

Horiana Ovesea

AN EXTENSION OF LEWANDOWSKI'S
 UNIVALENCE CRITERIA

1. Introduction

In this note we obtain, by the method of subordination chains, a sufficient condition for the analyticity and the univalence of the functions defined by an integral operator. This condition involves an arbitrary function g , analytic in the unit disk. In some particular cases we find more restrictive conditions for univalence than those obtained by Lewandowski in [1] and [2]. The Corollary 3.1 resembles the criteria for starlikeness obtained by P.T.Mocanu in [4].

We denote by $U_r = \{z \in C : |z| < r\}$ the disk of z -plane, where $r \in (0, 1]$, $U_1 = U$, $U^* = U \setminus \{0\}$, and let $I = [0, \infty)$. Let A be the class of functions f analytic in U and such that $f(0) = 0, f'(0) = 1$.

THEOREM 1.1 [1]. *Let $f \in A$. If there exists an analytic function p with positive real part in U such that $p(0) = 1$ and the inequality*

$$(1) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z|^2 - (1 - |z|^2) \left(\frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{p(z) + 1} \right) \right| \leq 1$$

is true for all $z \in U$, then the function f is univalent in U .

THEOREM 1.2 [2]. *Let $a > \frac{1}{2}$, $\alpha > 0$, $\beta \in R$, $k = \frac{a}{\alpha}$ be fixed numbers and let $f \in A$ and g be analytic in U such that $f'(z) \neq 0$ and*

$$(2) \quad \left| \frac{zf'(z)}{f(z)g(z)} - ks \right| \leq k|s|, \quad s = \alpha + i\beta.$$

If the inequality

$$(3) \quad \left| |z|^{2k} \frac{zf'(z)}{f(z)g(z)} + (1 - |z|^{2k}) \left(\frac{zf'(z)}{f(z)} + s \frac{zg'(z)}{g(z)} \right) - ks \right| \leq k|s|$$

holds for $z \in U$, then f is univalent in U .

Let us denote by S^* the subclass of A consisting of functions which are starlike.

THEOREM 1.3 [4]. *If $f \in A$ and*

$$(4) \quad |f'(z) - 1| < \frac{2}{\sqrt{5}} = 0,894\dots, \quad z \in U,$$

then $f \in S^$ and $|f(z)| < 1 + 1/\sqrt{5} = 1,447\dots$*

2. Preliminaries

DEFINITION. A function $L : U \times I \rightarrow C$ is called a Loewner chain, if

$$L(z, t) = e^t z + a_2(t)z^2 + \dots, \quad |z| < 1,$$

is analytic and univalent in U for each $t \in I$ and $L(z, s) \prec L(z, t)$ for $0 \leq s < t < \infty$, where by \prec we denote the relation of subordination.

THEOREM 2.1 [5]. *Let $L(z, t) = a_1(t)z + a_2(t)z^2 + \dots, a_1(t) \neq 0$ be analytic in U_r , for all $t \in I$, locally absolutely continuous in I and locally uniform with respect to U_r . For almost all $t \in I$ suppose*

$$z \frac{\partial L(z, t)}{\partial z} = p(z, t) \frac{\partial L(z, t)}{\partial t}, \quad \forall z \in U_r,$$

where $p(z, t)$ is analytic in U and satisfies the condition $\operatorname{Re} p(z, t) > 0$ for all $z \in U, t \in I$. If $|a_1(t)| \rightarrow \infty$ for $t \rightarrow \infty$ and $\{L(z, t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$ the function $L(z, t)$ has an analytic and univalent extension to the whole disk U .

3. Main results

THEOREM 3.1. *Let $f \in A$ and α, β, c be complex numbers such that $\operatorname{Re} \alpha > 0$, $\operatorname{Re}(\alpha + 2\beta) > 0$, $\operatorname{Re} \frac{\beta}{\alpha} > -\frac{1}{2}$, $|c(\alpha + \beta) + \beta| + |\beta| \leq |\alpha + \beta|$. If there exists an analytic function $g \in A$ such that*

$$(5) \quad \left| (1 + c) \frac{f'(z)}{g'(z)} - 1 \right| < 1, \quad \forall z \in U,$$

$$(6) \quad \left| \left[\left((1 + c) \frac{f'(z)}{g'(z)} - 1 \right) |z|^{2(\alpha+\beta)} + \frac{1 - |z|^{2(\alpha+\beta)}}{\alpha + \beta} \left[\frac{zg''(z)}{g'(z)} - \beta \right] \right] \right| \leq 1$$

for all $z \in U^$, then the function*

$$(7) \quad F(z) = \left(\alpha \int_0^z u^{\alpha-1} f'(u) du \right)^{1/\alpha}$$

is analytic and univalent in U .

