

Vadim Murski

**DIRECT MULTIPLICATION OF FINITE ALGEBRAS
DOES NOT PRESERVE FINITE EQUATIONAL BASES:
TWO EXAMPLES AND A GENERAL STATEMENT**

It is known [1] that the intersection of two finitely based equational theories needn't be finitely based. In other words, the direct product of two algebras having each a finite equational basis (FEB) not necessarily has a FEB. In this paper we give two examples of such non-preservation phenomenon for *finite* algebras and show, on the basis of these examples, that, within "clone equivalence", every finite algebra with a FEB (and with at least 2 elements) is involved in an example of this kind, and that the same is true—with a single exception—for compositional equivalence as well.

EXAMPLE 1. A finite algebra \mathfrak{A}_1 with two binary operations that ceases to have a FEB after direct multiplication by an algebra with two constant operations (necessarily with different values). The elements are $a, b, c, \alpha, \beta, \gamma, \delta$, and 0. The operations are denoted \circ and $*$ and defined by the equalities

$$a * \gamma = b, \quad b * \delta = c, \quad b \circ \alpha = b, \quad b \circ \beta = c, \quad c \circ \alpha = c,$$

and $x \circ y = x * y = 0$ for the remaining 123 "triads" of the form (element, operation, element).

First we prove that the identities of \mathfrak{A}_1 are finitely based. Denote by $\mathbf{0}$ the term, say, $u \circ u$ (or any fixed term expressing the zero function). The symbol \square , possibly with a subscript, means "either \circ or $*$ ". A bracket-free text of the form

$$(1) \quad \pi_0 \square_1 \pi_1 \square_2 \pi_2 \square_3 \dots \square_n \pi_n ,$$

The author's work was supported financially by the Russian Foundation for fundamental research (93-01-01525). Some of the results were announced at the International Conference on Universal Algebra and its Applications (Warsaw - Jachranka, June 1993).

where π_i are variables, is understood as the term

$$((\dots((\pi_0 \square_1 \pi_1) \square_2 \pi_2) \square_3 \dots) \square_{n-1} \pi_{n-1}) \square_n \pi_n.$$

The proof itself is quite “Lyndon-style”. The laws

$$x \square_1 (y \square_2 z) = \mathbf{0} \square x = x \square \mathbf{0} = \mathbf{0}$$

(their validity for \mathfrak{A}_1 , as well as the validity of the finitely many other laws introduced in the proof, can be easily verified by the reader) suffice to “annihilate”, i.e. reduce to $\mathbf{0}$, any term that has a subterm of the form $T_1 \square_1 (T_2 \square_2 T_3)$, thus disposing of all terms but those of the form (1). Now let t be a term of this form. If t contains at least three *’s then the law

$$(2) \quad x \circ y \circ z * u = x \circ y * u \circ z$$

enables us to shift all *’s in (1) for t , together with the variables immediately following the *’s, to the left as far as possible, and then to annihilate t using some law of the form $\tau = \mathbf{0}$ with three *’s and a limited number of o’s in τ (as well as other laws introduced above; that, throughout the proof, goes without saying). Similarly, if there are two *’s among the \square_i ’s in (1) but \square_1 is not *, then $t = \mathbf{0}$ follows from $x \circ y * z * u = \mathbf{0}$. From now on, t is (1) with at most two asterisks, and if any of \square_i with $i \geq 2$ is an *, then the only other possible * in t is \square_1 .

Now take the following variables in t (from 1 to 3 in number): the leftmost variable π_0 and, if any, the variable(s) immediately following the *(s) in (1) for t . If any one of these coincides with one of the remaining π_i ’s, or if any two of the three coincide with each other, then, again, using (2) and $x \circ y \circ z = x \circ z \circ y$ and shifting the second occurrence of the “bad” variable to the left, we have $t = \mathbf{0}$ as a consequence of finitely many laws, such as $x \square_1 y \square_2 z \square_3 y = \mathbf{0}$ etc.

