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1. Introduction 
Consider the equation 

(1) Dz
xu{x,t)- Dtu{x,t) = 0 . 

In [3] there has been examined the equation Dtu = mD^u which is called 
the Airy equation and is a linear version of the Korteweg-de Vries (KdV) 
equation. It arises in the description of the slow variation of a wave front 
in coordinates moving with the wave. It also describes the propagation of 
oscillatory wave packets. In [5], [6] it is proved that equation Dtu = D^u is 
one of the canonical forms of third order partial differential equations and 
it is called the equation with characteristics multiple (see [4], p. 132). 

The first boundary value problem (or also called the Cattabriga problem) 
for Airy equation has been examined in [2], [4]; moreover, in [3] the Cauchy 
problem for this equation has been considered. Papers [9], [10] were devoted 
to solve contact problems for the said equation. 

This paper concerns the second boundary-value problem for equation 
(1) in the domain 

D = {(jc, i) G K2 : 0 < X < 1, 0 < t < T}, T = const. > 0. 

First, we shall examine properties of some integrals related to equation (1). 
Next, we introduce the operator (see [1]) 

0 < a < 1 
o 
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and study some properties of this operator. Then, we reduce the problem 
considered to the system of Volterra integral equations and solve it. The 
general idea of our reasoning is similar to that in paper [1]. 

Let us note that , to the best of our knowledge, the second boundary-
value problem for equation (1) has not been examined so far. 

2. Fundamental solutions 
The fundamental solutions of equation (1) are of the form (see [4], p. 

133) 

(3) U(x,t; y , s ) = ! ( t ~ " »)(* " *)"*]> < > 5> 

I 0, t < s 

(4) 

where 
(5) A i ( 0 = 

( t - s ) - * B i [ ( s - y ) ( i - a ) - i ] , t > s, 
0, t < s 

V(x,t-,y,s) = | 

(6) m o = 

3V3 

U ^ M ^ 1 ) ] 3\/3 
and is the Bessel function of the /z-th order; Ai is called the Airy function 
and Bi the associated Airy function. The functions Ai and Bi are solutions 
of the ordinary differential equation (see [4], p. 133) 

(7) z"(0 + f * ( 0 = 0; 

moreover, for these functions the following relations 

2w 0 IT + 

(8) / A t ( £ K = y , / A i ( £ K = 3 , f Bl(i)df = 0 
0 -oo 0 

hold (see [4], p. 139). 
The functions U and V and their derivatives satisfy the following 

inequalities (see [2], [4]) 

(9) \Dk
xU{x,t;y,s)\ < a\x - y f ^ { t - , 

(10) |D£VOM;2/,*)I < c 2 | x - y i 2 4 ^ - s)-2-^, 

for x — y > 0, k = 0 , 1 , . . . and ci, = const. > 0, and the inequality 

(11) |D k
x U(x, t ;y , s ) \ < c3(t - a )" 4 * 1 exp[-c4 |x - y | t ( i -

for x — y < 0, k = 0 ,1 , . . . , and 03,04 = const. > 0. 
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3. Ai ry potent ia ls of f irst kind 
Let us consider the integrals 

t 
(12) 31(x,t-,<p1)= fU(x,t;0,s)<p1(s)ds, 

o 
t 

(13) 32(x,t;<p2) = f V(x,t;0,s)<p2(s)ds, 
o 

where functions <pi(t), <p2(t) are continuous for 0 < t < T. The integrals , 
32, have properties similar to those of heat potentials of first kind. We shall 
call them the Airy potent ia ls of f irst kind of the straight line x = 0, 
0 < t < T, with the density <¿>1, <¿>2, respectively. We have the following 
result. 

T H E O R E M 1. The Airy potential of first kind is of class C ° ° for X / 0 
and 0 < t < T and satisfies equation (1); moreover, the relations 

2 7T 
(14) J i m ^ J x O M ; ¥ > i ) = —3"Vi(0. 

