 2.3. *Let*

$$\varphi_{n,m}(x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) t^m dt.$$

Then each of $\varphi_{n,m}(x)$ is a polynomial (in x) of degree m and a rational function in n . Moreover for each $x \in R^+$, $\varphi_{n,m}(x) = o_x(1)$.

Proof. Using Lemma 2.2 we have

$$\varphi_{n,0}(x) = 1$$

and

$$\begin{aligned} \varphi_{n,1}(x) &= \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t)(t-x) dt + x \\ &= \frac{1+x}{n-1} + x = \frac{1+nx}{n-1}, \quad n > 1. \end{aligned}$$

Since

$$xp_{n,k}^{(1)}(x) = (k-nx)p_{n,k}(x) \quad \text{and} \quad t(1+t)b_{n,k}^{(1)}(t) = [k-(n+1)t]b_{n,k}(t),$$

then we obtain

$$\begin{aligned} x\varphi_{n,m}^{(1)}(x) &= \sum_{k=0}^{\infty} (k-nx)p_{n,k}(x) \int_0^{\infty} b_{n,k}(t)t^m dt \\ &= \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} [\{k-(n+1)t\} + (n+1)t - nx]b_{n,k}(t)t^m dt \\ &= \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} t(1+t)b_{n,k}^{(1)}(t)t^m dt + (n+1)\varphi_{n,m+1}(x) - nx\varphi_{n,m}(x) \end{aligned}$$

and therefore for $n > m + 1$ we have

$$(n-m-1)\varphi_{n,m+1}(x) = x\varphi_{n,m}^{(1)}(x) + (nx+m+1)\varphi_{n,m}(x).$$

From the latter recurrence relation one can easily prove the required result.

COROLLARY 2.4. *Let β and δ be two positive numbers. Then for any $m > 2\beta$, there exists a constant K_m such that*

$$\left\| \sum_{k=0}^{\infty} p_{n,k}(x) \int_{I_x(\delta)} b_{n,k}(t) t^{\beta} dt \right\|_{C[a,b]} \leq K_m n^{-m},$$

where $I_x(\delta) = (0, \infty) \setminus [x - \delta, x + \delta]$.

Proof. Using Lemma 2.2 we have the estimations

$$\begin{aligned}
 \sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) t^{\beta} dt &\leq \sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) \frac{(t-x)^{2m}}{\delta^{2m}} t^{\beta} dt \\
 &\leq \frac{1}{\delta^{2m}} \left(\sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) (t-x)^{4m} dt \right)^{1/2} \\
 &\quad \times \left(\sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) t^{2\beta} dt \right)^{1/2} \\
 &\leq \frac{K_1}{\delta^{2m}} n^{-m} \left(\sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) t^{2\beta} dt \right)^{1/2}.
 \end{aligned}$$

Since (in view of Lemma 2.3) for $m > 2\beta$ we have

$$\begin{aligned}
 &\sum_{k=0}^{\infty} p_{n,k}(x) \int_{|t-x| \geq \delta} b_{n,k}(t) t^{2\beta} dt \\
 &= \sum_{k=0}^{\infty} p_{n,k}(x) \int_{t \leq x-\delta} b_{n,k}(t) t^{2\beta} dt + \sum_{k=0}^{\infty} p_{n,k}(x) \int_{t \geq x+\delta} b_{n,k}(t) t^{2\beta} dt \\
 &\leq \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) (x-\delta)^{2\beta} dt + \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) \frac{t^m}{(x+\delta)^{m-2\beta}} dt \\
 &= (x-\delta)^{2\beta} + \frac{\varphi_{n,m}(x)}{(x+\delta)^{m-2\beta}} \leq K_2 \quad \text{for all } x \in [a, b]
 \end{aligned}$$

and then the required inequality holds.

3. Main theorem

In this section we shall prove the following inverse theorem:

THEOREM 3.1. *Let $0 < a_1 < a_2 < b_2 < b_1 < \infty$, $0 < \alpha < 2$ and suppose that for $f \in C_{\beta}[0, \infty)$ we have*

(i) $\|B_n(f, \cdot) - f(\cdot)\|_{C[a_1, b_1]} = o(n^{-\alpha/2})$.

Then

(ii) $f \in \text{Lip}^*(\alpha, C[a_2, b_2])$,

where $\text{Lip}^(\alpha, C[a, b])$ denotes the Zygmund class of functions for which $\omega_2(f, h, a, b) \leq M h^{\alpha}$.*

There are two essential steps to prove the above theorem.

