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DIRECT MULTIPLICATION OF FINITE ALGEBRAS
DOES NOT PRESERVE FINITE EQUATIONAL BASES:
TWO EXAMPLES AND A GENERAL STATEMENT

It is known [1] that the intersection of two finitely based equational
theories needn’t be finitely based. In other words, the direct product of
two algebras having each a finite equational basis (FEB) not necessarily
has a FEB. In this paper we give two examples of such non-preservation
phenomenon for finite algebras and show, on the basis of these examples,
that, within “clone equivalence”, every finite algebra with a FEB (and with
at least 2 elements) is involved in an example of this kind, and that the same
is true—with a single exception—for compositional equivalence as well.

ExXAMPLE 1. A finite algebra %A; with two binary operations that ceases
to have a FEB after direct multiplication by an algebra with two constant
operations (necessarily with different values). The elements are a, b, ¢, a, 8,
v, 6, and 0. The operations are denoted o and * and defined by the equalities

axyY=b,bxb=c,boa=b,bof=¢c, coa=c,

and z oy = z *xy = 0 for the remaining 123 “triads” of the form (element,
operation, element).

First we prove that the identities of 2l; are finitely based. Denote by 0
the term, say, v o u (or any fixed term expressing the zero function). The
symbol 00, possibly with a subscript, means “either o or *”. A bracket-free
text of the form

(1) W0D1W1D27T2D3...Dnﬂ'n ,
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where m; are variables, is understood as the term
((-. - ((moD1m1)0272)03 . . .)Opa1Tp—1)Bp Tp-
The proof itself is quite “Lyndon-style”. The laws
z0y(yO22) =00z =200 =0

(their validity for %y, as well as the validity of the finitely many other
laws introduced in the proof, can be easily verified by the reader) suffice
to “annihilate”, i.e. reduce to 0, any term that has a subterm of the form
T104(T>0;T3), thus disposing of all terms but those of the form (1). Now
let ¢ be a term of this form. If ¢ contains at least three %’s then the law

(2) TOYOZXKU=TOY*UOZ

enables us to shift all «’s in (1) for ¢, together with the variables immediately
following the *’s, to the left as far as possible, and then to annihilate ¢ using
some law of the form 7 = 0 with three +’s and a limited number of o’sin 7
(as well as other laws introduced above; that, throughout the proof, goes
without saying). Similarly, if there are two #’s among the O;’s in (1) but O
is not *, then ¢ = 0 follows from z o y * 2 * u = 0. From now on, ¢ is (1) with
at most two asterisks, and if any of O; with ¢ > 2 is an *, then the only
other possible * in ¢ is O;.

Now take the following variables in ¢ (from 1 to 3 in number): the leftmost
variable mo and, if any, the variable(s) immediately following the *(s) in (1)
for t. If any one of these coincides with one of the remaining m;’s, or if
any two of the three coincide with each other, then, again, using (2) and
zoyoz = zozoy and shifting the second occurrence of the “bad” variable
to the left, we have ¢ = 0 as a consequence of finitely many laws, such as
0y yO.203y = 0 etc.

If ¢ contains two *’s, the first necessarily being Ul;, then the second * is
shifted to the extreme right. That may require another law, z xy*zou =
z*youx*z. A unique occurrence of * (other than 0;) is similarly shifted to
the right.

Thus an arbitrary term ¢ has been reduced to one of the following five
forms (in which &, (, 8 are pairwise distinct variables not occurring among
variables 7,...,7,, which needn’t be distinct as yet):

(F0) 0;

(F1)omo...0m,, n2>0;

(F2) Eomo...onax(, n 2 1;

(F3)ExComo...0on,, n>0;

(FAYE+(omo...on, %8, n>0.

As for repetitions among the 7’s, the law z o yoyoy = z oy o y reduces
the number of occurrences of each 7; in ¢ to 2 at most. In (F2) and (F4)
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we further reduce it to 1 using zoyoy#* 2z = z o y * z. Now we have what
can be called a semicanonical form for t; the prefix “semi-” here means that
the “omy 0...017,” segment is defined up to rearrangement of the n’s in any
order. For (F1/2/3/4) we denote by 7' the set of all variables occurring in
the semicanonical term as one of the 7,’s; for (F1) and (F3), let " be the
set of all those variables in 7 that occur in (F1/F3) twice.