(15) lim i ) = ' ( i ) 

hold. 
P r o o f . The first part of Theorem 1 is a consequence of estimates (9) 

and (11). We prove relation (14). The integral can be represented in the 
form 

(16) D2Mx,t;<p1) = <p1(t)-I1(x,t) + I2(x,t), 
where 

t 
I i (®, t )= / D2

xU(x,t;0,s)ds, 
o 
t 

12(x,t)= J 
0 

Making use of (3), we have 
t 

0 
hence, in virtue of (7), we get 

1 t 
li(x,t) = -~ J x(t - s)~*Ai[x(t - s)~i]ds. 

o 



680 E. Majewska, J. P o p i o l e k 

Setting x(t — s ) - 1 / 3 = we have 
+00 

Ii(®,i) = - / A t t f K , 
xt~i 

hence, using the relation (8), we obtain 
27r 

(17) lim Ii(x,i) = — — . 
x-*0,x>0 o 

Due to the continuity of the function ifi, we can choose the number 6 in 
such a way that 

(18) b i W - V i ( 0 l < I for \s-t\<6. 

Now, we investigate the behaviour of the integral I2. We have 

(19) I 2 0M;Vi) = l2i(®,0 + Iaa(®,<), 
where 

t-s 

I21 (x,t)= J 
0 

t 
I22(a:,*)= J (<)]<*«• 

t—6 
Making use of estimate (9), we get 

t-s 
|I2i(a;,i)| < 2ikf1c1 J zi(t-s)-*ds, 

0 
where Mi = sup |y?i(i)| for 0 < i < T. Then, for 5 G [0, t - 6] we have 

\I21(x,t)\<2M1c1TxU~!i; 

therefore the positive number p\ = pi(S) can be chosen in such a way that 
for x < pi the inequality 

(20) | i 2 i O M ) l < | 

holds. The integral I22 may be written in the form 

1 ' 
122(3,*) = - 3 f x(t - 5)"3 Ai[x(t - - <Pi(t)]ds. 

t-s 
Applying the mean-value theorem, we have 

At» .. 
I 2 2 ( x , t ) = -—rAilxm-Jl^lt - 08) - Vl(t)]ds, 3(00)3 
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where 0 < 0 < 1. Hence, in accordance with (9) and (18), we get 
3 

therefore, the positive number p2 = p2(f>) can be chosen in such a way that 
for x < p2 the inequality 

(21) M * , 0 I < ! 

holds. If we now denote p = min(pi,^2), then, joinning on (19), (20) and 
(21), we obtain 

|I20M)|<£> for x < p. 
This means that the integral I2 tends to zero, when x —• 0, x > 0. Finally, 
bearing in mind this result and relations (16), (17), we arrive at equality 
(14). 

Now, we prove (15). The integral can be represented in the form 
(22) = ^ ( i ) . I 3 ( ® , i ) + I4(x,t), 

where 
t t 

h ( x , t ) = f DlU(x,t-0,s)ds, l4(x,t)= J I)^U(x,t; 0 , 3 ) 1 ^ ) - ^ ) ^ . 

0 0 
Making use of (3), we have 

t 
I3(®,<)= f ( i - « ) _ 1 A i " [ a : ( i - i ) - i ] d 3 , 

0 
hence, in virtue of (7), we get 

1 * 
I3(ar, i) = —— f x(t - s)~*Ax[x(t - s)~3]ds. 

d J 
0 

Setting x(t — s) 3 = we have 

I3(x,t) = / Ai(Odf; 
—00 

hence, using the relation (8), we obtain 

Now, we examine the behaviour of the integral I4. We have 

(24) L j O M ^ I ) = M M H M M ) , 
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where 
t-S 

1 4 1 ( 3 , 0 = f DlU{x,P,0,3)1^(8) - w W d s , 
0 

t 

I42OM) = / 
t-6 

Making use of est imate (11), we get 

t-s 

| l4 i (z ,0 l < 2Mic 3 J |z|(i - s)~5 exp[-c 4|x|2(i -
0 

where M i = sup |y>i(OI for 0 < t < T, then setting jarl1/2 • ( t - s)~1/6 = 
we have 

¡ x f ' i - s - 1 ' « 

\Ui(x,t)\<12MlC3 J { e x p [ - c 4 { 3 ] d { . 