(I) We first reduce the above problem to the following lemmas as a special case when f has a compact support inside some interior interval $[a', b']$ of (a_1, b_1) .

LEMMA 3.2. Let $f \in C_0$ with $\text{supp } f \subset [a'', b'']$, $0 < a < a' < a'' < b'' < b' < b < \infty$, and suppose that

$$\|B_n(f, \cdot) - f(\cdot)\|_{C[a, b]} = o(n^{-\alpha/2}).$$

Then

$$(3.1) \quad K(\xi, f) \leq K_0[n^{-\alpha/2} + n\xi K(n^{-1}, f)].$$

Consequently $K(\xi, f) \leq K_1 \xi^{\alpha/2}$ for some constant K_1 .

Proof. Since $\text{supp } f \subset [a'', b'']$ then following May [6] there exists $h \in G$ such that for $i = 0$ and 2 we have

$$\|h^{(i)}(\cdot) - B_n^{(i)}(f, \cdot)\|_{C[a, b]} \leq K_2 n^{-1}.$$

Therefore,

$$K(\xi, f) \leq 2K_2 n^{-1} + \|f(\cdot) - B_n(f, \cdot)\|_{C[a, b]} + \xi \|B_n^{(2)}(f, \cdot)\|_{C[a, b]}$$

Hence, it is sufficient to show that there exists a constant K_3 such that for each $g \in G$ we have

$$(3.2) \quad \|B_n^{(2)}(f, \cdot)\|_{C[a', b']} \leq K_3 n \{ \|f - g\|_{C[a', b']} + n^{-1} \|g^{(2)}\|_{C[a', b']} \}.$$

In fact

$$(3.3) \quad \|B_n^{(2)}(f, \cdot)\|_{C[a', b']} \leq \|B_n^{(2)}(f - g, \cdot)\|_{C[a', b']} + \|B_n^{(2)}(g, \cdot)\|_{C[a', b']}.$$

Since

$$\frac{\partial^2}{\partial x^2} \left[\sum_{k=0}^{\infty} p_{n,k}(x) b_{n,k}(t) \right] = \frac{1}{x^2} \sum_{k=0}^{\infty} [(k - nx)^2 - k] p_{n,k}(x) b_{n,k}(t),$$

then by using Lemma 2.1, we have

$$\int_0^{\infty} \left| \frac{\partial^2}{\partial x^2} \left(\sum_{k=0}^{\infty} p_{n,k}(x) b_{n,k}(t) \right) \right| dt \leq \sum_{k=0}^{\infty} \frac{|(k - nx)^2 - k|}{x^2} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) dt \leq \frac{2x}{n}.$$

Therefore we obtain

$$(3.4) \quad \|B_n^{(2)}(f - g, \cdot)\|_{C[a, b]} \leq \frac{2n}{a} \|f - g\|_{C[a, b]} = K_4 n \|f - g\|_{C[a, b]}.$$

Next, using Lemma 2.2, we see that for any $m > i$

$$(3.5) \quad \int_0^{\infty} \left[\frac{\partial^m}{\partial x^m} \left(\sum_{k=0}^{\infty} p_{n,k}(x) b_{n,k}(t) \right) \right] (t - x)^i dt = 0.$$

Also, by Taylor's Expansion Theorem, there exists ξ , between t and x , such that

$$(3.6) \quad g(t) = g(x) + g^{(1)}(x)(t - x) + g^{(2)}(\xi)(t - x)^2.$$

Using (3.5) and (3.6) we obtain

$$\begin{aligned}
 B_n^{(2)}(g, x) &= \int_0^\infty \left[\frac{\partial^2}{\partial x^2} \left(\sum_{k=0}^\infty p_{n,k}(x) b_{n,k}(t) \right) \right] g(t) dt \\
 &= \int_0^\infty [\dots] (g(x) + g^{(1)}(x)(t-x) + g^{(2)}(\xi)(t-x)^2) dt \\
 &= \int_0^\infty [\dots] g^{(2)}(\xi)(t-x)^2 dt.
 \end{aligned}$$