Proof. Let us prove that there exists a real number $r \in (0, 1]$, such that the function $L : U_r \times I \rightarrow C$ defined formally by

$$(8) \quad L(z, t) = \left[(\alpha + \beta) \int_0^{e^{-t}z} u^{\alpha-1} f'(u) du + \frac{e^{(\alpha+2\beta)t} - e^{-\alpha t}}{1+c} z^\alpha g'(e^{-t}z) \right]^{1/\alpha}$$

is analytic in U_r for all $t \in I$. Denoting

$$h_1(z, t) = (\alpha + \beta) \int_0^{e^{-t}z} u^{\alpha-1} f'(u) du,$$

we have $h_1(z, t) = z^\alpha h_2(z, t)$, where it is easy to see that the function h_2 is analytic in U for all $t \in I$ and $h_2(0, t) = \frac{\alpha+\beta}{\alpha} e^{-\alpha t}$.

From the analyticity of g' in U it follows that the function

$$h_3(z, t) = h_2(z, t) + \frac{e^{(\alpha+2\beta)t} - e^{-\alpha t}}{1+c} g'(e^{-t}z)$$

is also analytic in U and that

$$h_3(0, t) = e^{(\alpha+2\beta)t} \left[\frac{1}{1+c} + \left(\frac{c}{1+c} + \frac{\beta}{\alpha} \right) e^{-2(\alpha+\beta)t} \right].$$

Let us prove that $h_3(0, t) \neq 0, \forall t \in I$. We have $h_3(0, 0) = 1 + \frac{\beta}{\alpha}$ and, since $\operatorname{Re} \frac{\beta}{\alpha} > -\frac{1}{2}$, it follows that $h_3(0, 0) \neq 0$. Assume now that there exists $t_0 > 0$ such that $h_3(0, t_0) = 0$. Then $e^{2(\alpha+\beta)t_0} = -[(\alpha + \beta)c + \beta]\alpha^{-1}$ and, since $|c(\alpha + \beta) + \beta| + |\beta| \leq |\alpha + \beta|$ implies $|c(\alpha + \beta) + \beta| \leq |\alpha|$, it follows that $e^{2\operatorname{Re}(\alpha+\beta)t_0} \leq 1$. In view of $\operatorname{Re}(\alpha + \beta) > 0, t_0 > 0$, this inequality is impossible. Therefore, there is a disk U_r , $0 < r \leq 1$, in which $h_3(z, t) \neq 0$ for all $t \in I$. Then we can choose an analytic branch of $[h_3(z, t)]^{1/\alpha}$ denoted by $h(z, t)$. We fix a determination of $(1 + \frac{\beta}{\alpha})^{1/\alpha}$ denoted by γ . For $\gamma(t)$ we fix the determination equal to γ for $t = 0$, where

$$\gamma(t) = e^{(1+2\frac{\beta}{\alpha})t} \left[\frac{1}{1+c} + \left(\frac{c}{1+c} + \frac{\beta}{\alpha} \right) e^{-2(\alpha+\beta)t} \right]^{\frac{1}{\alpha}}.$$

It results that the relation (8) may be written as

$$L(z, t) = zh(z, t) = a_1(t)z + a_2(t)z^2 + \dots, \quad \forall z \in U_r,$$

and we obtain that the function $L(z, t)$ is analytic in U_r for all $t \in I$ and $a_1(t) = \gamma(t)$. Since $\operatorname{Re}(\alpha + \beta) > 0$ and $\operatorname{Re} \frac{\beta}{\alpha} > -\frac{1}{2}$, we have $\lim_{t \rightarrow \infty} |a_1(t)| = \infty$. We saw also that $a_1(t) \neq 0$ for all $t \in I$.

