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DIRECT MULTIPLICATION OF FINITE ALGEBRAS 
DOES NOT PRESERVE FINITE EQUATIONAL BASES: 

TWO EXAMPLES A N D A GENERAL STATEMENT 

It is known [1] that the intersection of two finitely based equational 
theories needn't be finitely based. In other words, the direct product of 
two algebras having each a finite equational basis (FEB) not necessarily 
has a FEB. In this paper we give two examples of such non-preservation 
phenomenon for finite algebras and show, on the basis of these examples, 
tha t , within "clone equivalence", every finite algebra with a FEB (and with 
at least 2 elements) is involved in an example of this kind, and that the same 
is true—with a single exception—for compositional equivalence as well. 

E X A M P L E 1. A finite algebra 2li with two binary operations that ceases 
to have a FEB after direct multiplication by an algebra with two constant 
operations (necessarily with different values). The elements are a, b, c, a , /?, 
7 , 6, and 0. The operations are denoted o and * and defined by the equalities 

a * 7 = 2>, b * 6 = c, bo a — b, bo ¡3 = c, co a = c, 

and xoy — x*y = 0 for the remaining 123 "triads" of the form (element, 
operation, element). 

First we prove that the identities of 2li are finitely based. Denote by 0 
the term, say, u o u (or any fixed term expressing the zero function). The 
symbol • , possibly with a subscript, means "either o or *". A bracket-free 
text of the form 

(1 ) 7 r o n i 7 r a 0 2 ^ 2 0 3 •• . O n i r n , 

The author's work was supported financially by the Russian Foundation for funda-
mental research (93-01-01525). Some of the results were announced at the International 
Conference on Universal Algebra and its Applications (Warsaw - Jachranka, June 1993). 



668 V. M u r s k i 

where 7r,- are variables, is understood as the term 

((. . .((7r0ni7ri)n27r2)n3 • • . p n - l T n - l p 

The proof itself is quite "Lyndon-style". The laws 

xUi{yU2z) = ODz = zDO = 0 
(their validity for Sli, as well as the validity of the finitely many other 
laws introduced in the proof, can be easily verified by the reader) suffice 
to "annihilate", i.e. reduce to 0, any term that has a subterm of the form 
Tin 1 (T 2 n 2 T3) , thus disposing of all terms but those of the form (1). Now 
let i be a term of this form. If t contains at least three *'s then the law 

(2) xoyoz*u — xoy*uoz 

enables us to shift all *'s in (1) for / , together with the variables immediately 
following the *'s, to the left as far as possible, and then to annihilate t using 
some law of the form r = 0 with three *'s and a limited number of o's in r 
(as well as other laws introduced above; that, throughout the proof, goes 
without saying). Similarly, if there are two *'s among the IHt-'s in (1) but Di 
is not *, then t — 0 follows from xoy*z*u = 0. From now on, t is (1) with 
at most two asterisks, and if any of • j with i > 2 is an *, then the only 
other possible * in t is Dj. 

Now take the following variables in t (from 1 to 3 in number): the leftmost 
variable 7To and, if any, the variable(s) immediately following the *(s) in (1) 
for t. If any one of these coincides with one of the remaining 7r,-'s, or if 
any two of the three coincide with each other, then, again, using (2) and 
xoyoz = xozoy and shifting the second occurrence of the "bad" variable 
to the left, we have / = 0 as a consequence of finitely many laws, such as 
xU\yn2zn^y — 0 etc. 

If t contains two *'s, the first necessarily being Di, then the second * is 
shifted to the extreme right. That may require another law, x*y*zou — 
x *y ou* z. A unique occurrence of * (other than Di) is similarly shifted to 
the right. 

Thus an arbitrary term t has been reduced to one of the following five 
forms (in which 6 are pairwise distinct variables not occurring among 
variables 771,..., r)n, which needn't be distinct as yet): 

(FO) 0; 
(Fl ) f or]! O ...0T)n, n > 0; 
(F2) £ 0 rj! o . . . o T]n * C, n > 1; 
(F3) £ * C ° m 0 • • • 0 Vn, n > 0; 
(F4) £ * C 0 Vi 0 • • • 0 Vn * n > 0. 
As for repetitions among the 77's, the law xoyoyoy = xoyoy reduces 

the number of occurrences of each 7/, in t to 2 at most. In (F2) and (F4) 
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we further reduce it to 1 using x o y o y * z — x o y * z . Now we have what 
can be called a semicanonical form for t; the prefix "semi-" here means that 
the "orji o . . . o r/„" segment is defined up to rearrangement of the 77's in any 
order. For ( F l / 2 / 3 / 4 ) we denote by 77' the set of all variables occurring in 
the semicanonical term as one of the t^'s; for ( F l ) and (F3), let TJ" be the 
set of all those variables in 77' that occur in (F1 /F3 ) twice. 