If t contains two *’s, the first necessarily being \square_1 , then the second * is shifted to the extreme right. That may require another law, $x * y * z \circ u = x * y \circ u * z$. A unique occurrence of * (other than \square_1) is similarly shifted to the right.

Thus an arbitrary term t has been reduced to one of the following five forms (in which ξ, ζ, θ are pairwise distinct variables not occurring among variables η_1, \dots, η_n , which needn’t be distinct as yet):

- (F0) $\mathbf{0}$;
- (F1) $\xi \circ \eta_1 \circ \dots \circ \eta_n$, $n \geq 0$;
- (F2) $\xi \circ \eta_1 \circ \dots \circ \eta_n * \zeta$, $n \geq 1$;
- (F3) $\xi * \zeta \circ \eta_1 \circ \dots \circ \eta_n$, $n \geq 0$;
- (F4) $\xi * \zeta \circ \eta_1 \circ \dots \circ \eta_n * \theta$, $n \geq 0$.

As for repetitions among the η ’s, the law $x \circ y \circ y \circ y = x \circ y \circ y$ reduces the number of occurrences of each η_i in t to 2 at most. In (F2) and (F4)

we further reduce it to 1 using $x \circ y \circ y * z = x \circ y * z$. Now we have what can be called a *semicanonical form* for t ; the prefix “semi-” here means that the “ $\circ \eta_1 \circ \dots \circ \eta_n$ ” segment is defined up to rearrangement of the η ’s in any order. For (F1/2/3/4) we denote by η' the set of all variables occurring in the semicanonical term as one of the η_i ’s; for (F1) and (F3), let η'' be the set of all those variables in η' that occur in (F1/F3) twice.

LEMMA. *Let t_1 and t_2 be semicanonical terms. If $t_1 = t_2 \in \text{Eq}(\mathfrak{A}_1)$, then both terms fall under the same of the five items (F0) to (F4) and have the same ξ (for F1 to F4), the same ζ (for F2, F3, F4), the same θ (for F4), the same η' (for F1 to F4), and the same η'' (for F1 and F3). (Thus, the two terms differ only in ordering of their η ’s.)*

Proof. We give a description of the function expressed by a semicanonical term t ; from this description the statement of the lemma follows immediately (taking into account that t_1 and t_2 of the lemma express the same function). The description just lists all those tuples of values of variables and corresponding values of t for which the latter are not 0. We use, in an informal manner, common notation, e.g. “ $\exists! \pi \in \eta'(\pi = \beta), \forall \eta \in \eta' \setminus \{\pi\}(\eta = \alpha)$ ” means “among the variables in η' , there exist exactly one with value β , and all the other variables in η' have value α ”.

(F0) No non-zero values.

(F1) For $n > 0$: $\xi = b, \forall \eta \in \eta'(\eta = \alpha), t = b$;

$\xi = c, \forall \eta \in \eta'(\eta = \alpha), t = c$;

$\xi = b, \exists! \pi \in \eta'(\pi = \beta), \forall \eta \in \eta' \setminus \{\pi\}(\eta = \alpha), t = c$.

For $n = 0$: ... (obvious).

(F2) $\xi = b, \forall \eta \in \eta'(\eta = \alpha), \zeta = \delta, t = c$.

(F3) $\xi = b, \zeta = \delta, \forall \eta \in \eta'(\eta = \alpha), t = c$;

$\xi = a, \zeta = \gamma, \forall \eta \in \eta'(\eta = \alpha), t = b$;

$\xi = a, \zeta = \gamma, \exists! \pi \in \eta'(\pi = \beta), \forall \eta \in \eta' \setminus \{\pi\}(\eta = \alpha), t = c$.

(F4) $\xi = a, \zeta = \gamma, \forall \eta \in \eta'(\eta = \alpha), \theta = \delta, t = c$.

By the lemma just proved, the laws specified (or mentioned) above form a FEB for \mathfrak{A}_1 .