As x —»• 0,a; < 0 both integration l imits in the last integral tend to zero; 
therefore the positive number = pz{6) can be chosen in such a way that 
for | a: | < the inequality 

(25) | l 4 i ( ® , 0 l < | 

holds. The integral I42 may be written in the form 

1 4 

I 42(®, i ) = - 3 J s ( t - « ) ~ * A t [ : c ( i - a ) ~ * ] t o > i ( « ) - ¥ > i ( 0 ] < k -
t-s 

Hence, in accordance with (11) and (18), we get 

t 

1142(3,01 < c 3 2 / | 3 | ( i - 5 ) _ ^ e x p [ - c 4 | x | 5 ( i - 5 ) - i ] d 5 . 
t-s 

Putt ing |x|1/2(i - s ) - 1 / 6 = f , we have 

£ 
| I 4 2 ( 3 , 0 I < 6 C 3 - / £exp[-C4£3 ]d£. 

1*1 v . s - 1 ' 6 

Because of the relation 
+ 0 0 + 0 0 

/ £ e x p [ - C 4 e } d Z < f ( e x p [ - c 4 { 3 } d t = 

|x|1/2.5-1/6 0 
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+ 0 0 

= c4-2 / 3 / 7?exp[-7/3](i7?= i c 4
_ 2 / 3 - r ( | ) , 

0 
the positive number p^ = P4(S) can be chosen in such a way that for |x| < pi 
the inequality 

(26) | I 4 2 0 M ) | < | 

holds. If we denote p = min(/>3,/>4), then joinning on (25), (26) and (27), we 
obtain 

| l4(x,i) | < £, for x < p . 

This means that the integral I4 tends to zero, when a: —• 0, x < 0. Finally, 
bearing in mind this result and relations (22), (23) we arrive at equality 
(15), and the Theorem 1 is proved. 

R e m a r k 1. If the function ip\ is continuous, then the relations 

(27) ]imDk
x31(x,t-<p1) = DkM0,t;<fi), k = 0,1, 

x—(-0 

hold. 
The proof of relations (27) does not cause any difficulty, due to the weak 

singularity of the intergrand of the integral . 

T h e o r e m 2. The Airy potential of first kind 3 2 is of class C00 for x > 0, 
0 < t < T and satisfies equation ( i ) ; moreover, the relations 

(28) lim D2
x32(x,t;<p2) = 0, x—v0,x>0 

(29) lim Dk
x32(x,t-,<p2) = D*32(0,t-,<p2), A = 0,1, CC ̂ Û j X /U 

hold. 

P r o o f . The first part of the theorem is a consequence of estimate (10). 
We prove relation (28). The integral J 2 can be represented in the form 

(30) D2
X32(X, t; cp2) = <p2(t) • I 5 ( a , t) + I 6 ( x , t), 

where 
t t 

I s ( ® , < ) = J D2
xV(x,t-,0,s)ds, h(x,t)= f £>ZV(x,t;0,s)[<p2(s)-<p2(t)]ds. 

0 0 
Making use of (4), we have 

t 
I s ( x , t ) = f (t-s)~1Bi"[x(t-s)-i]ds, 

0 
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hence, in virtue of (7), we get 

1 * 
U(x,t) = -~ f x(t-s)-$Bi[x(t-s)~i]ds. 

3 J 

o 
Setting x(t - 5 ) - 1 / 3 = f , we have 

+ 0 0 

I 5 (x , i ) = - / Bi( f )df , 

hence, using the relation (8), we obtain 

(31) lim I 5 (x , t ) = 0. 

By similar arguments to those in the proof of Theorem 1, one can show 
that 

(32) Urn I 6 ( :M) = 0. 
x—>0,a;>0 

The formulae (30), (31) and (32) directly imply relation (28). 
The proof of relations (29) does not cause any difficulty, due to the weak 

singularity of the intergrand of the integral J2 • The proof of Theorem 2 is 
completed. 

4. T h e operator 
In this section we prove some lemmas concerning the properties of the 

operator TZa defined by (2). 

LEMMA 1. If the function <pi is continuous in [0, T], then 
2ir 

(33) Qx = rc2/3pi ( ( M ; ^ ) ] = — Ai(0)VI(i) . 

P r o o f . By definition (2), we have 

d * 
Qi = j t S (t ~ t ) _ ^ i ( 0 , t ; <pi)dr. 

