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ON THE SECOND BOUNDARY-VALUE PROBLEM
FOR THE AIRY EQUATION

1. Introduction
Consider the equation

(1) D3u(z,t) — Dyu(z,t) = 0.

In [3] there has been examined the equation D;u = mD3u which is called
the Airy equation and is a linear version of the Korteweg—de Vries (KdV)
equation. It arises in the description of the slow variation of a wave front
in coordinates moving with the wave. It also describes the propagation of
oscillatory wave packets. In (5], [6] it is proved that equation D,u = D3u is
one of the canonical forms of third order partial differential equations and
it is called the equation with characteristics multiple (see [4], p. 132).

The first boundary value problem (or also called the Cattabriga problem)
for Airy equation has been examined in [2], [4]; moreover, in [3] the Cauchy
problem for this equation has been considered. Papers [9], [10] were devoted
to solve contact problems for the said equation.

This paper concerns the second boundary—value problem for equation
(1) in the domain

D={(z,t)eR*:0<2<1,0<t<T}, T =const.>0.

First, we shall examine properties of some integrals related to equation (1).
Next, we introduce the operator (see [1])

(2) R f(1)] = dit f (t-=7)"°f(r)dr, 0<o<1
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and study some properties of this operator. Then, we reduce the problem
considered to the system of Volterra integral equations and solve it. The
general idea of our reasoning is similar to that in paper [1].

Let us note that, to the best of our knowledge, the second boundary-
value problem for equation (1) has not been examined so far.

2. Fundamental solutions
The fundamental solutions of equation (1) are of the form (see [4], p
133)

(3) W(z,t;y,s) = {gt—s _%Ai[(:z:—y)(t—s _%], ;zz,
(@) V(o ty.s)= {gt — 5)"¥Bil(z — y)(t - 5)73], >
where

(5) Ai(f) = ;\\/f_[l%(g\f %) H"(a\/_ )]

(6) Bi(¢) = :j[ %(M ) -’—%(m“)]

and J, is the Bessel function of the p-th order; Aiis called the Airy function
and Bi the associated Airy function. The functions Ai and Bi are solutions
of the ordinary differential equation (see [4], p. 133)

(7) 2"(€) + §2(6) = 0;

moreover, for these functions the following relations

le

(]

0 +c0
(8) f AQde= =, [AUQdE=T, [ Bie)dE =0
—00 0

hold (see [4], p. 139).
The functions U and V and their derivatives satisfy the following
inequalities (see [2], [4])

(9) |DEU(e, 1, )| < 1o — ylg‘kf_l(t - )—t
(10) |DEV(z,t;y, )| < ea]z —
forz —y>0,k=0,1,...and ¢;,c; = const. > 0, and the mequality
(11) |ID*U(z,t;y,8)] < ea(t — s)~ =n exp[—-C4|:1: - y| (t— s)"%]
forz-y<0,k=0,1,..., and ¢3,c4 = const. > 0.
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3. Airy potentials of first kind
Let us consider the integrals

(12) Nz tip) = [ Wz 40,5)pi(s)ds,

¢
(13) Ja(z,t;0) = fV(:z:,t;O,s)cpg(s)ds,
0

where functions ¢, (t), ¢2(t) are continuous for 0 < ¢ < T'. The integrals J,
J2, have properties similar to those of heat potentials of first kind. We shall
call them the Airy potentials of first kind of the straight line z = 0,
0 <t < T, with the density ¢;, ¢q, respectively. We have the following
result.

THEOREM 1. The Airy potential of first kind J; is of class C* for z # 0
and 0 < t < T and satisfies equation (1); moreover, the relations

27
(14) plm Dit(e,tip1) = -—Sol(t),
(15) z_}{)H;«,D Nz, t01) = *Sol(t)
hold.