L E M M A . Lett\ andt2 be semicanonical terms. Ift\ — G Eq (2 l i ) , then 

both terms fall under the same of the five items ( F O ) to ( F 4 ) and have the 

same £ (for F l to F4), the same £ {for F2,F3,F4), the same 9 (for F4), the 

same 77' ( f o r F l to F 4 ) , and the same 77" (for F l and F 3 ) . (Thus, the two 

terms differ only in ordering of their 77's.) 

P r o o f . We give a description of the function expressed by a semicanon-
ical term t] from this description the statement of the lemma follows imme-
diately (taking into account that t\ and t2 of the lemma express the same 
function). The description just lists all those tuples of values of variables and 
corresponding values of t for which the latter are not 0. We use, in an infor-
mal manner, common notation, e.g. "3!7r G r]'(n = (3), V77 G t)'\{it}(t7 = a ) " 
means "among the variables in 77', there exist exactly one with value ¡3, and 
all the other variables in 77' have value a " . 

(FO) No non-zero values. 
( F l ) F o r 71 > 0 : f = b,Vr] € T]'(T] = a),t = b; 

£ = c , V77 e r]'(rj = a),t = c; 

£ = b, 3!tt G 77'(tt = ¡3), V77 £ 7]'\{ir}(ri = a),t = c. 

For n = 0: . . . (obvious). 
( F 2 K = 6,V77G 7/(77 = a ) , C = M = c. 
(F3) £ = 6, £ = ¿>, V77 G 77^77 = a),t = c) 

f = a . C = 7 , V77 G T]'(T] = a), t = b; 

i = a,( = 7 , 3 ! i 6 77'(7r = 0),Vri £ = a), t = c. 

(F4) £ = a,<; = 7,Vr?G r?'(77 = a),0 = 6,t = c. 
By the lemma just proved, the laws specified (or mentioned) above form 

a F E B for Sli. 
To prove that the direct product 2lj X 2J, where 2J is, say, ( { 0 , 1 } ; x o y = 

0, x * y = 1), has no FEB, note that Eq(2lj x ©) , the equational theory 
of the product, consists exactly of those equations t = T £ Eq(2lj) for 
which neither t nor r is a variable and their senior (external) operations 
are both 0 or both * (plus equations of the form £ = £). Consider the 
sequence of equations x * yi 0 y2 o ... o yn * x = x * x, n = 1 , 2 , . . . The 
above description of equivalence of terms in 2li shows that these equations 
are (identically) satisfied for 2li- (But the only way to derive them using 
finitely many laws is, for n large enough, to shift to left the right * in 
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the left-hand side of the equation, and tha t is unlawful in 03.) The same 
description shows, first, tha t if r is a term of the form £ * £ o rj\ o . . . o r)m 

with m+2 distinct variables, and r = T G Eq(2li) , then T is £*£O7TIO.. .oirr, 
with U{7Tj} = U{i7j}. Furthermore, it shows tha t if T is a term of the form 
£ o T)I o . . . o 7}M * £ with m -f 2 distinct variables, and r = T G Eq(2li) , then 
T is £ o o . . . o 7Ta:*C 0 1 0 • • • 0 ^ n with U f ^ } = U{?/j}. If, in addition, 
T = T G Eq(2l), then T is £ o 7Ti O . . . o 7rr * Thus (repeated) applications 
of identities in less than N variables f rom Eq(2li X 21) can only t ransform 
the left-hand side of the iV-th equation of the above sequence into terms of 
the form x * yi o 7r2 o . . . o irm * x, with U{ t t , } = {2/2, • • •, VN}- Hence the 
identities of 2li X 03 are not finitely based. 

E X A M P L E 2. A finite algebra with a single binary operation tha t ceases 
to have a F E B after direct multiplication by an algebra satisfying x 0 y — y. 
Let 2I2 have elements 0, b, c, a, ¡3 and non-zero "products" boa = b, 
co a = 60¡3 = c (i.e. 2I2 is the "&ca/?0-subalgebra" of the "o-reduct" o fS l i ) . 
The following equations form an equational basis for 2l2: x 0 x = 0 o x — 
1 0 O = x o (y o z) = 0; x o y o z = x 0 z o y; x 0 y 0 y o y = x o y 0 y. 
(Proof is similar to Example 1 but much simpler and is left to the reader.) 
But QI2 x 05, where © satisfies x o y = y (and has at least two elements), 
has no FEB. Indeed, if r = £ o T)I o . . . o R\M G Eq(2l2) ( the variables are 
assumed to be pairwise distinct) then r is £ o o . . . o £m with (Ci • • • Cm) a 
permutat ion of (771... i/m); hence if x o y1 o ... o yn o x = r is a conseqence 
of n-variable laws in Eq(Ql2 x 03) = Eq(Ql2) fl Eq(03), then r must be of 
the form x 0 yp 0 ... 0 yq o x, where p,.. .,q are 1 , . . . , n re-arranged; thus 
xoy1o...oynox = xox£ Eq(2l2 X 03) is not a consequence of n-variable 
laws in 2l2 X 03. 

C O R O L L A R Y . For every finite algebra 01 of finite type (and at least two 
elements) there exist a finite algebra 21' with the same elements as 21 and 
a finite algebra 03 of the same finite type as 21' such that ( i ) 21 and 21' are 
term equivalent, i.e. determine the same clone; (ii) 03 has a FEB, but (Hi) 
21' x 03 has no F E B . 