Making use of Lemma 2.1, Lemma 2.2 and Schwarz inequality, we get

$$\begin{aligned}
 (3.7) \quad & \|B_n^{(2)}(g, \cdot)\|_{C[a,b]} \\
 & \leq \|g^{(2)}\|_{C[a,b]} \left\| \int_0^\infty \left| \frac{\partial^2}{\partial x^2} \left(\sum_{k=0}^\infty p_{n,k}(x) b_{n,k}(t) \right) \right| (t-x)^2 dt \right\|_{C[a,b]} \\
 & \leq \|g^{(2)}\|_{C[a,b]} \left\| \left(\sum_{k=0}^\infty [(k-nx)^2 + k] p_{n,k}(x) \right) \int_0^\infty b_{n,k}(t) (t-x)^2 dt \right\|_{C[a,b]} \\
 & \leq K_5 \|g^{(2)}\|_{C[a,b]}.
 \end{aligned}$$

Hence (3.2) follows, by combining (3.3), (3.4) and (3.7). This completes the proof of the lemma.

LEMMA 3.3. *Relation (3.1) implies*

$$f \in \text{Lip}^*(\alpha, C[a, b]).$$

Proof. Proceeding along the lines of the proof from [2], we have

$$(3.8) \quad K(\xi, f) \leq K_6 \xi^{\alpha/2}, \text{ for some constant } K_6 > 0.$$

Now, let $0 < |\delta| < h$. Then for any $g \in G$ we have

$$|\Delta_\delta^2 f(x)| \leq |\Delta_\delta^2(f(x) - g(x))| + |\Delta_\delta^2 g(x)| \leq 4\|f - g\|_{C[a,b]} + \delta^2 \|g^{(2)}\|_{C[a,b]}.$$

Therefore, using (3.8), we get

$$\omega_2(f, h, a, b) \leq 4K(h^2, f) \leq 4K_6 h^\alpha$$

i.e. $f \in \text{Lip}^*(\alpha, C[a, b])$.

(II) In this step we shall show that, using Lemma 3.2 and Lemma 3.3, the required result follows.

Let us choose a', a'', b', b'' in such a way that $a_1 < a' < a'' < a_2$ and $b_2 < b'' < b' < b_1$. Take any $g \in C_0^\infty$ such that $\text{supp } g \subset [a'', b'']$ and $g(x) = 1$ on $[a_2, b_2]$.

First assume that $0 < \alpha \leq 1$. For $x \in [a', b']$, we have

$$\begin{aligned}
 B_n(fg, x) - f(x)g(x) &= g(x)[B_n(f, x) - f(x)] \\
 &+ \int_{a_1}^{b_1} \left(\sum_{k=0}^\infty p_{n,k}(x) b_{n,k}(t) \right) f(t)[g(t) - g(x)] dt + o(n^{-1}) = I_1 + I_2 + o(n^{-1})
 \end{aligned}$$

say, where $o(n^{-1})$ term is, by Corollary 2.4, uniform for $x \in [a', b']$.

Next, making use of the assumption $\|B_n(f, \cdot) - f(\cdot)\|_{C[a', b']} = o(n^{-\alpha/2})$, we get

$$(3.10) \quad \|I_1\|_{C[a', b']} \leq \|g\|_\infty \|B_n(f, \cdot) - f(\cdot)\|_{C[a', b']} \leq K_7 n^{-\alpha/2},$$

where $\|g\|_\infty = \inf\{M : |f(x)| \leq M \text{ a.e. on } [a', b']\}$, M is a constant.

Also, by Mean Value Theorem, we get

$$I_2 = \int_{a_1}^{b_1} \left(\sum_{k=0}^{\infty} p_{n,k}(x) b_{n,k}(t) \right) f(t) [g^{(1)}(\xi)(t-x)] dt.$$

Hence, by Lemma 2.2 and Cauchy–Schwarz inequality, we see that

$$(3.11) \quad \|I_2\|_{C[a', b']} = o(n^{-1/2}) \leq o(n^{-\alpha/2}).$$

Combining the estimates in (3.9), (3.10) and (3.11) we obtain

$$\|B_n(fg, \cdot) - fg(\cdot)\|_{C[a', b']} = o(n^{-\alpha/2}).$$

Therefore, by Lemma 3.2 and Lemma 3.3, we have $fg \in \text{Lip}^*(\alpha, C[a', b'])$. Since $g(x) = 1$ on $[a_2, b_2]$ it follows that $f \in \text{Lip}^*(\alpha, C[a_2, b_2])$. This proves the implication (i) \Rightarrow (ii), when $0 < \alpha \leq 1$.