Proof. The first part of Theorem 1 is a consequence of estimates (9)
and (11). We prove relation (14). The integral J; can be represented in the
form

(16) Di3i(z, 1) = @1 () - Tu(2, ) + In(a, ),

where

¢
Li(z,t) = f DXU(z,t;0,s)ds,
0

Iy(z,t) = ft DIU(z,1;0,5)[p1(s) — ¢1(1))ds.
Making use of (3), we hav(:a
Li(e,t) = ft (t - )" AV [a(t — 5)~$]ds,
hence, in virtue of (7), we th

Li(z,t) = —% f z(t — s)~ 3Ai[z(t — 5)"3]ds.
0
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Setting z(t — s)~1/3 = £, we have

+o0
L(z,t) =~ [ Ai()ds,
zt"%
hence, using the relation (8), we obtain
. 27
(17) I_H)Igw Ii(z,t) = -3
Due to the continuity of the function ¢,, we can choose the number § in
such a way that

(18) lo1(s) — o1 (D)) < g for |s—1| < 6.
Now, we investigate the behaviour of the integral I,. We have
(19) Io(z, 8 ¢1) = L1(2, 1) + Ina(z, 1),
where
t—6

Ln(@,)= [ DUz, 10,9)p(s) - pa(t)ds,

Inz(z,t) = [ D2U(z,1;0,5)[pr(s) — @1 (2)]ds.
t—6

Making use of estimate (9), we get
-5
Li(z,t)| < 2Myey [ z¥(t—-s)~Hds,
0
where My = sup |p1(t)| for 0 < t < T. Then, for s € [0, — §] we have

H21(z,t)] < 2M1c1T:c%6_%;

therefore the positive number p; = p;(8) can be chosen in such a way that
for z < p; the inequality

(20) o1 (z,1)| <

holds. The integral I;; may be written in the form

N ™

1 4 1, -1
Lo(z,1) = ~3 [ 2(t~ ) ¥ Aile(t - ) 3]ipa(s) — @ (1)]ds.
t—6
Applying the mean—value theorem, we have
—béz

Ina(z,t) = WM[w(eé)‘%lwt — 86) — ¢1(t)]ds,
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where 0 < 6 < 1. Hence, in accordance with (9) and (18), we get

zr ¢
30361 2
therefore, the positive number p; = p2(6) can be chosen in such a way that
for z < py the inequality

€
(21) |L22(2z,1)| < 2

holds. If we now denote p = min(p, p2), then, joinning on (19), (20) -and
(21), we obtain

[L22(z, )| =

?

Iy(z,t)| < e, for z<p.
This means that the integral I, tends to zero, when ¢ — 0,z > 0. Finally,
bearing in mind this result and relations (16), (17), we arrive at equality

(14).
Now, we prove (15). The integral J; can be represented in the form
(22) Dijl(.’l),t, 501) = (,Ol(t) I3(1?,t)+ I4(11,t),

where
i 11

Is(z,t) = [ D2U(z,t0,8)ds, Ii(z,t)= [ D2U(z,1;0,5)[p1(s)—e1(t)]ds.
0 0

Making use of (3), we have
t

Ia(z,t) = [ (t— )7 Ai"[z(t - 5)"$1ds,

hence, in virtue of (7), we get
1t
Iy(z,1) = ~3 [ a(t - s)"3Ai[z(t - 5)"3]ds.
0

Setting z(t — s)~3 = £, we have
:ct_%'
Ia(z,t)= [ Ai(£)ds;

hence, using the relation (8), we obtain
. T
(23) x_’l%)I’I;<0 Ia(x,t) = 5

Now, we examine the behaviour of the integral I,. We have
(24) Li(z,t¢1) = Lu(z,t) + Lia(z, 1),
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where
t—6
Ly (z,t) = f DU(z,1;0, s)[¢1(s) — ¢1(t)]ds,
0

t
La(z,t) = [ DXU(z,%;0,5)[pi(s) — ea(t)]ds.
t—6
Making use of estimate (11), we get

t—6
L (2, )] < 2Maes [ [2[(t = )7 exp[—cala|?(t - 5)~*]ds,
0

where M; = sup | (t)| for 0 < t < T, then setting |z|'/? - (t — 5)~1/¢ = ¢,
we have
|z|1/2.6—1/6

|Lya(z,t)] < 12M1¢3 f Eexp[—C4£3]dE.
Il‘]l/2~t_1/6

As ¢ — 0,z < 0 both integration limits in the last integral tend to zero;
therefore the positive number p3 = p3(6) can be chosen in such a way that
for |z| < ps the inequality