0 
In accordance with (12), we get 

d t T 

Qi = j t j f (t-r)~3U(0,T;0,s)(p1(s)dsdr, 
0 0 

and, by (3), we can write 

d 1 T 

Q1 = A i ( 0 ) - f J ( t - r ) " i ( r - s y i t p ^ d s d r . 
0 0 
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Changing the order of integration, we obtain 
t t 

0 s 
Since (see [4], p. 149) 

( t - r ) j ( t - S ) 3 dr — -y=, 

s 

it follows that 
2tt d t 

Qi = / 

which proves relation (33). 
In an entirely similar way we can prove the following lemma. 

LEMMA 2. If the function ¡p2 is continuous in [0,T], then 
2ir 

(34) K2/3p2(0, i; <pi)] = -^BiCOj^Ci). 

Consider now an integral J3 defined by 
t 

(35) 33(x,t;<p!)= f U(x,t;l,s)<p3(s)ds, 
0 

where the function <p3(t) is continuous for 0 < t < T. 

LEMMA 3. If the function <p3 is continuous in [0,T], then 
t 

(36) Q3 = ft2/3p3(0,i;v?i)]= f K3(t,s)<p3(s)ds, 

d ' 
where 

K 3 ( M ) = ^ / ( i - r ) - 3 u ( 0 , r ; M ) d r . 
s 

Moreover, we have 

(37) \ M t > s ) \ < C 3 { t - s ) ~ i , 

where C3 = const. > 0. 

P r o o f . According to the definition (2), we have 

d 1 
Qs = dt f (t-T)-h3(0,r;cp3)dr. 
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By definition (35), we obtain 

d 1 T 

0 0 

hence changing the order of integration, we get 

( p 3 ( s ) d s . 

Thus, we arrive at the relation 
t t 

Q3 = ¥*(i ) l im r ( < - r ) - * U ( l , r ; M ) d r + f K 3 ( t , s)<p3(s)ds. 
S—>t J J 

s 0 

To obtain the formula (36) it is sufficient to show that 

t 

( 3 8 ) J i m f ( t - r ) - $ U ( 0 , r ; l , 8 ) d T = 0. 
S — J 

, t r t 

dt o 

t 

s— 

Let us denote 

I7= f ( t - T ) - * U ( 0 , T ; l , s ) d r . 

s 

Applying the estimate (11), we find 

t _ 

\h\ < c 3 f ( t - T ) - i ( r - s ) ~ i e x p[ ^ J r f r . 

Using the inequality (see [7], p. 476) 

(39) sxe~x < (Ae_ 1)A A > 0, 0 < s < oo, 

we obtain 
t 

|I7| < const. J (t - r)~3dr, 

s 

hence 11-?-j < const.(t - which proves the validity of (38). Basing on the 
estimate (11), one can find 

|U(0,t; 1,5)| < const., |AtU(0,i; 1, s)| < const.| Ai|. 

Taking into account the above estimates and making use of lemma of Ba-
derko (see [1], p. 1785) we obtain the inequality (37). Thus, the proof of 
Lemma 3 is completed. 

In the further considerations we will also need the lemma as follows. 
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LEMMA 4. If the function <pi is continuous in [0,T], then 
t 

(40) Q4 = ft2/3pi(M;vi)]= f Mt,s)<f i (s)ds , 
o 

where 

Ki(t,*)=^ f (t-T)-*U(l,r;0,s)dr. 
s 

Moreover, we Aaue 
(41) I K x ^ ^ l ^ C x i i - s ) " ^ , 

where C\ — const. > 0. 

P r o o f . By definition (2), we have 

d 1 
Q* = d i f ~ ^MhTW^dT. 

o 
In accordance with (12), we get 

d 1 T 

Q4 = dt f f 0 0 
Changing the order of integration, we obtain 

(pi(s)ds. ^ = I I (t-r)-*U(l,T;0,s)dT dt 
0 u s 

Thus, we arrive at the relation 
t t 

Q4 = ¥>i(i)lim f (t-r)-iU(l,r;0,s)dT+ f K1(t,s)<p1(s)ds. 
s 0 

To obtain the formula (40) it is sufficient to show that 
t 

(42) lim f (t — r)~3U(1, r ; 0, s)dr = 0. 
s 

Let us denote 
t 

l8= J (t — t)~3U(1,r; 0 ,s)dr . 
s 

Applying the estimate (9), we find 
t 

|Is| < C / ( f - r ) - * ( r - a ) - * d r . 
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Using the equality 
t 

J (t - r ) ~ 3 ( r - s)~*dT = C(t - , 
s 

we obtain |Is[ < C(t — s)™ which proves the validity of (42). 
In accordance with (9), we have 

|U(1, i; 0,s)| < const.(i - s ) - ? , |A tU(l,i;0,a)| < const.|Ai|i(i - a ) - 1 . 

