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INVERSE THEOREM FOR SZÁSZ-BETA OPERATORS 

In the present paper, we prove an inverse theorem for the recently introduced Szász-
Beta operators, using the technique of Peetre's /^-functional. 

1. Introduction 
Durrmeyer [3] introduced the integral modification of Bernstein poly-

nomials to approximate Lebesgue integrable functions on [0,1]. Several re-
sarches introduced and studied Durrmeyer type summation-integral opera-
tors (see e.g. [1], [7], [8], [9] and [10] etc.). Recently Gupta et al. [5] defined a 
new sequence B n ( f , x ) of linear positive operators by combining Szász and 
Beta operators by setting 

oo oo 

( 1 . 1 ) Bn(f,x) = Y,PÁ*) Jbn,k(t)f(t)dt,x€B+, 
k=0 0 

where Pn,*(®) = and bn<k(t) = B ( f c | l ra) (1+<)»+t+i with 
B(k + 1, n) = kl(n — 1 )!/(n + k)l the usual Beta function. 

They use them to approximate Lebesgue integrable functions / on R+ = 
[0, oo) and sharpened the previous direct theorems on simultaneous approx-
imation. The paper [5] motivated us to state and prove an inverse theorem 
for the operators (1.1). The main tool in our considerations plays Peetre's 
/^-functional. 

We denote by Cp[0,oo),(/3 > 0) the class of continuous function on R+ 

satisfying | / ( / ) | < Mt&,M > 0. Note that for / £ C ^ o o ) the operators 
(1.1) are well-defined for n > (3, only. 

Further by Co we mean the set of continuous function on (0, oo) having 
a compact support and by C™ — the subset of CQ of m-times continuously 
differentiate functions. 
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For given 0 < a < a' < b < +00 we define Peetre's /^-functional by 
/ ) = i n f i l l / - 9\\cm + : 9 s G}, 

where 0 < £ < 1 and 
G = {ge C0

2, supper C [a',b'}}. 
The modulus of smoothness of / is defined by 

wfc(/, h, a, b) = sup{|A?/(a:)| : \t\ < h,x + kt £ [a, b]}, 
where 

j=o 

2. Auxiliary results 
In this section, we first mention some results which are necessary to prove 

the main theorem. 

LEMMA 2.1. Let 
°° / h \ m 

Un,m(x) =) pn<k(x)[ x ) , m = 0 ,1 ,2 , . . . . 
tl> J 

Then Unfl(x) = 1, Un,\(x) = 0 and Un^{x) = ^ and the recurrence relation 

nUn>m+1(x) = »[1/(^(35) + mf7n,m_i(a:)] 
holds. 

Consequently 
(i) f n m(®) is a polynomial in x of degree < m; 
(ii) Unlm(x) = O x (n - i^+- i ) /% 

where [a] stands for the integer part of a . 
LEMMA 2 .2 [5]. Let 

00 00 
Vn,m(x) = J2PnAX) J bnik(t)(t - X)mdt. 

k=0 0 
Then 

n— 1 
and we have the following recurrence relation 

(n-m- l)Vn<m+1(x) = zVgl(x) + [(m + 1)(1 + 2x) - x]V„,m(ar) 
+ mx(2 + x)VntTn-1(x), n > m — 1. 

Consequently, for all x € R+ 
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LEMMA 2 . 3 . Let 
oo oo 

¥>n,m(*) = ^Pn,k(X) J K A ^ d t ' 
k=0 0 

Then each of (pn,m(x) is a polynomial (in x) of degree m and a rational 
function in n. Moreover for each x € R+, ipnim(x) = o r ( l ) . 

P r o o f . Using Lemma 2.2 we have 

¥>n,o(x) = 1 

and 
OO CO 

<fn,l(x) = Y^Pn,k(X) J bnik(t)(t ~ X)dt + X 
k=0 0 
1 + x 1 + nx 

= T + x= —, n > 1. n — 1 n — 1 

Since 

xPn\(x) = (k~ nx)pn,k(x) and /(I + t)b^k(t) = [ * - ( » + l)i]6„,fc(i), 

then we obtain 
oo oo 

*¥>$»(*) = - nX)PnAx) J K,k(t)tmdt 
k=0 0 

oo oo 
= Pn,kiX) J [{A - (n + 1 )t} + (n + l)t - nx]bnAt)tmdt 

k=0 0 
oo oo 

= ^2Pn,k(X) J H 1 + t)bn?k(t)t'ndt + (U + i K m + l i ® ) ~ nx(Pn,m(x) 
k=0 0 

and therefore for n > m + 1 we have 

(n-m- l)y>„,m+i(«) = x^m(x) + (nx + m + 1 )fn,m(x). 

From the latter recurrence relation one can easily prove the required result. 