154
(25) La(z,0)[ < 5

holds. The integral 142 may be written in the form

1 4 4 -1
La(z,0) = —3 [ 2(t— ) 3 Aia(t — )" Hlea(s) ~ ea(t))ds.
t—6
Hence, in accordance with (11) and (18), we get

t
[ 1z1(t - 5)7% exp[—cqlz|3 (¢ — 5)~F]ds.
t—§

€

[Laa(z, )] < 33

Putting |z|1/2(t — s)~'/® = ¢, we have

+o0
£
|LIg2(z,t)| < 6c3§ f € exp[—c4£3]dE.
|I|1/2-6_1/6
Because of the relation

400 +o0
S €expl-ca€’lde < [ Eexpl-cut®ldt =
0

lxll/2'6—1/6
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+oo
=c;** [ nexpl-1Pldn = 3¢, *° - 1(2),
0

the positive number py = p4(8) can be chosen in such a way that for |z| < p4
the inequality

€
(26) Le2(2, )| < 5

holds. If we denote p = min(ps, p4), then joinning on (25), (26) and (27), we
obtain

I4(z,t)| < e, for z<p.
This means that the integral I; tends to zero, when z — 0,2 < 0. Finally,

bearing in mind this result and relations (22), (23) we arrive at equality
(15), and the Theorem 1 is proved.

Remark 1. If the function ¢; is continuous, then the relations
(27) hn})DIagjl(xatv<Pl) = Dlzc'jl(()’t;()ol)’ k= 0,1,
hold.

The proof of relations (27) does not cause any difficulty, due to the weak
singularity of the intergrand of the integral J;.

THEOREM 2. The Airy potential of first kind Jo is of class C*° for z > 0,
0 < t < T and satisfies equation (1); moreover, the relations

(28) lim D20y(s, i) = 0,
(29) z_.lé)n;>0 D232($,t;502) = D:Izg:j2(0> t; (102)7 k= 0717
hold.

Proof. The first part of the theorem is a consequence of estimate (10).
We prove relation (28). The integral J, can be represented in the form

(30) D33(z,t;00) = () - Is(z, 1) + Ig(z, 1),

where
t t

Is(z,t) = [ D2V(z,1;0,5)ds, Is(z,t)= [ D2V(,0,s)ps(s)~a(t)]ds.
0 0

Making use of (4), we have

Is(z,t)= [ (t—s)"'Bi"[z(t ~ s)~$]ds,
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hence, in virtue of (7), we get
Is(z,t) = —% ft z(t — s)—%Bi[a:(t — 5)"3]ds.
0
Setting z(t — s)~1/3 = £, we have

Is(z,t) = — fB1 )dt,

zt™ %
hence, using the relation (8), we obtain
(31) lim Is(z,t)=0.

z—0,z>0

By similar arguments to those in the proof of Theorem 1, one can show
that

(32) lim OIG(x,t) =0.

z—0,z>

The formulae (30), (31) and (32) directly imply relation (28).

The proof of relations (29) does not cause any difficulty, due to the weak
singularity of the intergrand of the integral J,. The proof of Theorem 2 is
completed.