From the analyticity of $L(z, t)$ in U_r it follows that there is a number $r_1, 0 < r_1 < r$, and a constant $K = K(r_1)$ such that

$$|L(z, t)/a_1(t)| < K, \quad \forall z \in U_{r_1}, \quad t \geq 0,$$

and then $\{L(z, t)/a_1(t)\}$ is a normal family in U_{r_1} . From the analyticity of $\frac{\partial L(z, t)}{\partial t}$, for all fixed numbers $T > 0$ and $r_2, 0 < r_2 < r_1$, there exists a constant $K_1 > 0$ (which depends on T and r_2) such that

$$\left| \frac{\partial L(z, t)}{\partial t} \right| < K_1, \quad \forall z \in U_{r_2}, \quad t \in [0, T].$$

It follows that the function $L(z, t)$ is locally absolutely continuous in I , locally uniform with respect to U_{r_2} . Also we have that the function

$$p(z, t) = z \frac{\partial L(z, t)}{\partial z} \Big/ \frac{\partial L(z, t)}{\partial t}$$

is analytic in $U_{r_0}, 0 < r_0 < r_2$, for all $t \geq 0$.

In order to prove that the function $p(z, t)$ has an analytic extension with positive real part in U , for all $t \geq 0$, it is sufficient to prove that the function $w(z, t)$ defined in U_{r_0} by

$$w(z, t) = \frac{p(z, t) - 1}{p(z, t) + 1}$$

can be continued analytically in U and $|w(z, t)| < 1$ for all $z \in U$ and $t \geq 0$.

After computation we obtain

$$(9) \quad w(z, t) = \left[(1 + c) \frac{f'(e^{-t}z)}{g'(e^{-t}z)} - 1 \right] e^{-2(\alpha+\beta)t} + \frac{1 - e^{-2(\alpha+\beta)t}}{\alpha + \beta} \left[\frac{e^{-t}zg''(e^{-t}z)}{g'(e^{-t}z)} - \beta \right].$$

From (5) and (6) we deduce that $g'(z) \neq 0$ for all $z \in U$ and then the function $w(z, t)$ is analytic in the unit disk U . For $t = 0$, in view of (5), we have

$$(10) \quad |w(z, 0)| = \left| (1 + c) \frac{f'(z)}{g'(z)} - 1 \right| < 1.$$

For $z = 0, t > 0$, since $\operatorname{Re}(\alpha + \beta) > 0, |c(\alpha + \beta) + \beta| + |\beta| \leq |\alpha + \beta|$ and $f, g \in A$, we get

$$(11) \quad |w(0, t)| = \left| \frac{[c(\alpha + \beta) + \beta]e^{-2(\alpha+\beta)t} - \beta}{\alpha + \beta} \right| < 1.$$

Let now be a fixed number $t > 0$ and $z \in U, z \neq 0$. In this case the function $w(z, t)$ is analytic in \bar{U} , because $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \bar{U}$ and it is known that

$$(12) \quad |w(z, t)| < \max_{|\xi|=1} |w(\xi, t)| = |w(e^{i\theta}, t)|, \quad \theta = \theta(t) \in R.$$

Let us denote $u = e^{-t}e^{i\theta}$. Then $|u| = e^{-t}$ and from (9) we obtain

$$|w(e^{i\theta}, t)| = \left| \left((1+c) \frac{f'(u)}{g'(u)} - 1 \right) |u|^{2(\alpha+\beta)} + \frac{1 - |u|^{2(\alpha+\beta)}}{\alpha+\beta} \left(\frac{ug''(u)}{g'(u)} - \beta \right) \right|.$$

Since $u \in U$, the relation (6) implies $|w(e^{i\theta}, t)| \leq 1$ and from (10), (11) and (12) we conclude that $|w(z, t)| < 1$ for all $z \in U$ and $t \geq 0$.

From Theorem 2.1 it results that the function $L(z, t)$ has an analytic and univalent extension to the whole disk U , for each $t \in I$. For $t = 0$ it results that the function

$$L(z, 0) = \left[(\alpha + \beta) \int_0^z u^{\alpha-1} f'(u) du \right]^{1/\alpha}$$

is analytic and univalent in U and then the function F defined by (7) is analytic and univalent in U .