COROLLARY 2 .4 . Let ¡3 and 6 be two positive numbers. Then for any 
m > 2/3, there exists a constant Km such that 

||5^pn,*(a:) f bn,k(t)tpdt 
k—0 IX(S) 

where IX(S) = (0,°o) \ [x — 6, x + 

r < Kmn~m, 
C[o,6] 
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P r o o f . Using Lemma 2.2 we have the estimations 
CO OO , _ S 2 m 

X>».*(®) f bn,k(tydt<^PnM J bn,k(t) prn ^dt 

k=0 \t-x\>& fc=0 |t-®|>i 
1 ^ 1 /2 

^ ^ ( X X ^ * ) f bn,km-*)4mdt) 
k=0 | t -x|>i 

0 0 1/2 
X (£pn,k(aO f bntk(t)t2Pdt) 

k=0 |t-ar|>5 

Since (in view of Lemma 2.3) for m > 2/3 we have 
OO 

k=o |i-®|>« 
OO OO 

fc=0 t<x-S k-0 t>a;+5 
OO OO OO OO 

fc=o o fc=o o v T ; 

= - 5 ) 2 / 3 + - f o r a U ^ f a ' 6 ] 

and then the required inequality holds. 

3. Main theorem 
In this section we shall prove the following inverse theorem: 

T H E O R E M 3 .1 . Let 0 < a\ < a 2 < ¿>2 < < 00, 0 < a < 2 a n d suppose 
that for f G Cp[0,00) u>e have 

(i) | | 5 n ( / , . ) - / ( . ) | | c [ a i i f c l ] = o ( n - / 2 ) . 
Then 

(ii) /GLip* (a ,C[a 2 ,& 2 ] ) , 
where Lip*(a, C[a, £>]) denotes the Zygmund class of functions for which 
u2(f,h,a,b) < Mha. 

There are two essential steps to prove the above theorem. 
(I) We first reduce the above problem to the following lemmas as a special 

case when / has a compact support inside some interior interval [a',f>'] of 
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LEMMA 3.2. Let f € C0 with suppf C [a", b"], 0 < a < a' < a" < b" < 

b' < b < oo, and suppose that 

\ \ B n ( f , . ) - f ( . ) \ \ c [ a M = o(n-a'2). 

Then 

( 3 . 1 ) K ( { , f ) < Ko[n~a/2 + n t K ( n - \ f ) ] . 

Consequently f ) < K^01/2 for some constant K i . 

P r o o f . Since supp / C [a", b"\ then following May [6] there exists h G G 
such that for i = 0 and 2 we have 

| | / l ( 0 ( . ) _ j B ( 0 ( / ) . ) | | c [ a f c ] < j f i r 2 r a - i . 

Therefore, 

K ( t , f ) < 2K2H-1 + | | / ( . ) - B n ( f , Ollda.b] + f l l . ) | | c [ a , 6 ] 

Hence, it is sufficient to show that there exists a constant such that for 
each g £ G we have 

(3.2) I I B « \ f , Ollcia'.f] < KMWf - ffl|c[a',6'] + ||c[al,6<]}. 
In fact 

(3.3) I I 4 2 ) ( / , OllcL'.y] < I I 4 2 ) ( / - <7, 0llcK6<] + I IB^(g, Olid.',*]. 
Since 

d2 r °° 1 °° 
= ~ n X ^ ~ k]Pn,k(X)bn,k(t), 

k=0 k=0 

then by using Lemma 2.1, we have 

? 9 2 , u A \(k - nx)2 - k\ , , , x 2x 
J W dt < J 2 -4 [PnA*) f bn,k(t)dt < —. 
0 k=0 fc=0 0 " 

Therefore we obtain 

(3.4) | | 5 ( 2 ) ( / - g, 0||c[a,6] < ^ 1 1 / - g\\c[aM = K4n\\f - fl||c[a,6]. 

Next, using Lemma 2.2, we see that for any m > i 

T dm / °° \1 
( 3 - 5 ) J ^ T ( ( t - x y d t = 0. 

Also, by Taylor's Expansion Theorem, there exists between t and x, such 
that 

g(t) = g(x) + gW(x)(t - x ) + g ^ m ~ (3.6) 
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Using (3.5) and (3.6) we obtain 
® r 32 , . 

k=0 
g(t)dt 

= J [.. .](g(x) + gW(x)(t -x) + g ^ m ~ x)2)dt 

= J[...]g(2)m-*)2dt. 
0 

Making use of Lemma 2.1, Lemma 2,2 and Schwarz inequality, we get 

(3.7) I l4 a )( * , . ) l lc[a ,n °° I q2 - °° 
< l b ( 2 ) l l c [ a J / ¿ ( ¿ ^ ( x W ) ) dx2 t o 1 fc=0 

(t - xfdt 
C[a,6] 

C[a,b] ^ i i ^ U c m I K E ^ - ^ + ^ K ^ ) ) f bn,k(t)(t-xfdt 
k=0 0 

< K5\\g^\\ciatb]. 
Hence (3.2) follows, by combining (3.3), (3.4) and (3.7). This completes the 
proof of the lemma. 