4. The operator R,
In this section we prove some lemmas concerning the properties of the
operator R, defined by (2).

LEMMA 1. If the function ¢y is continuous in [0,T], then
27 .
(33) Q1 = Ry/3[31(0, 85 1)) = —=AU0) ¢ (2).
V3
Proof. By definition (2), we have
Q—ift(t )=33,(0, 75 01)d
1_dt0 -7 1( ,7',4/’1) T.
In accordance with (12), we get
d t T 2
Q= pn Of !(t— T)73U(0, 750, s)p1(s)dsdr,

and, by (3), we can write

d

= Ai(0) 7 f f (t = 7)"3(r — 8)" 3 py(s)dsdr.
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Changing the order of integration, we obtain
¢

Q, =Ai(0)% | [ [ t=7)3(r = s)"5dr|pr(s)ds.

Since (see [4], p. 149)
H 2 1 27

J -3 —s)tdr = 7

S

which proves relation (33).

In an entirely similar way we can prove the following lemma.

LEMMA 2. If the function , is continuous in [0,T], then
27
34 Rq/3(T2(0,1; = —Bi(0 t).
(34) 2/3[32(0, %5 1)) 7 (0)p2(2)

Consider now an integral J3 defined by
(35) Js(z,t01) = f U(z,t; 1, s)ps(s)ds,

where the function ¢3(t) is continuous for 0 < ¢ < T.

LEMMA 3. If the function @3 is continuous in [0,T], then

(36) Qs = Ryy3[33(0,8,01)] = f Ka (2, s)ps(s)ds,

where
d 2
Ks(t,8) = 5 f (t—7)73U(0,7;1,s)dr.

Moreover, we have
(37) |Ks (2, 8)] < Ca(t — )73,
where C3 = const. > 0.

Proof. According to the definition (2), we have
¢

d 2
Q=7 Of (t — 7)7333(0, 75 p3)dr.

685
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By definition (35), we obtain
d { | 2
Q= Of of (t — 7)73U(0, 7; 1, s)pa(s)dsdr,
hence changing the order of integration, we get

d Lt X
Q; = = f [f (t_-,-)-su(o,r;1,s)d~r]<p3(.s)ds.

0 s

Thus, we arrive at the relation
t , ¢
Qs = wa(t) limt f (t—7)"3U(1,7;1,s)dr + f Ks(t, s)pa(s)ds.
s 0
To obtain the formula (36) it is sufficient to show that
H 2
(38) lim [ (t—7)73U(0,7;1,5)dr = 0.
Let us denote
t
I = f (t- T)—§u(0,T; 1, s)dr.

Applying the estimate (11), we find

t
|I7] < e3 f (t - 'r)_%(r - s)"% exp[ — —|dr.
: (r—s)%
Using the inequality (see [7], p. 476)
(39) sfeTr < (e A>0, 0<s< oo,

we obtain

t
|E7] < const. [ (t—r)~3dr,
L]

hence |I7| < const.(t — s)¥ which proves the validity of (38). Basing on the
estimate (11), one can find

|U(0,t;1,s)| < const., |AU(0,t;1,s)| < const.|At]|.

Taking into account the above estimates and making use of lemma of Ba-
derko (see [1], p. 1785) we obtain the inequality (37). Thus, the proof of
Lemma 3 is completed.

In the further considerations we will also need the lemma as follows.
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LEMMA 4. If the function ¢, is continuous in [0,T), then
¢
(40) Qs = Rapa[Bi(Ltspn)] = [ Ka(t, s)er(s)ds,
0
where
Ki(t,8) = 9 j(t— r)73U(1,7;0,s)dr
1\ - at J y Ty Yy .

Moreover, we have
(41) Ky (t,8)] < Ca(t - )71,
where C1 = const. > 0.

Proof. By definition (2), we have
d | 2
Q= Of (t=7)750u(1L, 75 1)dr.

In accordance with (12), we get

d L 7 L
Q= dt (‘)f 6[ (t—T1)73U(L, 7;0, 8)p1(s)dsdr.

Changing the order of integration, we obtain

d ([ ¢ 2
Q= yr f [f(t—r ‘3U(1,T;O,s)dr]cp1(s)ds.