To prove that the direct product $\mathfrak{A}_1 \times \mathfrak{B}$, where \mathfrak{B} is, say, $\langle \{0, 1\}; x \circ y = 0, x * y = 1 \rangle$, has no FEB, note that $\text{Eq}(\mathfrak{A}_1 \times \mathfrak{B})$, the equational theory of the product, consists exactly of those equations $t = \tau \in \text{Eq}(\mathfrak{A}_1)$ for which neither t nor τ is a variable and their senior (external) operations are both \circ or both $*$ (plus equations of the form $\xi = \xi$). Consider the sequence of equations $x * y_1 \circ y_2 \circ \dots \circ y_n * x = x * x, n = 1, 2, \dots$ The above description of equivalence of terms in \mathfrak{A}_1 shows that these equations are (identically) satisfied for \mathfrak{A}_1 . (But the only way to derive them using finitely many laws is, for n large enough, to shift to left the right $*$ in

the left-hand side of the equation, and that is unlawful in \mathfrak{B} .) The same description shows, first, that if τ is a term of the form $\xi * \zeta \circ \eta_1 \circ \dots \circ \eta_m$ with $m+2$ distinct variables, and $\tau = T \in \text{Eq}(\mathfrak{A}_1)$, then T is $\xi * \zeta \circ \pi_1 \circ \dots \circ \pi_r$, with $\cup\{\pi_i\} = \cup\{\eta_j\}$. Furthermore, it shows that if τ is a term of the form $\xi \circ \eta_1 \circ \dots \circ \eta_m * \zeta$ with $m+2$ distinct variables, and $\tau = T \in \text{Eq}(\mathfrak{A}_1)$, then T is $\xi \circ \pi_1 \circ \dots \circ \pi_k * \zeta \circ \pi_{k+1} \circ \dots \circ \pi_r$, with $\cup\{\pi_i\} = \cup\{\eta_j\}$. If, in addition, $\tau = T \in \text{Eq}(\mathfrak{A})$, then T is $\xi \circ \pi_1 \circ \dots \circ \pi_r * \zeta$. Thus (repeated) applications of identities in less than N variables from $\text{Eq}(\mathfrak{A}_1 \times \mathfrak{A})$ can only transform the left-hand side of the N -th equation of the above sequence into terms of the form $x * y_1 \circ \pi_2 \circ \dots \circ \pi_m * x$, with $\cup\{\pi_i\} = \{y_2, \dots, y_N\}$. Hence the identities of $\mathfrak{A}_1 \times \mathfrak{B}$ are not finitely based.

EXAMPLE 2. A finite algebra with a single binary operation that ceases to have a FEB after direct multiplication by an algebra satisfying $x \circ y = y$. Let \mathfrak{A}_2 have elements 0, b , c , α , β and non-zero “products” $b \circ \alpha = b$, $c \circ \alpha = b \circ \beta = c$ (i.e. \mathfrak{A}_2 is the “ $b\alpha\beta 0$ -subalgebra” of the “ \circ -reduct” of \mathfrak{A}_1). The following equations form an equational basis for \mathfrak{A}_2 : $x \circ x = 0 \circ x = x \circ 0 = x \circ (y \circ z) = 0$; $x \circ y \circ z = x \circ z \circ y$; $x \circ y \circ y \circ y = x \circ y \circ y$. (Proof is similar to Example 1 but much simpler and is left to the reader.) But $\mathfrak{A}_2 \times \mathfrak{B}$, where \mathfrak{B} satisfies $x \circ y = y$ (and has at least two elements), has no FEB. Indeed, if $\tau = \xi \circ \eta_1 \circ \dots \circ \eta_m \in \text{Eq}(\mathfrak{A}_2)$ (the variables are assumed to be pairwise distinct) then τ is $\xi \circ \zeta_1 \circ \dots \circ \zeta_m$ with $(\zeta_1 \dots \zeta_m)$ a permutation of $(\eta_1 \dots \eta_m)$; hence if $x \circ y_1 \circ \dots \circ y_n \circ x = \tau$ is a consequence of n -variable laws in $\text{Eq}(\mathfrak{A}_2 \times \mathfrak{B}) = \text{Eq}(\mathfrak{A}_2) \cap \text{Eq}(\mathfrak{B})$, then τ must be of the form $x \circ y_p \circ \dots \circ y_q \circ x$, where p, \dots, q are $1, \dots, n$ re-arranged; thus $x \circ y_1 \circ \dots \circ y_n \circ x = x \circ x \in \text{Eq}(\mathfrak{A}_2 \times \mathfrak{B})$ is not a consequence of n -variable laws in $\mathfrak{A}_2 \times \mathfrak{B}$.