LEMMA. Let t; and ty be semicanonical terms. If t; = ty € Eq(2,), then
both terms fall under the same of the five items (F0) to (F4) and have the
same £ (for F1 to F4), the same ( (for ¥2,F3,F4), the same 8 (for F4), the
same n' (for F1 to F4), and the same 7" (for F1 and ¥3). (Thus, the two
terms differ only in ordering of their 1)’s.)

Proof. We give a description of the function expressed by a semicanon-
ical term t; from this description the statement of the lemma follows imme-
diately (taking into account that ¢; and ¢ of the lemma express the same
function). The description just lists all those tuples of values of variables and
corresponding values of ¢ for which the latter are not 0. We use, in an infor-
mal manner, common notation, e.g. “3!r € p'(x = f), Vp € n'\{r}(n = a)”
means “among the variables in 7', there exist exactly one with value 3, and
all the other variables in 7' have value a”.

(F0) No non-zero values.

(F1) Forn > 0: £ =b,Ynen'(n=a),t =b;

£=¢Vne 77/(77 = a)7t =G
£=b3ren(r=0),Vnen\{r}n=0a)t=c
For n = 0: ...(obvious).

(F2)é¢=bVnen(n=a),(=6t=c.

(F3) £=0b,(=6Vne TI'(U = Ol),t =G
E=a,(=7,Yn€n(n=10),t=1b
E=a,(=7,men(r=0),Ynen\{r}(n=0a),t=c.

(F4){=a,(=7,Vnen'(n=a),0 =4t=c.

By the lemma just proved, the laws specified (or mentioned) above form
a FEB for 2.

To prove that the direct product 2; x B, where B is, say, ({0,1};z0y =
0,z xy = 1), has no FEB, note that Eq(2; x B), the equational theory
of the product, consists exactly of those equations ¢ = 7 € Eq(%;) for
which neither ¢ nor 7 is a variable and their senior (external) operations
are both o or both # (plus equations of the form & = £). Consider the
sequence of equations z xy, oy 0...0oyp ¥ =z *xz,n = 1,2,... The
above description of equivalence of terms in ?; shows that these equations
are (identically) satisfied for ;. (But the only way to derive them using
finitely many laws is, for n large enough, to shift to left the right * in
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the left-hand side of the equation, and that is unlawful in 9.) The same
description shows, first, that if 7 is a term of the form £ x (onyo...0 7y
with m+2 distinct variables, and 7 = T € Eq(2y), then T is £x(omyo0...0m,,
with U{m;} = U{n;}. Furthermore, it shows that if 7 is a term of the form
Eompo...ony *( with m + 2 distinct variables, and 7 = T € Eq(2y), then
Tisfomyo...0mgu 0 Tgg1 0...0m,, with U{m;} = U{n;}. If, in addition,
=T € Eq(), then T is £omy o...0 7, * (. Thus (repeated) applications
of identities in less than N variables from Eq(2; X 2) can only transform
the left-hand side of the N-th equation of the above sequence into terms of
the form ¢ * y3 oy o... 0 Ty, * &, with U{m;} = {y2,...,yn}. Hence the
identities of 2; x B are not finitely based.

EXAMPLE 2. A finite algebra with a single binary operation that ceases
to have a FEB after direct multiplication by an algebra satisfying zoy = y.
Let 2, have elements 0, b, ¢, a, § and non-zero “products” boa = b,
coa =bof = c(i.e. Yy is the “bcaB0-subalgebra” of the “o-reduct” of ;).
The following equations form an equational basis for ™Us: 202z = 002 =
to0=20(yoz)=0;20y02z=2020y;L0Yoyoy = T0Yoy.
(Proof is similar to Example 1 but much simpler and is left to the reader.)
But Ay X B, where B satisfies 2 o y = y (and has at least two elements),
has no FEB. Indeed, if T = £ o 0...0 9, € Eq(™z) (the variables are
assumed to be pairwise distinct) then 7is €03 0...0(y, With ({1...(n) a
permutation of (71 ...7m,); henceif z oy 0...0y, 0oz = 7 is a consegence
of n-variable laws in Eq(2; x B) = Eq(2;) N Eq(B), then 7 must be of
the form z oy, 0...0y, oz, where p,...,q are 1,...,n re-arranged; thus
zoyo...oypoz =zoz € Eq(Uy X B) is not a consequence of n-variable
laws in 2, x B.

COROLLARY. For every finite algebra A of finite type (and at least two
elements) there exist a finite algebra A' with the same elements as Y and
a finite algebra B of the same finite type as A' such that (i) A and A’ are
term equivalent, i.e. determine the same clone; (i1) B has a FEB, but (i)
A' x B has no FEB.