0
Thus, we arrive at the relation
t

t
Q= gol(t)li_rilt f (t- T)_%u(l,T;O,S)dT-{- f Ki(t, s)e1(s)ds.
0

s

To obtain the formula (40) it is sufficient to show that
. —2
(42) g_rg ;f (t—7)"5U(1,7;0,8)dr = 0.
Let us denote
Is = f (t-r '%U(I,T;O,s)dr.
Applying the estimate (9), :ve find

i< C [ (t-7)"%r-s)tdr.

687
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Using the equality
H 2 1 1
J@=r)3(r-9)"tdr =Ct- 9™,
S

we obtain |Ig] < C(t — s)1z which proves the validity of (42).
In accordance with (9), we have

|U(1,¢;0,s)| < const.(t — s)'%, |AU(1,¢0,8)| < const.lAt|%(t -s) L

Taking into account the above estimates and making use of lemma of Ba-
derko (see [1], p. 1785) we obtain the inequality (41).

Thus, the proof of Lemma 4 is completed.

In an entirely similar way we can prove the following lemma.

LEMMA 5. If the function ¢y is continuous in [0,T], then

t
(43) Ra/3[32(1,8; 02)) = sz(t,5)<P2(3)dS,
0
where
d 2
Ka(t,s) = e ;f(t—r) 3V(1,7;0,s)dr.

Moreover, we have
11

(44) [Ka(2,8)] < Co(t — )12,
where Cy = const. > 0.

5. Properties of the function W
Now, we proceed to examine the function ‘W given by formula

1 1
W, t;9)= [ [ U, t;y,9)9(y,s)dyds.
0 0

LEMMA 6. If the function g is continuous and satisfies the inequality
lg(z,t)| < My, where My = const. > 0, (z,t) € D, then

t 1 i
(15) RopsWO59)= [ [ [5 [ (¢~ )00, 9)dr oy, sdyds
0 O s

= Wo(t)
Moreover, we have
(46) [wo(t)| < const. Myt?,

1 2
where 3<0<3.
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Proof. The function wy(t) can be represented in the form
a i T 1 2
wo(t) = = [ | [ @=7)73u(0,7;y,5)9(y, s)dydsdr,
0 0 0
hence, changing the order of integration, we find
5 t t 1 ,
wo(t) = o Of J f (t = 7)73U(0, 739, 8)g(y, 5)dydrds.

Let us observe that to derive (45), it is sufficient to prove that
lim,,: Io(t,s) = 0, where

Lit,s)= [ [ (-7)73U0,7;9,5)9(y,s)dydr.

s 0

In view of (11) and of the properties of the function g, we have

[To(t, s)| < const. M, f f (t—r)3(r—s)3

s 0
X exp[—czy%(r - s)_%]dyd'r.
Using the inequality (39), we get

(r— s)_% exp[—czy%(r - s)_%] < const.y'%”(r - s)% %,
where 0 < 0 < % This implies the inequality

¢ 1
|To(t, s)| < const.M, f (t—7)"3(r - s)5 3dr f y~3%dy
s 0

< const. My(t — s)%,

which proves that the integral Io(t, s) tends to zero as s — t.
Let us consider the function

1
g(r,8)= [ U(0,7;y,3)g(y,s)dy.
0
On the basis of the inequality (11), we have
L 1 3 1
|go(T, 8)| < const. M, f (1 — 8)7 3 exp[—c2y? - (1 — 8) 7 %]dy,

0

hence, applying inequality (39), we find
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1
(47) |go(T,8)| < const. M, f y'%”(r—s)‘%‘*%dy < const.Mg(T—s)—%"'%,
0
where 0 < 0 < 2.