Taking into account the above estimates and making use of lemma of Ba-
derko (see [1], p. 1785) we obtain the inequality (41). 

Thus, the proof of Lemma 4 is completed. 
In an entirely similar way we can prove the following lemma. 

LEMMA 5. If the function <p2 is continuous in [0,T], then 
t 

(43) n2,3p2(M;¥>2)]= / K2(t,s)cp2(s)ds, 
0 

where 

K2(M)=|- f (t-T)-IV(l,r;0,s)dr. 
s 

Moreover, we have 

(44) | K 2 ( M ) | < C 2 ( i - s ) - ^ , 

where C2 = const. > 0. 

5. Properties of the function W 
Now, we proceed to examine the function W given by formula 

t l 
W(x,t;g)= f f U(x,t;y,s)g(y,s)dyds. 

o o 

LEMMA 6. If the function g is continuous and satisfies the inequality 
|<7(a:,i)| < Mg, where Mg = const. > 0, (x, t ) € D, then 

t 1 r, t 
(45) n2/3[W(0,t;g)}= J f [ - J (t - r ) " h l ( 0 , r; y, s)dr]g(y, s)dyds 

0 0 s 

= w0(i). 

Moreover, we have 

(46) |w0(i)l < const. Mgt%, 

where | < a < 
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P r o o f . The function Wo(t) can be represented in the form 
Q t T 1 ^ 

wo(t) = ^ f J J (t-r)-^U(0,T;y,s)g(y,s)dydsdT, 
0 0 0 

hence, changing the order of integration, we find 
t t l 

I f (t-T)-*U(0,T;y,s)g(y,s)dydrds. 6t 
0 s 0 

Let us observe that to derive (45), it is sufficient to prove that 
l i m ^ i Io(i, s) = 0, where 

t l 

Io(t,s)= J J ( t - r ) - i U { 0 , T ; y , s ) g ( y , s ) d y d r . 
s 0 

In view of (11) and of the properties of the function g, we have 
t l 

| Io(M)| < const.M5 f J (i-r)_t(r-s)-3 
s 0 

3 1 
x exp[-C2j/2(r — s)~i]dydr. 

Using the inequality (39), we get 
(r - exp[-C2?/5(r — < const.t/~2<r(r - s ) ^ - ^ , 

2 3' where 0 < a < | . This implies the inequality 

|Io(i,*)| < const. Affl J (t-T)-i(r-s)i~$dT f y~%ady 
s 0 

< const .Mg(t — s) 2 , 

which proves that the integral Io(i, 5) tends to zero as s t. 
Let us consider the function 

1 
?o(-r,s)= J U(0 ,T- ,y , s )g(y ,s )dy . 

0 
On the basis of the inequality (11), we have 

1 
ko(r, 5)| < const,Mg f (t - s)~i exp[-c2y% • (r - s)~?]dy, 

0 
hence, applying inequality (39), we find 
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1 
(47) | g o ( T , < const.Mg J < c o n s t . , 

o 

where 0 < a < |. 
Now, we proceed to estimate the function ATqo(r, s). It follows from the 

mean value theorem that 
1 d 

—U(O,r + 0Ar-y,s) |ATg0(7",-s)| < const.M31At| J 

o 
where 0 < 9 < 1. Hence, in view of (11), we get 

l 
|ATg0(i",-s)| < const.Ms|Ar| J (t + 0Ar -

dy, 

o 
3 

x e x p [ - c 2 y 2 ( r + OAT - s) *]dy. 