LEMMA 3.3. Relation (3.1) implies 
f G Lip*(a , C[a, &]). 

P r o o f . Proceeding along the lines of the proof from [2], we have 
(3.8) K(t,f) < for some constant K6 > 0. 
Now, let 0 < |<51 < h. Then for any g € G we have 
\Ajf(x)\ < | A l ( f ( x ) - g(x))| + \Ajg(x)\ < 4| | / - g\\c[aM + i V ^ c m ] . 

Therefore, using (3,8), we get 
u2(f, h, a, b) < 4K(h2,f) < 4K6ha 

i.e. / € Lip*(a , C[a, 6]). 
(II) In this step we shall show that, using Lemma 3.2 and Lemma 3.3, 

the required result follows. 
Let us choose a',a",b',b" in such a way that a\ < a' < a" < and 

¿2 < b" < b' < bx. Take any g G such that supper C [a",b"] and 
g(x) = 1 on [a2,62]-

First assume that 0 < a < 1. For x G [a', &'], we have 

Bnifg, x) - f(x)g(x) = g(x)[Bn(f, x) - f(x)} 
61 00 

+ / ( E ^ ^ W ^ / W b W - ^ P + o i « ' 1 ) ^ i + / 2 + o ( n - 1 ) 
a 1 k=0 
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say, where o ( n - 1 ) term is, by Corollary 2.4, uniform for x € [a',b']. 

Next, making use of the assumption ||-Bn(/,.) - /(.)||c[a',6'] = o(n~Q/2), 
we get 

(3.10) l l i i l l c w ] < Moo\\Bn(f,.) - /(.)||c[a',6'] < Krn-a'2, 

where ||s||oo = inf{M : \ f ( x ) \ < M a.e. on [a',b ' ]}, M is a constant. 
Also, by Mean Value Theorem, we get 

bj oo 
72 = I ( S ^ O ^ V f c 

a j fc=0 

Hence, by Lemma 2.2 and Cauchy-Schwarz inequality, we see that 

(3.11) | | / 2 | | c [ a ' , 6 ' ] = o ( n - 1 / 2 ) < o ( n - a / 2 ) . 

Combining the estimates in (3.9), (3.10) and (3.11) we obtain 

\\Bn(fg,.)-fg(.)\\c[a-,b>] = o(n-a/2). 

Therefore, by Lemma 3.2 and Lemma 3.3, we have fg 6 Lip*(a, C[a', 6']). 
Since g(x) = 1 on [02^2] it follows that / £ Lip*(a,C[a2,¿>2])- This proves 
the implication (i)=i>(ii), when 0 < a < 1. 

Now assume that 1 < a < 2. We also choose two points a[ and 
satisfying a\ < a^ < a' and b' < b* < b^. It is sufficient to prove our 
assertion for 1 < a < 2 — S, where 6 £ (0,1) is arbitrary. 

We may notice, from the previous result, that the condition 

\\Bn(f, •) - f(.)\\c[aiM] = < n ~ a / 2 ) / G Lip{ 1 - ¿,CK,6J]). 

Now, for x £ [a', 6'], we have 

Bnifg, X) - f ( x ) g ( x ) = g ( x ) [ B n ( f , x) - /(*)] + f(x)[Bn(g, x) - g{x)] 
b* 0 0 

+ / ( E PnA*)bn,k(t))[f(t) - M M * ) 
a* fc=0 

-g(x)]dt + o ( n = h + Ji + h + »(n"1), 

where o ( n - 1 ) term holds uniformly for x £ [a', b'] (by Corollary 2.4). 
In fact, the relation ||Ji||c[o',6'] = o(n~a/2) follows from the assumption, 

while WJ2||c[a',6'] = o ( n - 1 ) < o(n~ a / 2 ) , from Lemma 2.2. 
Also, since \ f ( t ) - f ( x ) \ < K(t - x^'6 and g(t) - g{x) = gW(t)(t - x), 

then, using Jensen's inequality and Lemma 2.2, we obtain 



714 M. G a u r , S. K. S h a r m a , G. P r a s a d 

Combining the above estimates of J\, J2 and J3, we get 
\\Bn(fg,.)-f9(.)\\c[a>,b>}=o(n-a/2). 

Now the result follows, as in the first case, from Lemma 3.2 and Lemma 3.3. 
This completes the proof of inverse theorem. 

Acknowledgement. We are extremely thankful to the referee for his 
valuable comments and suggestions which enabled us to improve the pre-
sentation of the paper. 
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