Proof. %' is derived from 2 by adjoining a single binary operation o
defined by zoy = y. As for B, its o-reduct is defined to be the U, of Example
2 while the remaining operation are all constants 0. Both existence of a FEB
for B and non-existence of one for 2’ X B are proved practically in the same
manner as for Example 2.

The corollary shows that, up to “clone equivalence”, every finite algebra
with a FEB is involved (as a factor) in some example of two finite algebras
with a FEB whose direct product has no FEB. The rest of the paper is
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aimed at proving a somewhat stronger version of the Corollary that has to
do with (“strict”) compositional equivalence rather than term equivalence.

DEFINITION. A constant algebra is an algebra whose operations are all
constant operations with the same value.

We denote by [2] the compositional closure of the fundamental opera-
tions of 2. Thus for a constant algebra 2, [] consists of a single function,
which is a constant.

THEOREM. Let U be a non-constant finite algebra of finite type. Then for
some A' of finite type having the same universe as A and for some finite B
of the same type as A' (i) [A'] = [A]; (¢5) B has a FEB; (iii) A' x B has
no FEB.

NoTke. If % is (compositionally equivalent to) a constant algebra, then
for any B the direct product % x B has a FEB iff ‘B has one. This fact
is probably known in literature and, in any case, has a simple syntactical
proof.

Proof of Theorem. If [2] contains a unary non-constant function,
say f(z), then let 2’ be 2 with zoy = f(y) adjoined, and let B be the algebra
A, of Example 2 with the original operations (in the type of 2) equal to 0.
The proof is similar to the proof for Example 2 ( since Toé = T7on € Eq(2")
implies £ =7, and £y 0 €3 0...0&, = 7 € Eq(B) implies that no operation
symbol but o can occur in 7).

If [2] contains at least two different constants, say 0 and 1, let %’ be 2
with 2 oy = 0 and = *y = 1 adjoined, and let U be the A; of Example 1
with the original operations defined as constants 0. The proof is similar to
that of Example 1.

There remains only one case to be considered: the only unary function
f(z) € [] is a constant, say 0. Since 2 is not a constant algebra, some
&(x1,...,2,) € [¥] is not a constant function; without loss of generality
we assume that z, is essential for ¢ , i.e. ¢(a1,b,...,c) # ¢(az,b,...,c) for
some ai,az,b,...,cin A. Clearly ¢(0,y,...,2) = 0 identically. We “enrich”
A by an (n+1)-ary operation 9 defined by ¥ (o, z1,...,25) = Hz1,...,25),
yielding ?’. Let 2 have the same elements as 2, of Example 2 and operations
Y(2o,...,Zn) =2o0 Ty, w(...)=0forw # .

As before, B has a FEB. To prove that 9’ x B has none, we first define,
for every finite sequence © = (ny,...,m) of pairwise distinct variables, a set
of terms A, in this way: for l = 1, A, consists of all terms ¥(z, n1,%2,...,t,)
where t; are arbitrary terms (of the type of 2'); for I > 1, A, consists of
all terms (¢, m, 72,...,T,) with any terms 7; and with ¢ in A,/ , where '
is (m1,...,Mm=1). (We assume that z, as well as z,,...,2, below, are not
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among the n;’s, but no limitations are imposed upon ¢; and ;). Similarly,
let B, for | = 1 consist of a single term ¢ (z, 71, 22,...,2,), and for I > 1 let
it consist of all terms (¢, m, T2,...,Ty) with t in A above and T3,...,T,
satisfying &(mi, T, ..., Tn) = é(m, 22, - - ., 2p) (for 2A).

If r € Br and t = 7 € Eq(B), then, for some permutation 7' =
(Miys--ymi,) of (m,...,m), t € Ap. (Proved as above. Informally, 7 =
zomno...om and the other operations of B are zeros, so that ¢ is ¥(t1, ts,...)
and every w # 1 can occur only in the “...” part of ¢ or in similar parts of
t1,te.) In A, 7 = ¢(m,22,...,2,) and t = ¢(n;,,ta,...,t,) for some terms
t2,...,t,. If, in addition, 7 = ¢t € Eq(®') then i; = I (otherwise n;, = 0
would imply ¢ = 0 but not 7 = 0). Thus for a 7 in By, .. .yy.z) and a ¢ in
B(;) we have 7 = t € Eq(®1' x ®B) but it is not derivable from N-variable
laws of ' x B.
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