Applying the inequality (39), we obtain 
l 

3 , 

|AT®>(r,«)| < const.Mfl|Ar| J y~^(r + 0Ar - a)"Hf dy, 

where 0 < a < |. Thus, we finally get 3 • 

(48) |AT<Zo(r,s)| < const.M f l|Ar|1-i(r -

where ^ < a < |. 
Let us consider the function 

d 1 2 
Qo{t,s) = — f (T-r)-*q0(T,s)dr. 

s 

It follows from (47) and (48) that assumptions of lemma of Baderko (see [1], 
p. 1785) are satisfied, thus we may apply the said lemma and get 

(49) \Q0(t, s)| < const.(i - s ) " 1 + t . 

We readily observe that 
< 

wo(0 = J Qo(t,s)ds. 
o 

Consequently, applying the inequality (49), we arrive at the estimation (46). 
Thus, the proof of Lemma 6 is completed. 

Now, we proceed to investigate the function W(l , t; g). We prove the 
following lemma. 
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g(y,s)dyds 

L E M M A 7 . If the function g satisfies the assumptions of Lemma 1, and 
Isj'K'M)! < Mg, where Mg = const. > 0, (x,t) G D, then 

t 1 T Q t 

(50) n2/3[W(l,t;g)}= f f - f (t - r)-iU(l,r;y,s)dT 
0 0 a 

Moreover, we have 

(51) |wi(i) | < const.Mgt™. 

P r o o f . The function Wi (/) can be represented in the form 
Q t T 1 ^ 

W l ^ = d t - f J f (t-T)~%U(l,T-,y,s)g(y,s)dydsdT, 
0 0 0 

hence, changing the order of integration, we find 

d 1 t 1 2 W l ^ = d t f f f (t-T)-%U(l,T;y,s)g(y,s)dydTds. 
0 a 0 

Let us observe that to derive (50), it is sufficient to prove that 
linis-^i I i ( i , s) = 0, where 

t l 
Ii(*,*)= f J (t-T)-%U(l,T;y,s)g(y,s)dydT. 

a 0 

In view of (9) and of the properties of the function g, we have 
t l 

| I i ( M ) l < const.M3 J J (t - r ) ~ 3 ( r - - y)~*dydr 
a 0 

t 

/
2 1 

(t - r)_3(r _ s)~*dydr 
s 

< const .Mg(t - s)™, 

which proves that the integral I i ( i , s ) tends to zero as s —* t. 
Let us consider the function 

l 
qi(r,s)= f U(1 ,T;y,s)g(y,s)dy. 

o 
On the basis of the inequality (9), we get 

l 
(52) k i ( r , s ) | < const,Mg J ( r - a ) " * ( l - y)~Uy 
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< const.Mg(r — s ) - * . 

Now, we proceed to estimate the function A T gi ( r , s). We have 
l 

A T ? i ( r , s ) = J [U ( l , r + Ar-,y,s)-U(l,T-y,s)]g(y,s)dy. 
o 

Consider the following expression AU = U(l , r + AT; y, 5) - U( l , r ; y, 5). In 
virtue of the mean value theorem, we obtain 

a 
A U = A T — t l ( L , r + 6 AT; y, s), 

where 0 < 6 < 1. It is easy to see that AU may be written in the form 

d3 

A U = -AT-^U{1, T + 9AT; y, s), 

hence, we have 
1 

, (T ê  — — A t f 
dy3 

r d3 

ATqi{T,s) = -AT J -^U(1,T + 0AT;y,s)g(y,s)dy. 
0 

Integrating by parts, we get 

AT<7i(r, s) = - AT 
d2 

g(y,s)-^U(l,T + 0AT;y,s) 
3/=l 

+ 
y=0 

1 d2 d 
+ AT f —U(l,T + 0AT-,y,s)— g(y,s)dy = 

d2 

= - AT9(0,S)-^U(1,T + 6AT;0,S)+ 

1 d2 d + A t I + OAT-,y,s)—g(y,s)dy. 

On the basis of the assumptions of Lemma 7 and of the inequality (9), 
we get 

(53) |A T gi ( r , s ) | = const. M9\AT\(T + 6AT -

< const. Mg \AT\^-"{T -

where 0 < a < 
Let us consider the function 

9 r _ 2 
Qi(t,s)=0i J ( t - y ) *qi(y,s)dy. 
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It follows from (52) and (53) that assumptions of lemma of Baderko (see [1], 
p. 1785) are satisfied, thus we may apply the said lemma and get 

(54) |<2i(f,a)l < cons t . ( f -

We readily observe that 
t 

wi ( t ) = J Q1(t,s)ds. 
0 

Consequently, applying the inequality (54), we arrive at the estimation (51). 
Thus, the proof of Lemma 7 is completed. 

