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ON GLOBAL SOLUTIONS OF TRANSLATION EQUATION 

Various actions of groups and semigroups on sets are used in mathe-
matics and its applications (see for example [5], [4]). In several papers such 
actions were generalized to actions of some classes of groupoids on sets. 
Partial groupoids and partial actions were also considered. 

In this note we are going to explain, that for operations defined every-
where only the case of associative groupoids, i.e. semigroups, is essential. 
Our observations can also be helpful in the case of partial functions, but it 
will not be the subject in this note. 

We will apply here standard notation and terminology, as for example in 
[1], [6], [9]. Let (G, •), or simply G, represent a groupoid. If the multiplication 
in G has the neutral element then this element will be denoted by e. 

Let X be a nonempty set. By a generalized action of G on X we will 
mean here any function o : X X G —>• X satisfying the following equation 
(1) x o (a • b) = (x o a) o b for any x G X and any a,b £ G. 

If G has the neutral element and in addition we have 
(2) x o e = x for any x G X 
then we will say that o is a standard action of G on X. For standard actions 
of groups and semigroups on sets see for example [6], [4]. 

The equation 1, known as the right translation equation, was studied as 
a particular functional equation for example in [7], [8]. These investigations 
were continued for example in [2], [3]. 

Immediately from the definition we obtain the following observation 
about lifting of generalized actions. 

PROPOSITION 1. Let <j> be a homomorphism from a groupoid G into a 
groupoid H and let of be a generalized action of H on a nonempty set X. 
Then the formula 
(3) x o g = x o' <f>(g) for any x G X and g G G 
defines a generalized action of G on X. m 
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Let G be a groupoid and let = s be the intersection of all congruences 
= on G, such that the factor groupoid G/ = is a semigroup. Because the 
class of all semigroups is a variety of groupoids, (defined by the identity 
a • (b • c) — (a • b) • c), then the factor groupoid G/ = s is a semigroup as 
a subdirect product of semigroups. By definition it's clear that = s is the 
smallest congruence on G such that the factor groupoid is a semigroup. 

The semigroup G / = s , mentioned above, is very important for our further 
considerations. It will be represented by Gs and the natural homomorphism 
of G onto Gs will be denoted by <f>s. Now we are ready to formulate our 
main result. 

THEOREM 2. Let G be a groupoid and X a nonemtpy set. Then any gen-
eralized action of G on X is induced by a generalized action of Gs on X 
and homomorphism <f>s, with help of formula (3). 

P r o o f . Let o : I x G I be a generalized action of G on X. Let = 0 

be the equivalence relation on G given by the rule: 

(4) a =o b if and only if x o a = x o b for any x 6 X. 

Then = 0 is a congruence on G. Indeed, let a ,6,c € G be such that a =0 b 
and let x € X. Then by the formula 1 we have 

x o (a • c) = (x o a) o c = (x o b) o c = x o (b • c) 

and 
x o (c • a) = (x o c) o a = (x o c) o b = x o (c • b). 

Hence, by definition, ac =0 be and ca =0 cb. 
Let a be the natural homomorphism of G onto G/ = 0 - If we put 

(5) x o" a(a) = x o a for any x 6 X and a € G 

then from the definition of the relation = 0 we have that o" is a well defined 
function. This immediately implies that o" is a generalized action of G/ = 0 

on X. 
Now let a, b, c € G be arbitrary, and x € X. Then by formula 1 we have 

x o ((a • b) • c) = (x o (a • b)) o c = ((x o a) o b) o c. 

and 
x o (a • (b • c)) = (x o a) o (b • c) = ((x o a) o b) o c. 

In this way we see that 
(a • b) • c =0 a • (b • c). 

This means that the factor algebra Gj = 0 is a semigroup. Hence by definition 
there exists a homomorphism /? : Gs —• G/ = 0 such that a(a) = j3(4>s(a)) 
for any a € G. 
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Let us put 

x o' 4>s(a) = x o" f3(<f>s(a)) — x o a for any x G X and cf>(a) G Gs. 

Immediate calculation shows that o' is a generalized action of G s on X . 
Moreover this action and o are connected by formula 3. This completes the 
proof. • 

C O R O L L A R Y 3 . Let G be a groupoid and X a nonemtpy set. Then the 
homomorphism <j)s induces a one to one correspondence between generalized 
actions of G on X and generalized actions of the semigroup Gs on X. m 

The result below concerns a connection between generalized and stan-
dard actions of monoids on sets. 

T H E O R E M 4 . Let X be a nonempty set and G be a monoid. Then any 
generalized action of G on X is uniquely determined by an idempotent map 
e = e2 : X —> X and a standard action of G on the set e(X). 

P r o o f . Let o be a generalized action of G on X. Let us put e(x) = x oe 
for all x G X. Clearly e = e2. Let us also put Y = e(X) — X o e. 

If y G Y then by definition y = x o e for some x G X. Then for any g G G 
we have 

y o g — (x o e) o g = x o ( e • g) = x o (g • e) = (x o g) o e G Y , 

hence Y is G-invariant. The equality e = e2 implies that the restriction of o 
t o Y x G satisfies conditions 1 and 2. Hence it is a standard action of G on Y. 

Now let e : X —> X be an idempotent map and let o be a standard action 
of G on the set e(X). Let us extend the operation o to X x G by the formula 

x o g = (e(x)) o g for all x G X, g G G. 

It is easy to calculate that this extension of the map o is a generalized action 
of G on X. From such considerations the result follows. • 

Now we will exhibite that for decomposition theorems standard actions of 
monoids are essential. For this let us agree that G is a monoid, o its general-
ized action on a nonempty set X, and Y = Xoe. From the above theorem we 
know that the action of G restricted to Y x G is a standard action. As usual 
let us agre that a subset Z C X is G-invariant if ZoG C Z and is e-closedif 
it is G-invariant and xoe G Z implies x G Z for any x G X. Further let L{Y) 
denotes the set of all G-invariant subsets of Y and L(X) the set of all e-closed 
subsets of X. Clearly L(Y) and L(X) are complete lattices under inclusion. 

T H E O R E M 5 . Under the above notation the map p : L(X) —»• L(Y) 
given by: p(Z) = Z fl Y is a lattice isomorphism. The map p~1 is given 
by: p~\U) = {x£X;xoeeU}. 
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P r o o f . Because F is a G-invariant subset of X then clearly p is a homo-
morphism of the lattice L(X) into the lattice L(Y). Let U Ç V be e-closed 
subsets of X such that p(U) = p(V). If v G V then by suitable definitions 
voe G VdY = p(V) Then by assumption voe 6 p(U), hence v G U because 
U is e-closed. This means that U = V and p is an injective map. 

Now if U C Y is G-invariant let us put f(U) = {x € X; x o e G U}. Be-
cause e is the neutral element of multiplication in G then direct calculation 
gives that 7(£7) is an e-closed subset of X and p i j i U ) ) = U. This means 
that p is a surjective map, hence an isomorphism, and p~l = 7 . • 

Results presented in this note are especially useful in the case, when G 
is a groupoid such that Gs is a group. In this case, according to [6], one can 
apply the standard decomposition of the set Y = X o e into Gs-orbits and 
then lift this decomposition to X by Theorem 5. In this way one can obtain 
a generalization and simplification of many results from [2], [3]. 
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