P r o o f . 21' is derived f rom 21 by adjoining a single binary operation o 
defined by xoy = y. As for 03, its o-reduct is defined to be the 2l2 of Example 
2 while the remaining operation are all constants 0. Both existence of a FEB 
for 03 and non-existence of one for 21' x 03 are proved practically in the same 
manner as for Example 2. 

The corollary shows tha t , up to "clone equivalence", every finite algebra 
with a F E B is involved (as a factor) in some example of two finite algebras 
with a FEB whose direct product has no FEB. The rest of the paper is 
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aimed at proving a somewhat stronger version of the Corollary that has to 
do with ("strict") compositional equivalence rather than term equivalence. 

D E F I N I T I O N . A constant algebra is an algebra whose operations are all 
constant operations with the same value. 

We denote by [21] the compositional closure of the fundamental opera-
tions of 51. Thus for a constant algebra 51, [51] consists of a single function, 
which is a constant. 

T H E O R E M . .Lei 51 be a non-constant finite algebra of finite type. Then for 
some 51' of finite type having the same universe as 51 and for some finite © 
of the same type as 51' (i) [51'] = [51]; (ii) <8 has a FEB; (Hi) 51' x <8 has 
no FEB. 

N O T E . If 51 is (compositionally equivalent to) a constant algebra, then 
for any the direct product 51 x 05 has a FEB iff © has one. This fact 
is probably known in literature and, in any case, has a simple syntactical 
proof. 

P r o o f of T h e o r e m . If [51] contains a unary non-constant function, 
say f(x), then let 51' be 21 with xoy = / ( y ) adjoined, and let © be the algebra 
51.2 of Example 2 with the original operations (in the type of 51) equal to 0. 
The proof is similar to the proof for Example 2 ( since T o £ = t o 77 £ Eq(5l') 
implies £ = 77, and ( i o { 2 o . , . o { „ = r £ Eq(®) implies that no operation 
symbol but 0 can occur in r ) . 

If [51] contains at least two different constants, say 0 and 1, let 51' be 51 
with i o ! / = 0 and x * y = 1 adjoined, and let 51 be the 5li of Example 1 
with the original operations defined as constants 0. The proof is similar to 
that of Example 1. 

There remains only one case to be considered: the only unary function 
f(x) 6 [21] is a constant, say 0. Since 51 is not a constant algebra, some 
<j>(x\,..., xn) € [51] is not a constant function; without loss of generality 
we assume that x\ is essential for <j) , i.e. (f>(a\, 6 , . . . , c) ^ 0(a 2 , b,..., c) for 
some a i , a 2 , b,..., c in 51. Clearly ^(0, ?/ , . . . , 2) = 0 identically. We "enrich" 
51 by an (n+ l ) - a ry operation defined by i>(xo, xi,..., xn) = </>(xi,..., xn), 

yielding 51'. Let 51 have the same elements as 5l2 of Example 2 and operations 
i f ) ( x 0 , . . . , x n ) = x0 0 Xi, ..) = 0 f o r UJ ̂  V • 

As before, © has a FEB. To prove that 51' x © has none, we first define, 
for every finite sequence 7r = (r/x,...,?/;) of pairwise distinct variables, a set 
of terms Ar in this way: for / = 1, An consists of all terms V>(x, i/i, ¿2, • • t n ) 
where t{ are arbitrary terms (of the type of 51'); for I > 1, Ar consists of 
all terms tj>(t, rji, . . . , r n ) with any terms Tj and with t in A^i, where 7r' 
is (7/1,. . . , 77/-.1). (We assume that x, as well as z 2 , . . . , z n below, are not 
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among the ^¿'s, but no limitations are imposed upon tj and Tj). Similarly, 
let Bn for / = 1 consist of a single term ">fi(x, rji, •.., zn), and for / > 1 let 
it consist of all terms i/>(t, rji, . . . , Tn) with t in Ar> above and . . . , Tn 

satisfying (¡>(j]¡, T2, . . . , Tn) = (friVh zh • • • > zn ) (for 21). 
If r 6 Bit and t = r G Eq(2$), then, for some permutation ir' — 

(rji1,..., rji,) of (771,..., ift), t G AK<. (Proved as above. Informally, r = 
xorjio.. .ojji and the other operations of 55 are zeros, so that t is ifi(ti,t2, • • •) 
and every u ^ ip can occur only in the ". . ." part of t or in similar parts of 
ti,t2.) In 21', T — <F>(R)L,Z2,...,ZN) and t = (F>(R)INT2,. • -,tn) for some terms 
t 2 , . . . , t n . If, in addition, r = / G Eq(2l') then ii = I (otherwise rji, = 0 
would imply / = 0 but not r = 0). Thus for a r in -^(j/!,...,^,^) and a t in 
B(x) we have r = t G Eq(2l' X but it is not derivable from ./V-variable 
laws of 21' X <8. 
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