DEMONSTRATIO MATHEMATICA
Vol. XXIX No 3 1996

Jan Krempa
ON GLOBAL SOLUTIONS OF TRANSLATION EQUATION

Various actions of groups and semigroups on sets are used in mathe-
matics and its applications (see for example [5], [4]). In several papers such
actions were generalized to actions of some classes of groupoids on sets.
Partial groupoids and partial actions were also considered.

In this note we are going to explain, that for operations defined every-
where only the case of associative groupoids, i.e. semigroups, is essential.
Our observations can also be helpful in the case of partial functions, but it
will not be the subject in this note.

We will apply here standard notation and terminology, as for example in
(1], [6], [9]. Let (G, -), or simply G, represent a groupoid. If the multiplication
in G has the neutral element then this element will be denoted by e.

Let X be a nonempty set. By a generalized action of G on X we will
mean here any function o : X X G — X satisfying the following equation
(1) zo(a-b)y=(zoa)obforany z € X and any a,b € G.

If G has the neutral element and in addition we have
(2) zoe=gz foranyz € X
then we will say that o is a standard action of G on X. For standard actions
of groups and semigroups on sets see for example (6], {4].

The equation 1, known as the right translation equation, was studied as
a particular functional equation for example in [7], [8]. These investigations
were continued for example in [2], [3].

Immediately from the definition we obtain the following observation
about lifting of generalized actions.

ProrosITION 1. Let ¢ be a homomorphism from a groupoid G into a
groupoid H and let o' be a generalized action of H on a nonempty set X.
Then the formula

(3) zog==z0 ¢(g) foranyz € X andg € G
defines a generalized action of G on X. m
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Let G be a groupoid and let =; be the intersection of all congruences
= on G, such that the factor groupoid G/ = is a semigroup. Because the
class of all semigroups is a variety of groupoids, (defined by the identity
a-(b-c)=1(a-b)-c), then the factor groupoid G/ =; is a semigroup as
a subdirect product of semigroups. By definition it’s clear that =, is the
smallest congruence on G such that the factor groupoid is a semigroup.

The semigroup G/ =;, mentioned above, is very important for our further
considerations. It will be represented by G5 and the natural homomorphism
of G onto G will be denoted by ¢;. Now we are ready to formulate our
main result.

THEOREM 2. Let G be a groupoid and X a nonemipy set. Then any gen-
eralized action of G on X s induced by a generalized action of G; on X
and homomorphism ¢, with help of formula (3).

Proof. Let o : X X G — X be a generalized action of G on X. Let =,
be the equivalence relation on G given by the rule:

(4) a=,bif and only if zoa =z ob for any z € X.

Then =, is a congruence on G. Indeed, let a,b,c € G be such that a =, b

and let ¢ € X. Then by the formula 1 we have
zo(a-¢)=(zoa)oc=(zob)oc=zo(b-c)

and
zo(c-a)=(zocjoa=(zoc)ob==zo(c-b).

Hence, by definition, ac =, be and ce =, cb.

Let o be the natural homomorphism of G onto G/ =,. If we put
(5) zo"o(a)=zoaforanyz € X anda € G

then from the definition of the relation =, we have that o” is a well defined
function. This immediately implies that o is a generalized action of G/ =,
on X.
Now let a,b, ¢ € G be arbitrary, and ¢ € X. Then by formula 1 we have

zo((a-b)-c)=(zo(a-b))oc=((zoa)ob)oc.
and

zo(a-(b-0)=(z0a)o(b-c) = ((woa)ob)oc.
In this way we see that

(a-b)-c=oa-(b-c).

This means that the factor algebra G/ =, is a semigroup. Hence by definition
there exists a homomorphism § : G5 — G/ =, such that o(a) = B(¢,(a))
for any a € G.
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Let us put
z o ¢y(a) =z 0" B(¢s(a)) =z oafor any z € X and ¢(a) € G;.

Immediate calculation shows that o’ is a generalized action of G5 on X.
Moreover this action and o are connected by formula 3. This completes the
proof. =m

COROLLARY 3. Let G be a groupoid and X a nonemtpy set. Then the
homomorphism ¢, induces a one to one correspondence between generalized
actions of G on X and generalized actions of the semigroup G5 on X. =

The result below concerns a connection between generalized and stan-
dard actions of monoids on sets.

THEOREM 4. Let X be a nonempty set and G be a monoid. Then any
generalized action of G on X is uniquely determined by an idempotent map
e=¢€: X — X and a standard action of G on the set ¢(X).

Proof. Let o be a generalized action of G on X. Let us put ¢(z) = zoe
for all z € X. Clearly € = €2. Let us also put ¥ = ¢(X) = X oe.

If y € Y then by definition y = zoe for some z € X. Then for any g € G
we have

yog=(zoe)og=zo(e-g)=xz0(g-e)=(z0g)oecy,
hence Y is G-invariant. The equality e = e? implies that the restriction of o
to Y x G satisfies conditions 1 and 2. Hence it is a standard action of Gon Y.

Now let ¢ : X — X be an idempotent map and let o be a standard action
of G on the set €(X). Let us extend the operation o to X X G by the formula

zog=(e(z))ogforallze X, ge (.

It is easy to calculate that this extension of the map o is a generalized action
of G on X. From such considerations the result follows. =

Now we will exhibite that for decomposition theorems standard actions of
monoids are essential. For this let us agree that G is a monoid, o its general-
ized action on a nonempty set X, and Y = X oe. From the above theorem we
know that the action of G restricted to Y X GG is a standard action. As usual
let us agre that a subset Z C X is G-invariantif ZoG C Z and is e-closed if
it is G-invariant and zoe € Z implies z € Z for any z € X. Further let L(Y')
denotes the set of all G-invariant subsets of ¥ and L(X ) the set of all e-closed
subsets of X. Clearly L(Y') and L(X) are complete lattices under inclusion.

THEOREM 5. Under the above notation the map p : L(X) — L(Y)
given by: p(Z) = Z NY is a lattice isomorphism. The map p~! is given
by: p~(U)={z € X;z20e € U}.
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Proof. Because Y is a G-invariant subset of X then clearly p is a homo-
morphism of the lattice L(X) into the lattice L(Y). Let U C V be e-closed
subsets of X such that p(U) = p(V). If v € V then by suitable definitions
voe € VNY = p(V) Then by assumption voe € p(U), hence v € U because
U is e-closed. This means that U = V and p is an injective map.

Now if U C Y is G-invariant let us put y(U) = {z € X;z0e € U}. Be-
cause e is the neutral element of multiplication in G then direct calculation
gives that y(U) is an e-closed subset of X and p(y(U)) = U. This means
that p is a surjective map, hence an isomorphism, and p~! = 7. =

Results presented in this note are especially useful in the case, when G
is a groupoid such that G, is a group. In this case, according to [6], one can
apply the standard decomposition of the set Y = X o e into G;-orbits and
then lift this decomposition to X by Theorem 5. In this way one can obtain
a generalization and simplification of many results from (2], [3].
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