Now assume that $1 < \alpha < 2$. We also choose two points a_1^* and b_1^* satisfying $a_1 < a_1^* < a'$ and $b' < b_1^* < b_1$. It is sufficient to prove our assertion for $1 < \alpha < 2 - \delta$, where $\delta \in (0, 1)$ is arbitrary.

We may notice, from the previous result, that the condition

$$\|B_n(f, \cdot) - f(\cdot)\|_{C[a_1, b_1]} = o(n^{-\alpha/2}) \text{ implies } f \in \text{Lip}(1 - \delta, C[a_1^*, b_1^*]).$$

Now, for $x \in [a', b']$, we have

$$\begin{aligned} B_n(fg, x) - f(x)g(x) &= g(x)[B_n(f, x) - f(x)] + f(x)[B_n(g, x) - g(x)] \\ &\quad + \int_{a_1^*}^{b_1^*} \left(\sum_{k=0}^{\infty} p_{n,k}(x) b_{n,k}(t) \right) [f(t) - f(x)][g(t) \\ &\quad - g(x)] dt + o(n^{-1}) = J_1 + J_2 + J_3 + o(n^{-1}), \end{aligned}$$

where $o(n^{-1})$ term holds uniformly for $x \in [a', b']$ (by Corollary 2.4).

In fact, the relation $\|J_1\|_{C[a', b']} = o(n^{-\alpha/2})$ follows from the assumption, while $\|J_2\|_{C[a', b']} = o(n^{-1}) \leq o(n^{-\alpha/2})$, from Lemma 2.2.

Also, since $|f(t) - f(x)| \leq K(t - x)^{1-\delta}$ and $g(t) - g(x) = g^{(1)}(\xi)(t - x)$, then, using Jensen's inequality and Lemma 2.2, we obtain

$$\|J_3\|_{C[a', b']} = o(n^{-(2-\delta)/2}) \leq o(n^{-\alpha/2}).$$

Combining the above estimates of J_1, J_2 and J_3 , we get

$$\|B_n(fg, \cdot) - fg(\cdot)\|_{C[a', b']} = o(n^{-\alpha/2}).$$

Now the result follows, as in the first case, from Lemma 3.2 and Lemma 3.3. This completes the proof of inverse theorem.

Acknowledgement. We are extremely thankful to the referee for his valuable comments and suggestions which enabled us to improve the presentation of the paper.

References

- [1] P. N. Agrawal and Vijay Gupta, *Simultaneous approximation by linear combination of modified Bernstein polynomials*, Bull. Greek Math. Soc. 30 (1989), 21–29.
- [2] H. Berens and G. G. Lorentz, *Inverse theorem for Bernstein polynomials*, Indian Univ. Math. J. 21 (1972), 693–708.
- [3] J. L. Durrmeyer, *Une Formule d'inversion de a Transforme de Laplace: Application a la Theory des Moments*, Thèse de 3e cycle, Faculte' des Sciences de Université' de Paris 1967.
- [4] Vijay Gupta and P. N. Agrawal, *An estimate of the rate of convergence for Modified Szász-Mirsky operators of functions of bounded variation*, Publ. Inst. Math. (Beograd) 49 (63) (1991), 97–103.
- [5] Vijay Gupta, G. S. Srivastava and A. Sahai, *On simultaneous approximation by Szász-Beta operators*, Soochow J. Math. 21 (1995). 1–11.
- [6] C. P. May, *Saturation and inverse theorems for combinations of a class of exponential type operators*, Canad. J. Math. 6, 28 (1976), 1224–1250.
- [7] S. M. Mazhar and V. Totik, *Approximation by modified Szász operator*, Acta Sci. Math. (Szeged), 49 (1985), 257–269.
- [8] A. Sahai and G. Prasad, *On approximation by modified Lupaş operators*, J. Approx. Theory 45 (1985), 122–128.
- [9] S. P. Singh, *On approximation by modified Szász operators*, Mathematical Chronicle 15 (1986), 39–48.
- [10] B. Wood, *Uniform approximation by linear combination of modified Bernstein polynomials*, J. Approx. Theory 41 (1984), 51–55.

Minakshi Gaur, S.K. Sharma

DEPARTMENT OF MATHEMATICS

N.A.S. P.G. COLLEGE (MEERUT UNIVERSITY)

MEERUT 250-002 (U.P.) INDIA

G. Prasad

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ROORKEE

ROORKEE - 247 667 (U.P.) INDIA

Received March 30, 1995.