THEOREM 3.2. *Let α, β, c be complex numbers, $\operatorname{Re} \alpha > 0$, $\operatorname{Re}(\alpha+2\beta) > 0$, $\operatorname{Re} \frac{\beta}{\alpha} > -\frac{1}{2}$, $|c(\alpha+\beta) + \beta| + |\beta| \leq |\alpha+\beta|$ and let $f \in A$. If there exists an analytic function p with positive real part in U such that $p(0) = (1-c)/(1+c)$ and*

$$(13) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z|^{2(\alpha+\beta)} - \frac{1 - |z|^{2(\alpha+\beta)}}{\alpha + \beta} \left(\frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{p(z) + 1} - \beta \right) \right| \leq 1$$

for all $z \in U^*$, then the function F defined by (7) is analytic and univalent in the disk U .

Proof. Let p be an analytic function in U , with $\operatorname{Re} p(z) > 0$ for all $z \in U$ and $p(0) = (1-c)/(1+c)$. If in Theorem 3.1 the function $g \in A$ is such that

$$g'(z) = \frac{1+c}{2} [1 + p(z)] f'(z),$$

then the inequality (6) becomes (13) and the inequality (5) is true, because $\operatorname{Re} p(z) > 0, \forall z \in U$.

A simple conclusion from Theorem 3.2 has a following form.

THEOREM 3.3. *Let $F \in A$, $F(z) \neq 0$ for all $z \in U^*$. Let α, β, c be complex numbers, such that $\operatorname{Re} \alpha > 0$, $\operatorname{Re}(\alpha+2\beta) > 0$, $\operatorname{Re} \frac{\beta}{\alpha} > -\frac{1}{2}$, $|c(\alpha+\beta) + \beta| + |\beta| \leq |\alpha+\beta|$. If there exists an analytic function p with positive real part in U such that $p(0) = (1-c)/(1+c)$ and*

$$(14) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z|^{2(\alpha+\beta)} - \frac{1 - |z|^{2(\alpha+\beta)}}{\alpha + \beta} \left[\frac{zF''(z)}{F'(z)} + (\alpha - 1) \frac{zF'(z)}{F(z)} + \frac{zp'(z)}{p(z) + 1} + 1 - (\alpha + \beta) \right] \right| \leq 1$$

for all $z \in U^*$, then the function F is univalent in U .

P r o o f. Let us consider the function $f \in A$ such that

$$f'(z) = \left(\frac{F(z)}{z}\right)^{\alpha-1} F'(z),$$

where we chose the uniform branch of $\left(\frac{F(z)}{z}\right)^{\alpha-1}$ equal to 1 at the origin, analytic in U . It is easy to see that the function f satisfies the assumption of Theorem 3.2, if F satisfies (14).

R e m a r k. If in Theorem 1.2 the function g analytic in U has the form

$$g(z) = \frac{\alpha}{2as} (1 + p(z)) \frac{zf'(z)}{f(z)},$$

we have the following univalence condition [6].

C O R O L L A R Y 3.1. *Let $a > \frac{1}{2}, s = \alpha + i\beta, \alpha > 0, \beta \in R, k = \frac{a}{\alpha}$ be fixed numbers and let $f \in A, f'(z) \neq 0$ in U . If there exists an analytic function p with positive real part in U such that $p(0) = \frac{2as}{\alpha} - 1$ and*

$$(15) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z|^{2k} - \frac{1 - |z|^{2k}}{k} \left[\frac{zf''(z)}{f'(z)} + \left(\frac{1}{s} - 1 \right) \frac{zf'(z)}{f(z)} + \frac{zp'(z)}{p(z) + 1} + 1 - k \right] \right| \leq 1$$

holds in U , then f is univalent in U .

We remark that the inequalities (14) and (15) have similar form, but in (14) we have $\alpha + \beta \in C$. In the case $\alpha + \beta > 0$ we can expand the condition $|c(\alpha + \beta) + \beta| + |\beta| \leq \alpha + \beta$ which derives from the study of $a_1(t)$ and $w(0, t)$.

We shall present two simple consequences of Corollary 3.1 and for this it is more useful to apply Theorem 3.2. For $c = 0, \alpha + \beta = k, k > 0$, from Theorem 3.2 we get the following one.

T H E O R E M 3.4. *Let $f \in A, k > 0$ and α be a complex number, $|\alpha - k| < k$. If there exists an analytic function p in U , such that $\operatorname{Re} p(z) > 0, p(0) = 1$ and*

$$(16) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z|^{2k} - \frac{1 - |z|^{2k}}{k} \left(\frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{p(z) + 1} + \alpha - k \right) \right| \leq 1$$

for all $z \in U$, then the function F defined by (7) is analytic and univalent in U .