Now, we proceed to estimate the function A,go(7, s). It follows from the
mean value theorem that

1
|Argo(T,s)| < const.My|AT| f %’U(O,T + 0AT; y,s)|dy,
0

where 0 < 8 < 1. Hence, in view of (11), we get

1
|Argo(r, 5)] < const. Mg|Ar| [ (r+6AT — 5)"$x
]

X exp[—czy%(r + 0AT — s)_%]dy.
Applying the inequality (39), we obtain

1
|Argo(7, 8)| < const. Mg|Ar| f y_%”(T + 6AT — s)‘%"‘%dy,
0

where 0 < 0 < % Thus, we finally get
(48) |A,go(T, 8)| < const. Mg|AT|* =% (1 — 5)~3+7,
where % <0< %
Let us consider the function
a t
Qo(t8) = 5 f (t — 1)~ % go(r, s)dr.
It follows from (47) and (48) that assumptions of lemma of Baderko (see [1],
p. 1785) are satisfied, thus we may apply the said lemma and get
(49) |Qo(t, s)| < const.(t — s)~1*%.

We readily observe that
t
wo(t) = [ Qo(t,8)ds.
0

Consequently, applying the inequality (49), we arrive at the estimation (46).
Thus, the proof of Lemma 6 is completed.

Now, we proceed to investigate the function W(1,t;g). We prove the
following lemma.
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LEMMA 7. If the function g satisfies the assumptions of Lemma 1, and
|2 g(z,1)] < My, where My = const. > 0, (z,t) € D, then

(50) R2/3[W(11t;g)]: f f ['aa—t f(t—T)_%U(l,T;y,s)dT g(yas)dyds
0 0

8

=W (t)
Moreover, we have
(51) lwy(2)] < const.M,t1s.

Proof. The function w; () can be represented in the form
a t T 1 2
wi(t) = 5 of Of Of (t = 7)75U(L, 73y, 5)g(v, s)dydsdr,
hence, changing the order of integration, we find
9 t t 1 .
wi(t) = PN Of f Of (t—7)"3U(1,7;9,8)9(y, s)dydrds.

Let us observe that to derive (50), it is sufficient to prove that
lim,_,¢ I1(¢,s) = 0, where
t

Lts)= [ [ (t-7)"5U{1,7;y,8)g(y,s)dydr.
8 0

In view of (9) and of the properties of the function g, we have

t 1
[T1(t, )| < const. M, f f (t- T)_%(T - s)'%(l — y)"Tdydr
s 0

t
< const. M, f (t— T)_%(T - s)"%dydr

< const.M,(t — s) ¥,
(

which proves that the integral I,(%, s) tends to zero as s — t.
Let us consider the function

1
a(r,s)= [ W1,7;y,5)9(y,5)dy.
0
On the basis of the inequality (9), we get

1
(52) lg1(7, 8)| < const. M, f (r—s) (1 -y) idy
0
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< const.My(T — s)_%.

Now, we proceed to estimate the function A,q;(7,s). We have
1
Arqi(rys)= [ WA+ AT;y,s) - UL, 759, 9)lg(y, 8)dy.
0

Consider the following expression AU = U(1,7+ AT;y,s) — U(1,7;y,5). In
virtue of the mean value theorem, we obtain

AU = A‘raa—TU.(l, T4 0AT;Y,s),

where 0 < 8 < 1. It is easy to see that AU may be written in the form

FX
AU = —AT@U(I, T+ 0AT;y,38),

hence, we have
1 63
Arqi(T,8) = —AT f W'U(l, T+ 0AT;Y,3)9(y, s)dy.
0
Integrating by parts, we get
92 y=1
Arqi(r,8)= — AT [g(y, 3)8—31((1, T+ 0AT; Y, s)] +
) y=0
2

0 0
y2 u(17 T+ OATa Y, S)a_yg(y’ S)dy -

1
+Ar [ —
rofa

2
= — Aryg(0, s);—!ﬂU(l, T+ 0AT;0,8)+
2

0 0
. U(1, 7+ 6Ar;y, s)a—yg(y, s)dy.