COROLLARY. *For every finite algebra \mathfrak{A} of finite type (and at least two elements) there exist a finite algebra \mathfrak{A}' with the same elements as \mathfrak{A} and a finite algebra \mathfrak{B} of the same finite type as \mathfrak{A}' such that (i) \mathfrak{A} and \mathfrak{A}' are term equivalent, i.e. determine the same clone; (ii) \mathfrak{B} has a FEB, but (iii) $\mathfrak{A}' \times \mathfrak{B}$ has no FEB.*

Proof. \mathfrak{A}' is derived from \mathfrak{A} by adjoining a single binary operation \circ defined by $x \circ y = y$. As for \mathfrak{B} , its \circ -reduct is defined to be the \mathfrak{A}_2 of Example 2 while the remaining operation are all constants 0. Both existence of a FEB for \mathfrak{B} and non-existence of one for $\mathfrak{A}' \times \mathfrak{B}$ are proved practically in the same manner as for Example 2.

The corollary shows that, up to “clone equivalence”, every finite algebra with a FEB is involved (as a factor) in some example of two finite algebras with a FEB whose direct product has no FEB. The rest of the paper is

aimed at proving a somewhat stronger version of the Corollary that has to do with ("strict") compositional equivalence rather than term equivalence.

DEFINITION. A *constant algebra* is an algebra whose operations are all constant operations with the same value.

We denote by $[\mathfrak{A}]$ the compositional closure of the fundamental operations of \mathfrak{A} . Thus for a constant algebra \mathfrak{A} , $[\mathfrak{A}]$ consists of a single function, which is a constant.

THEOREM. *Let \mathfrak{A} be a non-constant finite algebra of finite type. Then for some \mathfrak{A}' of finite type having the same universe as \mathfrak{A} and for some finite \mathfrak{B} of the same type as \mathfrak{A}' (i) $[\mathfrak{A}'] = [\mathfrak{A}]$; (ii) \mathfrak{B} has a FEB; (iii) $\mathfrak{A}' \times \mathfrak{B}$ has no FEB.*

NOTE. If \mathfrak{A} is (compositionally equivalent to) a constant algebra, then for any \mathfrak{B} the direct product $\mathfrak{A} \times \mathfrak{B}$ has a FEB iff \mathfrak{B} has one. This fact is probably known in literature and, in any case, has a simple syntactical proof.

Proof of Theorem. If $[\mathfrak{A}]$ contains a unary non-constant function, say $f(x)$, then let \mathfrak{A}' be \mathfrak{A} with $x \circ y = f(y)$ adjoined, and let \mathfrak{B} be the algebra \mathfrak{A}_2 of Example 2 with the original operations (in the type of \mathfrak{A}) equal to 0. The proof is similar to the proof for Example 2 (since $T \circ \xi = \tau \circ \eta \in \text{Eq}(\mathfrak{A}')$ implies $\xi = \eta$, and $\xi_1 \circ \xi_2 \circ \dots \circ \xi_n = \tau \in \text{Eq}(\mathfrak{B})$ implies that no operation symbol but \circ can occur in τ).

If $[\mathfrak{A}]$ contains at least two different constants, say 0 and 1, let \mathfrak{A}' be \mathfrak{A} with $x \circ y = 0$ and $x * y = 1$ adjoined, and let \mathfrak{A} be the \mathfrak{A}_1 of Example 1 with the original operations defined as constants 0. The proof is similar to that of Example 1.