LEMMA 8. If the function g satisfies the assumptions of Lemma 7, then 

(55) |w2(i) | < const .M a i*, 

where w2(t) = D2
XW(0, t; g), and 0 < a < § . 

P r o o f . The function w 2 ( t ) can be represented in the form 
t 1 

w2(t)= f f DlU(0,t;y,s)g(y,s)dyds. 
0 0 

On the basis of the inequality (11), we get 

t 1 

|w2( i) | < const.Mg J f (t - s)-1 exp[-c2i/5(i - s)~^]dyds. 
0 0 

Using (39), we have the inequality 

t 1 

|w2(i) | < const.Ma f J y~^(t - s)~1+%dyds 
0 0 

t 
< c o n s t , M g f (t — s)~1+*ds, 

0 

with 0 < a < | , which implies the estimate (55). The proof of Lemma 8 is 
completed. 

6. Formulation of the problem 
We pose the following boundary-value problem: find a function u be-

ing in the domain D a solution of equation 

(56) ¿ [« ( s , t)] = D3
xU(X, t) - Dtu{x, t ) = f ( x , t ) 
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belonging to the class ^¿CD)n€2 x '°( D) and satisfying the following 
boundary conditions 

(57) u(x,0) = i>(x), 0 < z < l , 
(58) u(0, t) = <f>o(t), 0 < i < T, 
(59) « ( 1 , 0 = 0 < i < T , 
(60) D2xU( 0, t) = <J>2(t), 0 <t<T, 
where <j>j,j = 0 ,1 ,2 , and ip are given functions satisfying the com-
patibility conditions 0O(0) = V(0), 0i (° ) = ^(1), <f>2{0) = ^"(0) . 

We make the following assumptions: 
( A . l ) The function / is defined and continuous for (x,t) G D, possesses 

continuous derivative and satisties the inequalities 

\f(x,t)\<Mf, 
where Mf is a positive constant. 

(A.2) The function <pj,j = 0 ,1 ,2 , are defined and continuous in the 
interval [0,T]. 

(A.3) The function tp is defined and continuous for x G [0,1], pos-
sesses continuous derivatives ip(h\ k = 1 ,2 ,3 ,4 , satisfying the conditions 
\4>(k)(x)\ < Mf, k = 0 ,1 ,2 ,3 ,4 , where M$ is a positive constant. 

Let us introduce the function v such that 

v(x,t) = u(x,t) - ip(x), (x,t) G D. 
In view of (56) - (60) and assumption (A.3), we get for v the following 

boundary value problem 

(61) L[v(x,t)] = f(x,t)-tl>'"(x) = g(x,t) in D, 
(62) t;(s,0) = 0, 0 < x < 1, 
(63) »(0, t) = M^ ~ V»(0) = <Po(t), 0 < / < 1, 
(64) « ( 1 , 0 = 0 1 ( 0 - ^ ( 1 ) ^ 1 ( 0 . 0 < i < 1, 
(65) D2xV{0,0 = ^2(0 - </>"(0) = <p2(t), 0 < t < 1. 

7. Solution of the problem 
We shall look for a solution v of the problem (61)-(65) such that 

t t 
(66) nv(x, 0 = J U(x,t;0,s)/30(s)ds+ J V(x,t;0,s)/31(s)ds 

0 0 
t 

+ f U(x,t;l,s)fc(s)ds-W(x,t;g), 
o 

df(x,t) 
dx <Mf, 
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where 
t 1 W(x,t;g)= J f U(x,t;y,s)g(y,s)dyds, 

o o 
00,01,^2 are unknown functions, and the functions U and V are given by 
the formulae (3) and (4), respectively. The function v, given by formula 
(66), satisfies the equation (61) and the initial condition (62). Imposing the 
boundary conditions (63)-(64), we get 

t t 
(67) 7T^o(i) = Av(o) f (t-s)-3(3o(s)ds + m(0) f (t - s^^^sjds 

0 0 
t + fU(O,t;l,s)02(s)ds-W(O,t;g), 

o 
t t (68) r<p1(t)= f U(l,t;O,s)0o(s)ds + f V(l,t; O,s)0i(s)ds 

0 0 
t + Ai(0) f (t-s)-i02(s)ds-W(l,t;ff), 

o 

and imposing the boundary condition (65), in view of Theorems 1 and 2, 
we obtain 