1
+AT | —
I3

On the basis of the assumptions of Lemma 7 and of the inequality (9),
we get
(53) |A-q1(7, )] = const. My|AT|(T + 0AT — 5)~ %
< const. Mg|A7'|%_"(T —5)7e,

where 0 < 0 < %
Let us consider the function

t
@9 =5 [ (-9 dal, o).
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It follows from (52) and (53) that assumptions of lemma of Baderko (see [1],
p. 1785) are satisfied, thus we may apply the said lemma and get

(54) 1Q1(t, 3)| < const.(t — 5)71t 13,

We readily observe that
t
wi(t) = [ Qu(t,s)ds.
0

Consequently, applying the inequality (54), we arrive at the estimation (51).
Thus, the proof of Lemma 7 is completed.

LEMMA 8. If the function g satisfies the assumptions of Lemma 7, then
(55) |wa(t)| < const.M,t%,
where wy(t) = DIW(0,1;9), and 0 < o < 3.

Proof. The function wy(t) can be represented in the form

t

1
wao(t) = [ [ DEU(0,ty,5)g(y,s)dyds.
0 0

On the basis of the inequality (11), we get

t 1
|[ws ()| < const. M, f f (t—s)™? exp[—czy%(t - s)—%]dyds.
0 o
Using (39), we have the inequality

t 1
wa(8)| < comst.M, [ [ y~37(t~ s)"*Fdyds
0 0

t
< const. M, f (t—s)"1t5ds,
0

with 0 < o < 2, which implies the estimate (55). The proof of Lemma 8 is
completed.

6. Formulation of the problem

We pose the following boundary—value problem: find a function u be-
ing in the domain D a solution of equation

(56) Llu(z,t)] = D3u(z,t) — Deu(z,t) = f(z,1)
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belonging to the class Qii’} (D) ﬂ@i’g(ﬁ) and satisfying the following
boundary conditions

(57) u(z,0)=9(z), 0<z<l,
(58) u(0,t) = ¢o(t), 0<t<T,
(59) u(l,t)=¢i(t), 0<t<T,
(60) Diu(0,t) = ¢o(t), O0<t<T,

where ¢;,7 = 0,1,2, and ¢ are given functions satisfying the com-
patibility conditions ¢¢(0) = 9(0), ¢1(0) = (1), $2(0) = %"(0).

We make the following assumptions:

(A.1) The function f is defined and continuous for (z,t) € D, possesses
continuous derivative %ﬁ and satisties the inequalities

| f(2,0) < My, ‘B_féz_t)

< My,

where My is a positive constant.

(A.2) The function ¢;,5 = 0,1,2, are defined and continuous in the
interval [0, T].

(A.3) The function 1 is defined and continuous for z € [0,1], pos-
sesses continuous derivatives ¥(F) k = 1,2,3,4, satisfying the conditions
|¢(k)(w)| <My, k=0,1,2,3,4, where My, is a positive constant.

Let us introduce the function v such that

v(:c,t) = u(a:,t) - ¢(x)’ (.’E,t) € D.

In view of (56) — (60) and assumption (A.3), we get for v the following
boundary value problem

(61) Llv(z, )] = f(z,t) ~ " (z) = g(z,t) in D,
(62) v(z,0) =0, 0<z<1,

(63) v(0,1) = do(t) - $(0) = polt), 0<t<1,
(64) v(L, ) = ¢i(t) - (1) = @u(t), 0<t<1,
(65) D2v(0,1) = ¢a(t) = ¥"(0) = @a(t), 0<t<1.

7. Solution of the problem
We shall look for a solution v of the problem (61)—(65) such that

(66) mv(z,t) = fU(x,t;O,s)ﬂo(s)ds+ fV(z,t;O,s)ﬂl(s)ds
0 0

t
+ [ Wz, 11,5)8x(s)ds — W(z, 5 9),
0
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where
t

1
Wz, t;g)= [ [ Uz ty,9)9(y,5)dyds,
0 o
Bo, B1, B2 are unknown functions, and the functions U and V are given by
the formulae (3) and (4), respectively. The function v, given by formula
(66), satisfies the equation (61) and the initial condition (62). Imposing the
boundary conditions (63)—(64), we get