P r o o f. In this case $\operatorname{Re} \left(\frac{k}{\alpha} - 1 \right) > -\frac{1}{2}$ is equivalent to $|\alpha - k| < k$ and from (11) we have

$$|w(0, t)| = \left| \frac{\alpha - k}{k} (1 - e^{-2kt}) \right| < \frac{|\alpha - k|}{k} < 1.$$

COROLLARY 3.2. *Let $f \in A$, $k > 0$, $\alpha \in C$, $|\alpha - k| < k$. If*

$$(17) \quad |f'(z) - 1| < 1, \quad \forall z \in U,$$

then the function F defined by (7) is analytic and univalent in U .

P r o o f. Let us consider the function

$$(18) \quad p(z) = \frac{2}{f'(z)} - 1$$

analytic in U with $p(0) = 1$. By (17), we have $\operatorname{Re} p(z) > 0$ in U . From (18) we get

$$-\frac{zp'(z)}{p(z) + 1} = \frac{zf''(z)}{f'(z)}$$

and, by $|\alpha - k| < k$, we get immediately that the inequality (16) holds in U .

Taking into account Theorem 1.3, we get the following results.

COROLLARY 3.3. *Let $f \in A$, $k > 0$, $\alpha \in C$, $|\alpha - k| < k$. If*

$$|f'(z) - 1| < \frac{2}{\sqrt{5}}, \quad \forall z \in U,$$

then $f \in S^$ and the function F defined by (7) is analytic and univalent in U .*

If we take $k = 1$, from Theorem 3.4 we obtain the following corollary.

COROLLARY 3.4. *Let $f \in A$ and $\alpha \in C$, $|\alpha - 1| < 1$. If there exists an analytic function p with positive real part in U such that $p(0) = 1$ and*

$$(19) \quad \left| \frac{p(z) - 1}{p(z) + 1} |z^2| - (1 - |z|^2) \left(\frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{p(z) + 1} \right) \right| \leq 1 - |\alpha - 1|(1 - |z|^2)$$

for all $z \in U$, then the function F defined by (7) is analytic and univalent in U .

We observe that, if the condition (1) of Theorem 1.1 with $p(0) = 1$ will be replaced by the strong condition (19), then we have not only the univalence of f , but we obtain the univalence for a class of functions F defined by (7).

EXAMPLE. Let $k > 0$, $\alpha \in C$, $|\alpha - k| < k$. Then the function

$$F(z) = z \left[1 + \frac{2\alpha}{3(\alpha + 1)} z - \frac{\alpha}{4(\alpha + 2)} z^2 \right]^{1/\alpha}$$

is analytic and univalent in U .

To prove it consider the function $f \in A$ of the form

$$f(z) = z + \frac{z^2}{3} - \frac{z^3}{12}.$$

So we have $|f'(z) - 1| = \left| \frac{2}{3}z - \frac{1}{4}z^2 \right| \leq \frac{11}{12} < 1$ and from Corollary 3.2 we get that the function F defined by (20) is analytic and univalent in U .

References

- [1] Z. Lewandowski, *On an univalence criterion*, Bull. Acad. Polon. Ser. Sci. Math. 29(1981), 123–126.
- [2] Z. Lewandowski, *Some remarks on univalence criteria*, Ann. Univ. Mariae Curie-Sklodowska 36/37(1982/1983), 87–95.
- [3] Z. Lewandowski, *New remarks on some univalence criteria*, Ann. Univ. Mariae Curie-Sklodowska 41(1987), 43–50.
- [4] P. T. Mocanu, *Some starlikeness conditions for analytic functions*, Rev. Roumaine Math. Pures Appl. 33(1988), 117–124.
- [5] Ch. Pommerenke, *Über die Subordination analytischer Funktionen*, J. Reine Angew. Math. 218(1965), 159–173.
- [6] Ch. Pommerenke, *Univalent Functions*, Vandenhoeck Ruprecht in Göttingen, 1975.

DEPARTAMENT OF MATHEMATICS
 "TRANSILVANIA" UNIVERSITY
 2200 BRAŞOV, ROMANIA

Received March 5, 1995; revised version August 17, 1996.