(69) ^2(i) = -— 0o(t)+ f D 2
xll(O,t;l,s)02(s)ds-B 2

xW(O,t;g). 
3 o 

The equations (67), (68) are the Volterra integral equations of first kind. To 
reduce them to the Volterra integral equations of second kind we apply the 
operator IZ2/3 to both sides of them. In accordance with Lemmas 1-5, the 
equations (67)-(69) take the form 

(70) -^Ai(0)A,(<) + -^Bi(0)/?!(i) + i / K3(t,s)02(s)ds = F0(t), 

(71) -j=Ax(0)02{t) + ^ f K1(t,s)0o(s)ds+1 f K2(t,3)0^3 = T^t), 
v 0 0 

(72) - ( i) + - J K 4 ( t , s ) 0 2 ( s ) d s = f 2 ( t ) , 
O IT 0 

where 

/ ( f - r ) - * U ( 0 , r ; M ) < i r , 
0 
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r) 4 

Ki(t,s)=- f (t-r)-iU(l,r;0,s)dT, 
o 

K 2( i , 5) = ^ f (t - r ) ~ 5 V ( l , r ; 0,s)dr, 8t 
u 

K4(t ,s) = £ 2
x U(0, t ; l , s ) , 

0 v 1 
T*(<) =Qi Si*- r)~^M-r)dr + ~n2/3[W(k, f; <?)], k = 0,1, 

?2(t)=-D2
xW(0,P,g) + <p2(t). 

7r 

We treat the equation (70-(72) as an algebraic system with respect to func-
tions (3q, Pi, 02. The determinant of the system is of this form 

W = 
^ A i ( O ) ^ B i ( O ) 0 

0 —Ai(0) V3 0 
0 0 

then, using the Cramer formulas, we obtain 
t 

2tt 

= - -At(0)Bt(0) ± 0, 

(73) 

(74) 

A > / K4(t,s)(32(s)ds = -h2(t), 

01(0+^ f K4(t,s)/32(s)ds+^ j K3(t,s)(32(s)ds = 
0 0 

= ^ T o ( 0 + 

(75) + J K1(t,s)/30(s)ds+^- J K2(t,s)p1(s)ds = 
2tt 

V3A0 Mt), 
where 

A 0 
1 _ A i ( 0 ) 

A1 — 5777TT» 2 ~ Ai(0) ' 1 Bi(0)' J Bi(0)' 

It is easy to see that system (73)-(75) can be written in the form 

2 t 
(76) = + £ fKij(t,s)/3i(s)ds, j — 0,1,2. 

i=0 0 
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From Lemmas 4-6 it follows that (76) is a system of Volterra equations 
of second kind with weak singularities. Hence, we can assert that there exists 
a solution of the said system of the form 

2 t 

(77) P j ( t ) = f j ( t ) + Y , J X i j ( t , s ) J i ( s ) d s , j = 0,1,2, 
j =0 0 

where are resolvent kernels of K,j, i,j = 0,1,2. 
It is clear that the functions /3j,j = 0,1,2, obtained in this way satisfy 

the system of integral equations (67)-(69). In accordance with assumptions 
(A . l ) , (A.2) and Lemmas 6 - 8 the said functions are continuous for t € 
[0,T], Substituting these functions into formula (66), we obtain a solution 
v of the problem (61) - (65), whence and by the relation 

u(x,t) = v(x,t) + i>(x), (x,t)e 2>, 

we can easily arrive at a solution u of the problem (56)-(60). 
As a result of the foregoing considerations we can formulate the following 

theorem. 

T H E O R E M 3 . If assumptions ( A . 1 ) - ( A . 3 ) are satisfied, then there exists 
a function u G C ^ ^ ( D ) f l C ^ ( D ) which is a solution of the problem (56)-(60). 
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