(67)  mo(t) = Ai(0) [ (t—5)"3Bo(s)ds + Bi(0) [ (t—s)5Bu(s)ds
+ f U(0,; 1, 8)Ba(s)ds — W(0,t; g),

(68) wpi(t) = f'L((l,t;O,s)ﬂo(s)d3+ fV(l,t;O,s)ﬂl(s)ds
0 0

+AY0) [ (t—5)73py(s)ds — W(L,1;9),

and imposing the boundary condition (65), in view of Theorems 1 and 2,
we obtain

27 :
(69)  moa(t) =~ 2 fo(®)+ [ D051, 5)Bu(s)ds ~ DIW(0,555).
0
The equations (67), (68) are the Volterra integral equations of first kind. To
reduce them to the Volterra integral equations of second kind we apply the

operator R;/3 to both sides of them. In accordance with Lemmas 1-5, the
equations (67)—(69) take the form

(70) %Ai(omo(m BRI + 1 fKa(t $)Ba(s)ds = Fo(2),

(71) TAI(O)ﬂg(t)-i- f Ki(t,5)Bo(s)ds + = f Ks(t,8)B1(s)ds = Fy(2),

(72) - —ﬂo(t)+ f Ka(t,)B2(s)ds = Fy(t),
where

t
Ks(t,s) = % f (t- T)_%u(O,T; 1,s)dT,
0
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Ki(t,s) = 2 f (t— )" 3U(1, 750, s)dr
1% - it : y Ty ’

t
Ka(2,8) = gz f (t— T)_%V(I,T;O,S)dT,
0
Ky(t,s) = D2U(0,¢; 1, s),

o 2 1
Fu(t) = 2, [ (t=1)"Spi(r)dr + —Rapa[Wk,ti9)l, k=0,1,
0

1
Fa(t) = ;Diw(O,t;g) + @a(2).

We treat the equation (70—(72) as an algebraic system with respect to func-
tions Bg, B1, B2. The determinant of the system is of this form
2 as 2 D=
W = 0 0 ZAi(0) | = —§Ai(0)Bi(0) #0,

-2 0 0

then, using the Cramer formulas, we obtain

(73) fol) = 5= J Wty )fu(s)ds = R A0)
32 \/—/\1
(74) A+ 357 f Ka(t, s)B2(s)ds + f Ks(t,5)02(s)ds =
= g+ Repy),
(15)  paln)+ L J ¥at,s)u(s)ds + */3:0 J Yalt,s (0 =
\/—/\OFl(t)7
where
1 1 _ A

M=, M=z = .
T A0y "' Bi(0)’ "* Bi(0)
It is easy to see that system (73)—(75) can be written in the form

(76) Bi(t) =Fi()+ > [ Ky(t,s)Bi(s)ds, j=0,1,2.

i=0 0
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From Lemmas 4-6 it follows that (76) is a system of Volterra equations
of second kind with weak singularities. Hence, we can assert that there exists
a solution of the said system of the form

(77) Bit)=Fit)+ Y [ Rt )Fi(s)ds, j=0,1,2,

2
=0

where R;; are resolvent kernels of K-j, ,7=0,1,2.

It is clear that the functions §;,j = 0,1,2, obtained in this way satisfy
the system of integral equations (67)—(69). In accordance with assumptions
(A.1), (A.2) and Lemmas 6 — 8 the said functions are continuous for ¢ €
[0, T]. Substituting these functions into formula (66), we obtain a solution
v of the problem (61) — (65), whence and by the relation

w(z,t) = v(z,t) + ¥(z), (z,t) €D,

we can easily arrive at a solution u of the problem (56)—(60).

As a result of the foregoing considerations we can formulate the following
theorem.

THEOREM 3. If assumptions (A.1)~(A.3) are satisfied, then there exists
a function u € (‘l’i}(D)ﬂCi’ft) (D) which is a solution of the problem (56)—(60).
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