There remains only one case to be considered: the only unary function $f(x) \in [\mathfrak{A}]$ is a constant, say 0. Since \mathfrak{A} is not a constant algebra, some $\phi(x_1, \dots, x_n) \in [\mathfrak{A}]$ is not a constant function; without loss of generality we assume that x_1 is *essential* for ϕ , i.e. $\phi(a_1, b, \dots, c) \neq \phi(a_2, b, \dots, c)$ for some a_1, a_2, b, \dots, c in \mathfrak{A} . Clearly $\phi(0, y, \dots, z) = 0$ identically. We "enrich" \mathfrak{A} by an $(n+1)$ -ary operation ψ defined by $\psi(x_0, x_1, \dots, x_n) = \phi(x_1, \dots, x_n)$, yielding \mathfrak{A}' . Let \mathfrak{A} have the same elements as \mathfrak{A}_2 of Example 2 and operations $\psi(x_0, \dots, x_n) = x_0 \circ x_1, \omega(\dots) = 0$ for $\omega \neq \psi$.

As before, \mathfrak{B} has a FEB. To prove that $\mathfrak{A}' \times \mathfrak{B}$ has none, we first define, for every finite sequence $\pi = (\eta_1, \dots, \eta_l)$ of pairwise distinct variables, a set of terms A_π in this way: for $l = 1$, A_π consists of all terms $\psi(x, \eta_1, t_2, \dots, t_n)$ where t_i are arbitrary terms (of the type of \mathfrak{A}'); for $l > 1$, A_π consists of all terms $\psi(t, \eta_1, \tau_2, \dots, \tau_n)$ with any terms τ_i and with t in $A_{\pi'}$, where π' is $(\eta_1, \dots, \eta_{l-1})$. (We assume that x , as well as z_2, \dots, z_n below, are not

among the η_i 's, but no limitations are imposed upon t_j and τ_j). Similarly, let B_π for $l = 1$ consist of a single term $\psi(x, \eta_1, z_2, \dots, z_n)$, and for $l > 1$ let it consist of all terms $\psi(t, \eta_l, T_2, \dots, T_n)$ with t in $A_{\pi'}$ above and T_2, \dots, T_n satisfying $\phi(\eta_l, T_2, \dots, T_n) = \phi(\eta_l, z_2, \dots, z_n)$ (for \mathfrak{A}).

If $\tau \in B_\pi$ and $t = \tau \in \text{Eq}(\mathfrak{B})$, then, for some permutation $\pi' = (\eta_{i_1}, \dots, \eta_{i_l})$ of (η_1, \dots, η_l) , $t \in A_{\pi'}$. (Proved as above. Informally, $\tau = x \circ \eta_1 \circ \dots \circ \eta_l$ and the other operations of \mathfrak{B} are zeros, so that t is $\psi(t_1, t_2, \dots)$ and every $\omega \neq \psi$ can occur only in the “...” part of t or in similar parts of t_1, t_2 .) In \mathfrak{A}' , $\tau = \phi(\eta_l, z_2, \dots, z_n)$ and $t = \phi(\eta_{i_l}, t_2, \dots, t_n)$ for some terms t_2, \dots, t_n . If, in addition, $\tau = t \in \text{Eq}(\mathfrak{A}')$ then $i_l = l$ (otherwise $\eta_{i_l} = \mathbf{0}$ would imply $t = \mathbf{0}$ but not $\tau = \mathbf{0}$). Thus for a τ in $B_{(y_1, \dots, y_N, x)}$ and a t in $B_{(x)}$ we have $\tau = t \in \text{Eq}(\mathfrak{A}' \times \mathfrak{B})$ but it is not derivable from N -variable laws of $\mathfrak{A}' \times \mathfrak{B}$.

References

[1] W. Taylor, *Equational logic*, Houston J. Math., 1980.

IAM RAS
4 Minsskaya sq.
125047 MOSCOW, RUSSIA

Received March 10, 1995.